
Fakultät Informatik

Alternative Automata-based Approaches to Probabilistic
Model Checking

Kurzversion der Dissertation

zur Erlangung des akademischen Grades
Doktoringenieur (Dr.-Ing.)

vorgelegt an der Technischen Universität Dresden
Fakultät Informatik
von David Müller

geboren am 08. März 1987
in Dresden

Betreuende Hochschullehrerin:
Prof. Dr. rer. nat. Christel Baier
Technische Universität Dresden

Abstract

The goal of this thesis is the proposal of new methods for the analysis of Markov
decision processes and Markov chains against LTL specifications. The standard
approach transforms an LTL specification into a deterministic Rabin automaton
which may result in a double-exponential blow-up.

We present two new approaches employing non-deterministic automata with a
restricted form of non-determinism and one new approach employing deterministic
automata but with a more flexible acceptance condition.

1 Introduction

The growing complexity and dependence on computational systems in our every day life
renders checking their correctness and safety more complicate. Model checking provides
a way to check correctness and safety by an exhaustive search of a model. In its classical
form it decides whether a model of a system satisfies a property. It has been introduced in
the early eighties of the last century, with the notable publications [EC80; LP85; CES86],
and has spread out into different research lines by now, e.g., analysis of timed automata
[AD94; LPY95; BY04] or probabilistic systems [Var85; VW86; CY95; Var99].

For expressing specifications such as safety one usually employs a temporal logic such
computation tree logic or linear temporal logic (LTL) [Pnu77]. In this thesis we consider
only LTL. It focuses on the paths of a model as the semantic of LTL is defined by a
set of words. A model satisfies an LTL formula if all the model’s traces are contained
in the set of words satisfied by the LTL formula, i.e., the model exhibits only behavior
characterized by the LTL formula. The typical approach for LTL model checking employs
ω-automata. The negated LTL formula is transformed into a (possibly exponential-sized)
non-deterministic Büchi automaton (NBA). Then a product is built, in which one can
search for behavior that is forbidden by the specification.

In its simplest form model checking give binary answers like “The system obeys
the specification” or “The system does not obey the specification”. Probabilistic model
checking (PMC) enables answers like “The system obeys the specification with a likelihood
of 99.95%” by focusing on Markovian models like Markov chains or Markov decision
processes (MDPs for short). Markov chains can be seen as labeled graphs equipped with
a probability distribution on every state for choosing a successor state, and a probability
distribution over all states, which serves to choose the initial state. If one provides
non-deterministic choices to Markov chains, one obtains MDPs. In a game-based view
MDPs can be called 11/2-player games, where one player resolves the non-deterministic
choices, and the other (half) player resolves the probabilistic choices probabilistically. One
distinguishes between qualitative and quantitative model checking in PMC. In qualitative
PMC one wants to prove that a path property holds almost surely or with a positive
probability in case of a Markov chain. On the other hand, in quantitative PMC one asks
for the concrete probability that a path property holds.

The probabilistic choices of Markovian models hinders the direct employment of NBAs
in the process of model checking Markovian models against LTL formula. As a resort to
this problem, deterministic automata are usually employed.

1

The translation of LTL to deterministic ω-automata can cause a double-exponential
blow-up [KV05; KR11]. This double-exponential blow-up together with the polynomial-
time algorithms for building the product and the analysis of it yields an overall double-
exponential-time algorithm for the analysis of Markov decision processes (MDP) against
LTL. This double-exponential time algorithm matches the lower bound [CY95]. Nev-
ertheless, in practical applications other approaches than via deterministic automata
might increase the performance. In particular, limit-deterministic Büchi automata, these
are automata behaving deterministically after an accepting state has been visited, can
improve the performance for MDP analysis [Var85; KV15; Sic+16].

The case is different for Markov chains, where a PSPACE lower bound is known
[Var85]. Thus, the double-exponential blow-up over deterministic automata leaves a
complexity gap for Markov chains. In the literature there have been several approaches
for Markov chain analysis with a single exponential runtime: an iterative refinement of
the Markov chain [CY88; CY95], an approach via weak alternating automata [BRV04],
and an approach over a special sub-class of unambiguous automata [CSS03].

The results in this thesis are based on [Kle+14; Bai+16; MS17] and unpublished
material developed in a cooperation with Christel Baier, František Blahoudek, Alexandre
Duret-Lutz, Joachim Klein, and Jan Strejček.

2 Markovian models, ω-automata and LTL

Markov decision processes. MDPs are an operational model for systems that exhibit
non-deterministic and probabilistic choices [Bel57]. A Markov decision process is a tuple
M = (S,Act, P, ι,AP, ℓ) where S is a finite set of states, Act a finite set of actions,
P : S × Act × S → [0, 1] is the transition probability function satisfying:∑

s′∈S
P (s, α, s′) ∈ {0, 1} for all s ∈ S, α ∈ Act,

ι : S → [0, 1] is the initial distribution satisfying
∑

s∈S ι(s) = 1, and ℓ : S → 2AP is a
labeling function. The size of an MDP M, written as |M|, is its number of states |S|.

Paths in M are finite or infinite sequences π = s0 α0 s1 α1 s2 α2 . . . starting in the
initial state s0 that are built by consecutive steps, i.e., P (si, αi, si+1) > 0 for all i. The
trace of π is the word over the alphabet Σ = 2AP that arises by taking the projections to
the state labels, i.e., trace(π) = ℓ(s0) ℓ(s1) ℓ(s2) For an LTL formula ϕ over AP we
write π |= ϕ if trace(π) ∈ L(ϕ).

Strategies for the full player are called schedulers. In general, they can be history-
dependent, i.e., a scheduler is a function s : (S × Act)∗ × S → Act selecting the next
action given the current path prefix. We call a path π = s0

α0−→ s1
α1−→ . . . an s-path

if αi = s(s0, α0, s1, α1, . . . , αi−1, si) for all i ≥ 0. Since the behavior of M is purely
probabilistic if some scheduler s is fixed, one can reason about the probability of path
events. If L is an ω-regular language then PrsM(L) denotes the probability under s for
the set of infinite paths π with trace(π) ∈ L.

For a worst-case analysis of a system modeled by an MDP M, one ranges over
all schedulers (i.e., all possible resolutions of the non-determinism) and considers the

2

maximal or minimal probabilities for some ω-regular language L. Depending on whether
L represents a desired or undesired path property, the quantitative worst-case analysis
amounts to computing Prmin

M (ϕ) = mins PrsM(L) or Prmax
M (L) = maxs PrsM(L). The

existence of such schedulers is well-known, see, e.g., [Put94; FV96].

Markov chains. A special case of MDPs are discrete-time Markov chains (DTMCs for
short), where |Act(s)| = 1 for every state s ∈ S. This results in the existence of exactly
one scheduler, and therefore Prmin

M and Prmax
M coincides. We abbreviate the according

probability by omitting min or max, i.e., PrM.

ω-automata. An ω-automaton A = (Q,Σ, δ,Q0,Φ) is a tuple, where Q is a non-empty,
finite set of states, Σ is a finite alphabet, δ : Q × Σ → 2Q is the (non-deterministic)
transition function, Q0 ⊆ Q is the non-empty set of initial states and Φ is the acceptance
condition.
A is said to be complete, if δ(q, σ) ̸= ∅ for all states q ∈ Q and all symbols σ ∈ Σ. A

is called deterministic, if |Q0| = 1 and |δ(q, σ)| ≤ 1 for all q ∈ Q and σ ∈ Σ. A run in
A for an infinite word w = σ0 σ1 σ2 . . . ∈ Σω is a sequence ρ = q0

σ0−→ q1
σ1−→ . . . starting

in an initial state q0 such that qi+1 ∈ δ(qi, σi) for all i ∈ N. If the word w is clear, we
sometimes omit the transitions and just write ρ = q0 q1

We write inf(ρ) to denote the set of all states occurring infinitely often in ρ. A run
ρ is called accepting, if it meets the acceptance condition Φ, denoted by ρ |= Φ. As
the syntactical description of the acceptance condition we use the syntax presented in
[Bab+15], where the acceptance condition is denoted by a positive Boolean combination of
Fin (Z) or Inf (Z) atoms with Z ⊆ Q. We call this acceptance an Emerson-Lei acceptance.

The semantics of Fin (Z) and Inf (Z) are defined in straight-forward manner: A run
ρ = q0

σ0−→ q1
σ1−→ . . . is accepting for Fin (Z) if and only if inf(ρ) ∩ Z = ∅ holds, whereas

ρ is accepting for Inf (Z) if and only if inf(ρ) ∩ Z ̸= ∅ holds. Fin (·) and Inf (·) are dual
to each other, i.e., every run ρ is accepting for Inf (Z) if and only if it is not accepting
for Fin (Z), and analogously, ρ is accepting for Fin (Z) if and only if it is not accepting
for Inf (Z).

We consider here the following four special types of acceptance conditions in particular
and describe their constraints for infinite runs:

• Büchi: Φ = Inf (Z) stands for a set of states, that needs to appear infinitely often.

• parity: Φ can be seen as a function col : Q→ N assigning to each state q a parity
color and requiring that the least parity color appearing infinitely often is even.
As formal syntax we fix Inf (Z0) ∨ (Fin (Z1) ∧ (Inf (Z2) ∨ (Fin (Z3) ∧ . . .))) with Zi

consisting of all states of color i.

• generalized Rabin: Φ is a disjunction of conjunctions, where every conjunction has
at most one Fin (·). Formally,

Φ =
⋁

i∈{1,...,n}

⎛⎝Fin (Ui) ∧
⋀

j∈{1,...,ni}

Inf (L1,j)

⎞⎠ ,

3

i.e., requiring that for one of the conjunctions the states in Ui appear at most
finitely often while in Li,j for every j ∈ {1, . . . , ni} some state appears infinitely
often. The term Rabin acceptance (without generalized) describes the special case
where ni = 1 for every i in {1, . . . , n}

• Streett: Φ is dual to Rabin, i.e., it is a strong fairness condition. Syntactically, we
fix

⋀
i∈{1,...,n} Fin (Ui) ∨ Inf (Li) as Streett acceptance.

Linear temporal logic (LTL). LTL extends Boolean logic by temporal operators such
as ⃝ (“in the next step”) and U (“until”). From U one can derive several operators as
syntactic sugar, e.g., ♦ (“finally”), or □ (“globally”). The semantic of an LTL formula is
defined by the infinite words satisfying it. For a deeper consideration, we refer to [BK08].

3 Good-for-games automata

A desire to avoid deterministic ω-automata occurred not only in the area of probabilistic
model checking, but in the area of synthesis of reactive systems as well [KV05; KPV06;
PPS06; SF07]. In 2006 Henzinger and Piterman [HP06] proposed the so-called good-for-
games property for non-deterministic automata, a restricted form of non-determinism.
This property has been independently proposed by Colcombet [Col09] for weighted
automata, but here it is called history-deterministic. Henzinger and Piterman also
developed an algorithm, which we call HP-algorithm, for constructing a good-for-games
parity automaton out of an NBA, aimed at a compact symbolic representation.

In a good-for-games automaton, the non-determinism can be resolved in an incre-
mental way for every accepted word without look-ahead. The formal definition of GFG
ω-automata [HP06] relies on a game-based view of ω-automata. Given a complete
ω-automaton A as before, we consider A as the game arena of an infinite, turn-based
2-player game, called monitor game: if the current state is q, then player 1 chooses a
symbol σ ∈ Σ whereas the other player (player 0) has to answer by a successor state
q′ ∈ δ(q, σ), i.e., resolves the non-determinism. In the next round q′ becomes the current
state. A play is a maximal alternating sequence ς = q0 σ0 q1 σ1 q2 σ2 . . . of states and
(action) symbols in the alphabet Σ starting with an initial state q0. Intuitively, the σi’s
are the symbols chosen by player 1 and the qi’s are the states chosen by player 0 in round
i. Player 0 wins the play ς if whenever ς|Σ = σ0 σ1 σ2 . . . ∈ Lω(A) then ς|Q = q0 q1 q2 . . .
is an accepting run. A strategy for player 0 is a function f : (Q × Σ)∗ → Q with
f(. . . q σ) ∈ δ(q, σ) and f(ε) ∈ Q0. A play ς = q0 σ0 q1 σ1 q2 . . . is said to be f-conform
or an f-play if qi = f(q0 σ0 . . . σi−2 qi−1σi−1) for all i ≥ 1. An automaton A is called
good-for-games if there is a strategy f such that player 0 wins each f-play. Such strategies
will be called GFG-strategies for A. Obviously, each complete deterministic automaton
enjoys the GFG property.

MDP analysis. We address the task to compute the maximal or minimal probability in
an MDP M for the path property imposed by a non-deterministic ω-automaton A.

4

In the context of MDP analysis, we always assume w.l.o.g. that a good-for-games
automaton has exactly one initial state. For a good-for-games automaton with several
initial states, we pick an arbitrary GFG strategy f, and set the unique initial state q0 to
the state f(ε) chosen by f for the empty word.

We now modify the standard definition of the product of an MDP with a non-
deterministic ω-automata (with a unique initial state). The crucial difference is that
the actions are now pairs ⟨α, p⟩ consisting of an action in M and a state in A, repre-
senting the non-deterministic alternatives in both the MDP M and the automaton A.
Formally, let M = (S,Act, P, ι,AP, ℓ) be an MDP and A = (Q,Σ, δ, q0,Φ) a complete
non-deterministic ω-automaton with Σ = 2AP . The product MDP is

M⊗A = (S ×Q,Act×Q,P ′, ι′, Q, ℓ′)

where the transition probability function P ′ is given by P ′(⟨s, q⟩, ⟨α, p⟩, ⟨s′, q′⟩) = P (s, α, s′)
if p = q′ ∈ δ(q, ℓ(s)). In all other cases P ′(⟨s, q⟩, ⟨α, p⟩, ⟨s′, q′⟩) = 0. The initial distribu-
tion is given by ι′(⟨s, q⟩) = ι(s) if q = q0 and ι′(⟨s, q⟩) = 0 in all other cases.

In the product, the states of the automaton serve as the atomic propositions and the
labeling function is given by ℓ′(⟨s, q⟩) = {q}. This allows us to consider the traces in
M⊗A simply as words over the alphabet Q. Likewise, A’s acceptance condition Φ can
be seen as a language over Q, which permits treating Φ as a property for the paths in
M⊗A. In particular, for Prmax

M⊗A
(
Φ
)
, Φ corresponds to the set of paths in the product

where the projection on the A-states yields an accepting path in A.

Theorem 3.1. For each MDP M and non-deterministic ω-automaton A as above:

(a) Prmax
M⊗A

(
Φ
)

≤ Prmax
M

(
A
)

(b) If A is good-for-games, then: Prmax
M⊗A

(
Φ
)

= Prmax
M

(
A
)

The computation of maximal probabilities for properties given by a standard ω-regular
acceptance condition Φ (e.g., Büchi, Rabin, parity or Streett) can be carried out by a
graph analysis that replaces Φ with a reachability condition and linear programming
techniques for computing maximal reachability probabilities. See, e.g., [BK08; BGC09a;
BGC09b]. The time complexity is polynomial in the size of M and A, matching the
complexity of the approach using deterministic ω-automata.

GFG automata generation. For the generation of GFG automata, we rely here on
a modified version of Safra’s determinization algorithm described in [HP06]. As im-
provement, we consider three heuristics: a loose variant, where some constraints on the
state-space of the automaton are loosened (see [HP06]), an iterative approach, where the
automaton is constructed incrementally, and a union heuristic similar to [KB06].

Additionally, we can show by a straight-forward adaption of [KV05] that similar to
deterministic automata, a double-exponential blow-up in the translation from LTL to
GFG automata is unavoidable in the worst-case.

5

Experimental evaluation. We summarize here on a number of experiments on the GFG
automaton generation as described in [HP06] and the actual GFG-based MDP analysis.
For the generation of GFG automata we use our implementation ltl2gfg, which reads
an LTL formula as input, calls ltl2ba for NBA generation, and then applies the GFG
automata construction. For the implementation of GFG-based MDP analysis we extended
the symbolic MTBDD engine in PRISM.

For benchmarking the GFG automata generation itself, we took 94 benchmark formulas
from [EH00; SB00; DAC99]. All our experiments were carried out on a computer with 2
Intel E5-2680 8-core CPUs at 2.70 GHz with 384GB of RAM running Linux and with a
memory limit of 10 GB and a time-out of 30 minutes for each formula.

For every automaton we report on the number of BDD nodes in the encoding of the
transition function, as this is the most crucial aspect.

To allow a fair comparison with the explicit determinization in ltl2dstar, we consider
symbolic encodings of the DRA obtained from ltl2dstar 0.5.1, using the same LTL-to-
NBA translator, i.e., ltl2ba, as used by ltl2gfg.

ltl2dstar did not get a timeout once, whereas ltl2gfg did receive a timeout between
20 (variant loose, iterative, union, and dynamic variable ordering enabled) and 45
(standard variant with dynamic variable ordering enabled) times. In a comparison of the
symbolic representation (the number of BDD nodes needed for the transition function
in particular) ltl2gfg in its standard variant had the worst performance, and ltl2gfg
with all optimizations enabled had the best performance among all ltl2gfg variants.
E.g., the number of automata with less than 100 BDD nodes has been 6 for ltl2gfg
standard, 32 for ltl2gfg with all optimizations enabled, and 65 for ltl2dstar.

Implementation and experiments in PRISM. Despite the negative results of our exper-
iments for the generation of GFG automata, we investigated the use of good-for-games
automata in the context of probabilistic model checking. It could be the case that
particularities of the symbolic encoding or of the automaton’s structure turn out to be
beneficial in this setting.

We extended the MTBDD-based, symbolic engine of PRISM 4.1 with an implementation
of our algorithm for computing Prmax

M (ϕ) using GFG automata for ϕ (and Prmin
M (ϕ) using

a GFG automaton for ¬ϕ).
We compare this approach with the standard approach of PRISM, where an explicit

DRA is constructed with an integrated version of ltl2dstar, which is then symbolically
encoded as described before.

The analysis is then carried out symbolically by the MTBDD engine for every approach,
i.e., where the matrix and the value vector are stored via MTBDDs.

If PRISM normally handles a formula via a specialized algorithm for simple path
formulas that does not need an automata product construction, we forced the use of
the general, automata-based approach. We have carried out our experiments with the
different variants for the generation of GFG automata of ltl2gfg. As before, we impose
a 30 minute time and 10GB memory limit.

As case-study, we use a PRISM model [KNS02] from the PRISM benchmark suite for

6

parts of the WLAN carrier-sense protocol of IEEE 802.11. For details on the model we
refer to http://www.prismmodelchecker.org/casestudies/wlan.php

It models a two-way handshake mechanism of the IEEE 802.11 (WLAN) medium
access control scheme with two senders that compete for the medium. As messages get
corrupted when both senders send at the same time (called a collision), a probabilistic
back-off mechanism is employed to reduce the likelihood of collisions. The back-off
procedure is the key feature of the protocol, which is started if an error occurred or the
sender wants to send a new message after sending a message. The back-off procedure
consists of waiting a randomized amount of time while the channel has to be free. It
ends with retrying to send a message. To define the maximal amount of waiting time in
the back-off procedure, the model is parametrized by the parameter MAX_BACKOFF. Here,
we consider the values MAX_BACKOFF ∈ {1, . . . , 6}. Since stations cannot listen to their
own transmissions, after having started to transmit a message, they cannot determine for
a short amount of time whether another station has started to send at the same moment,
called the vulnerable section. To reduce the likelihood of these collisions, a station has to
check that the channel is free for a fixed time period. This happens in state Wait_Difs.
In the model, a collision counter is used to record the number of collisions for use in the
formulas. For our experiments, we set the maximum number of collisions that can be
counted to 4.

For this benchmark we consider the following LTL path properties:
In our tables, we refer by WLANn to the case-study MDP with maximum back-off value

MAX_BACKOFF, for n from 1 to 6.
To provide an overview of the behavior of the different variants of ltl2gfg in the

context of PRISM, Table 1 compares the running time of some variants against the baseline
of the DRA-based standard approach. We consider the 36 combinations of WLAN1 to
WLAN6 and ϕ1 to ϕ6. The table lists the number of cases where a timeout occurred and
where time spent using the GFG approach exceeded the standard approach only by a
given factor. We refer to the baseline time spent using the standard approach in PRISM
as tSTD and to the time spent using the GFG approach (when there was no timeout) as
tGFG. For example, if we consider the loose variant with active iterative approach, in 11

std. loose
loose loose

loose loose loose it. it.
dyn. union it. dyn. union

tGFG < 3 · tSTD 7 8 7 7 7 7 9

tGFG < 7 · tSTD 11 11 11 15 16 13 15

tGFG < 20 · tSTD 17 17 17 21 22 21 21

tGFG < 250 · tSTD 29 27 29 30 32 28 30

tGFG ≤ 30m 31 28 30 32 33 32 32

Aborted 5 8 6 4 3 4 4

Table 1: Results for model checking IEEE 802.11 with PRISM and different variants of
ltl2gfg.

7

http://www.prismmodelchecker.org/casestudies/wlan.php

of the 36 cases the running time of PRISM with the GFG approach was within the time
spent by the standard PRISM approach multiplied by the factor 7.

As it was to be expected given our results on the automata construction, the GFG-based
analysis did not improve on the standard approach. Even using the optimal variant of
ltl2gfg for each formula, ignoring the automata construction times, and for cases where
the product M⊗A had a comparable BDD size for the GFG- and DRA-based approach,
the model checking using the GFG automata took significantly longer.

We also evaluated our GFG-based approach on a case-study for the dining philosopher’s
problem [LSS94]. The benchmarks for this case-study reflects the results of the case-study
for the IEEE802.11 protocol.

4 Unambiguous automata

Unambiguity is a widely studied generalization of determinism with many important ap-
plications in automata-theoretic approaches, see e.g. [Col12; Col15]. A non-deterministic
automaton is said to be unambiguous if each word has at most one accepting run. In this
thesis we consider unambiguous Büchi automata (UBA) over infinite words. Not only
are UBA as expressive as the full class of NBA [Arn85], they can also be exponentially
more succinct than deterministic automata. LTL formulas can be translated into UBA
with a single-exponential blow-up at most, just as NBA.

In the context of PMC, unambiguous automata over finite words provide an elegant
approach to compute the probability for a regular safety or co-safety property in finite-
state Markov chains [BLW14]. A generalization to UBA has been proposed in [BLW13;
BLW14], but the presented approaches are flawed. The flaw lies in the assumption that
a Markov chain state s and UBA state q with PrM[s](A [q]) = 1 exists if and only if
PrM(A) > 0.

As remedy to this flaw we consider every SCC in the Markov chain/UBA product and
determine whether it contains a state (s, q) inducing a positive probability. This holds,
if and only if the transition matrix of the SCC has not full rank. If the SCC contains
a state (s, q) inducing a positive probability, we evaluate the probability PrM[s](A [q])
for every product state (s, q) in the SCC. To calculate these probabilities, we rely on a
set of product states inducing probability 1. Such a set can be efficiently constructed in
polynomial time if there exists such a set.

After we have calculated the probabilities within every SCC containing a state inducing
positive probability we derive the probabilities for the remaining states in polynomial
time. Our overall result is as follows:

Theorem 4.1. Given a Markov chain M and a UBA U , the value PrM(Lω(U)) is
computable in time polynomial in the sizes of M and U .

UBA generation. For the transformation of LTL into UBA we employ SPOT, that
generates UBA by an exhaustive application of the following rewrite rules:

ϕ∨ψ ↦→ ϕ∨(¬ϕ∧ψ) ϕU ψ ↦→ ψ∨(¬ψ∧ϕ∧⃝(ϕU ψ) ϕRψ ↦→ ψ∧(ϕ∨(¬ϕ∧⃝(ϕRψ))

8

The idea behind these rules is that if one has possible non-deterministic branching, e.g.,
by a disjunction, the successors in the automaton should recognize disjoint languages.

Experimental evaluation. Our implementation of the Markov chain analysis is based
on the explicit engine of PRISM, where the Markov chain is represented explicitly. Our
implementation supports UBA-based model checking for handling LTL using an external
LTL-to-UBA translator as well as direct verification against a path specification given by
a UBA provided in the HOA format [Bab+15]. For the purpose of the benchmarks we
employ the ltl2tgba tool from SPOT [Dur14] version 2.5 to generate a UBA for a given
LTL formula.

For the linear algebra parts of the algorithms, we rely on the COLT library [Hos04].

Positivity Check. In the first analysis step, we check whether an SCC contains a state
pair (s, q) such that PrM[s](Lω(A [q])) > 0. We can rely on two different methods: On
the one hand, we can compute the rank of the induced matrix as indicated above, on the
other hand we can rely on an iterative matrix vector multiplication, which terminates if
we reach a fixed point or obtain an vector, that is strictly smaller in every component
than its predecessor. As the iterative matrix vector multiplication outperforms the rank
computation, the following benchmark uses the matrix vector multiplication as positivity
check.

Case Study: Bounded Retransmission Protocol. We report here on benchmarks us-
ing the bounded retransmission protocol (BRP) case study of the PRISM benchmark
suite [KNP12]. The model from the benchmark suite covers a single message transmission,
retrying for a bounded number of times in case of an error. We have slightly modified
the model to allow the transmission of an infinite number of messages by restarting the
protocol once a message has been successfully delivered or the bound for retransmissions
has been reached. We will include benchmarks with pre-generated automata, as well as
benchmarks with LTL as starting point.

Automata based specifications. We consider the property “the message was retrans-
mitted k steps before an acknowledgment.” To remove the effect of selecting specific
tools for the LTL-to-automaton translation, we consider directly model checking against
automata specifications at first. We use the pre-generated minimal DBA and UBA
(denoted by Ak in Table 2) and an additional variant of them (denoted by Bk), namely
enforcing an infinite loop of retransmissions of “k steps before an acknowledgment”.

Table 2 shows results for selected k (with a timeout of 30 minutes), demonstrating that
for this case study and properties our UBA-based implementation is generally competitive
with the standard approach of PRISM relying on deterministic automata. For Ak, our
implementation detects that the UBA has a special shape where all final states have a
true-self loop which allows skipping the SCC handling. Without this optimization, tPos
are in the sub-second range for all considered Ak. At a certain point, the implementation
of the standard approach in PRISM becomes unsuccessful, due to PRISM size limitations in

9

PRISM standard PRISM UBA
|Ak

DRA| |M⊗Ak
DRA| tMC |Ak

UBA| |M⊗Ak
UBA| tMC tPos

k = 4, A4 33 61,025 0.4 s 6 34,118 0.3 s
B4 33 75,026 0.4 s 6 68,474 1.3 s 1.0 s

k = 6, A6 129 62,428 0.5 s 8 36,164 0.2 s
B6 129 97,754 0.5 s 8 99,460 1.7 s 1.3 s

k = 8, A8 513 64,715 0.6 s 10 38,207 0.3 s
B8 513 134,943 0.7 s 10 136,427 2.6 s 2.1 s

k = 14, A14 32,769 83,845 4.2 s 16 44,340 0.3 s
B14 32,769 444,653 4.9 s 16 246,346 6.8 s 6.1 s

k = 16, A16 131,073 − − 18 46,390 0.3 s
B16 131,037 − − 18 282,699 8.9 s 8.0 s

k = 48, A48 − − − 50 79,206 0.8 s
B48 − − − 50 843,414 72.4 s 70.3 s

Table 2: Statistics for DBA/DRA- and UBA-based model checking of the BRP case study
(parameters N = 16, MAX = 128), a DTMC with 29358 states, depicting the
number of states for the automata and the product and the time for model
checking (tMC). For B, the time for checking positivity (tPos) is included in tMC.
The mark − stands for “not available” or timeout (30 minutes).

the product construction of the Markov chain and the deterministic automaton (Ak/Bk:
k ⩾ 16). As can be seen, using the UBA approach we were able to successfully scale the
parameter k beyond 48 when dealing directly with the automata-based specifications
(Ak/Bk) and within reasonable time required for model checking.

LTL based specifications. We consider here two LTL properties: The first one is:

ϕk = (¬ack_received) U
(
retransmit ∧ (¬ack_received U =k ack_received)

)
,

where aU =kb stands for a∧¬b∧⃝(a∧¬b)∧ . . .∧⃝k−1(a∧¬b)∧⃝kb. The formula ϕk

ensures that k steps before an acknowledgment the message was retransmitted. Hence, it
is equivalent to the property described by the automaton Ak. For the LTL-to-automata
translation we included the Java-based PRISM reimplementation of ltl2dstar [KB06]
to obtain a deterministic Rabin automaton (DRA) for the standard PRISM approach.
For the generation of UBA, we relied on SPOT, as it is the only tool that is capable of
generating UBA explicitly. SPOT actually generates a UFA for ϕk which is recognized by
our implementation in PRISM as explained above.

Table 3 lists the results for model checking ϕk. From a certain point on, the imple-
mentation of the standard approach in PRISM is unsuccessful, due to PRISM restriction in
the DRA construction (k ⩾ 8) or a timeout during UBA construction (k ⩾ 13).

SPOT produces unnecessary large UBA for ϕk. This is also reflected in the automata
generation times, as for k ≥ 13, SPOT was not able to produce a UBA within the time
bound of 30min.

10

k PRISM standard PRISM UBA
|ADRA| |M⊗ADRA| tMC |AUBA| |M⊗AUBA| tMC

4 122 29,358 0.6 s 21 34,757 0.3 s
6 4,602 29,358 1.8 s 71 37,951 0.4 s
8 − − − 265 41,902 1.1 s

Table 3: Statistics for UBA based model checking of the BRP model and ϕk in comparison
to the standard method. For every approach except the corresponding automata
sizes, product sizes are depicted and the overall model checking times (tMC) are
listed, which includes the time for automata translation.

k PRISM standard PRISM UBA
|ADRA| |M⊗ADRA| tMC |AUBA| |M⊗AUBA| tpos tCut tMC

1 6 29,358 0.3 s 4 31,422 <0.1 s n/a 0.3 s
2 17 37,678 0.4 s 8 41,822 4.5 s 0.2 s 5.0 s
3 65 39,726 0.4 s 14 45,934 4.9 s 0.2 s 5.5 s
4 314 43,806 0.5 s 22 54,126 5.6 s 0.2 s 6.2 s
5 1,443 47,902 1.1 s 32 62,334 6.4 s 0.2 s 7.0 s
6 9,016 56,029 3.9 s 44 78,669 9.1 s 0.3 s 9.9 s
7 67,964 − − 58 86,853 10.1 s 0.4 s 11.0 s
8 − − − 74 103,157 13.4 s 0.2 s 14.4 s

10 − − − 112 127,562 19.2 s 0.2 s 21.2 s

Table 4: Statistics for UBA based model checking of the BRP model and ψk in comparison
with to the standard method. The structure of this table corresponds to Table 3,
but with additional listing of the time for the positivity checks tpos and cut
calculation time tcut . n/a means not available.

11

As second formula we investigate

ψk = □(msg_send → ♦(ack_send ∧ ♦⩽kack_received)),

where ♦⩽ka denotes a ∨⃝(a ∨⃝(. . . ∨⃝a))  
k times

. This formula requires that every request

(sending a message and waiting for an acknowledgment) is eventually responded by an
answer (the receiver of the message sends an acknowledgment and this acknowledgment
is received within the next k steps).

Table 4 summarizes the result of the benchmark for ψk. Here, the PRISM standard
approach with its own implementation of ltl2dstar was able to finish the calculations
until k = 6. For k = 7, PRISM standard was able to construct the DRA (with 67,964
states and within 27.5 seconds), but not able to construct the product anymore.

In contrast to the deterministic automata, the UBA sizes increase moderately for an
increasing k. In the UBA approach the positivity check is the most time-consuming part
of the calculation. For k = 1 there is no positive SCC, so the cut calculation is omitted.
The model checking process consumes more time in the UBA case in comparison with
PRISM standard until k = 6, but for bigger k the performance turned around. Even if
PRISM standard had completed the calculation for k = 7, it would have been slower as
the creation of the DRA took 27.5 seconds.

4.1 NBA vs UBA

To gain some understanding on the cost of requiring unambiguity for an NBA, we have
compared the sizes of NBA and UBA generated by the ltl2tgba tool of SPOT for the
formulas of [EH00; SB00; DAC99] used for benchmarking, e.g., in [KB06]. We consider
both the “normal” formulas and their negations, yielding 188 formulas.

Number of states ≤ x ≤ 1 ≤ 2 ≤ 3 ≤ 4 ≤ 5 ≤ 7 ≤ 10 ≤ 12 ≤ 20 > 20

ltl2tgba NBA 12 49 103 145 158 176 181 185 188 0
ltl2tgba UBA 12 42 74 108 123 153 168 173 180 8

Table 5: Number of formulas where the (standard) NBA and UBA has a number of states
≤ x.

As can be seen in Table 5, both the NBA and UBA tend to be of quite reasonable
size. Most of the generated UBA (102) have the same size as the NBA and for 166 of
the formulas the UBA is at most twice the size as the corresponding NBA. The largest
UBA has 112 states, the second largest has 45 states.

5 Emerson-Lei acceptance

In contrast to the two previous sections, where we considered restricted forms of non-
determinism, we reexamine here the Muller acceptance, but we add a crucial twist by a
symbolic representation.

12

LTL
ϕ

(co-)safety
♦(b1 ∧ ♦b2)

TELA

fairness
LTL♦□,□♦(♦,□,⃝)

□♦ (□c)
□♦ (a1 ∧⃝a2)

fairness
LTL♦□,□♦(⃝)

♦□ c
□♦ (a1 ∧⃝a2)

TELA

unsupported
fragment

□(d1 → ♦d2)
TELA

TELA
for ϕsplit

rewrite

external tool product

Figure 1: The input LTL formula is split up, each subformula is translated independently,
and then a product automaton is constructed, as can be seen for the example
ϕ = □♦ (a1∧⃝ a2)∧♦ (b1∧♦ b2)∧□♦ (□c)∧□ (d1 → ♦d2). The abbreviation
TELA stands for transition-based Emerson-Lei automata.

We call this new symbolic Muller acceptance Emerson-Lei acceptance. It is a positive
Boolean formula with Fin (Z) and Inf (Z) as atoms, where Z ⊆ Q is an arbitrary subset
of the state-space in case of a state-based acceptance, and Z ⊆ Q× Σ×Q in case of a
transition-based acceptance.

A lot of research has been put into the translation of LTL to deterministic ω-automata,
but to the best of our knowledge all those translations are targeted at a particular
acceptance like Rabin, Streett or parity. There exists already the idea of a production
construction in [Bab+15] to obtain a complex acceptance: The formula is split into several
subformulas, where the top-most operator in the syntax tree is a temporal operator, and
the subformulas are not nested within the scope of another temporal operator. These
subformulas are converted to deterministic automata with one of the already known
translators. These deterministic automata are composed in a product construction, where
the graph is the standard product, and the acceptance reflects the structure of the original
formula, where every top-most temporal formula is replaced by the acceptance condition
of the corresponding automaton.

We consider special fairness properties in particular and give a translation based on
buffers. For safety and co-safety LTL formulas we rely on the af function [EKS16; Sic+16]
computing the left-derivative directly on the formula. Additionally, if we encounter a
subformula not contained in our supported fragments for a direct translation, we rely
on external tools for translation, and compose a deterministic automaton for the overall
formula with the product construction of [Bab+15]. We improve the product construction
and make use of the knowledge about the subformulas, if one subformula falls into the
fairness or co-safety/safety fragment. A general scheme for our approach is depicted in
Figure 1, which we implemented in our tool Delag (Deterministic Emerson-Lei Automata
Generator).

As a second theoretical contribution we consider the complexity of deciding Prmax
M (Φ) >

13

0 for an MDP M and an Emerson-Lei acceptance Φ. We prove, that the positivity problem
is NP-complete for a class of Emerson-Lei acceptances, if the satisfiability problem is
NP-complete for the corresponding class of Boolean formulas. This NP-completeness
result inspired us to take on a well-known SAT-solving algorithm, called DPLL (see
[DP60] and its refinement [DLL62]). This DPLL-based algorithm for deciding positivity
for the whole class of Emerson-Lei acceptance turns out to be polynomial in time for
Streett and (generalized) Rabin acceptance.

Fairness fragment. The fairness fragment consists of LTL formulas, where only ⃝, ♦,
or □ occur as temporal operators, and ♦□ or □♦ as temporal operators on the top-most
position in the syntax tree. By known LTL rewrite rules we can ensure that every formula
is written into a normal form where the formulas have on the top-most position in the
syntax tree a ♦□ or a □♦ and the only further allowed temporal operator is ⃝.

This normal form enables us to provide for each fairness formula an equivalent au-
tomaton with a single acceptance set (either Fin (P) or Inf (P)), where we use the direct
correspondence between ♦□ϕ and Fin (P) for a suitable set of transitions P , and □♦ϕ
and Inf (P). If the formula does not contain any ⃝, then we can even provide a one-state
automaton.

Safety fragment. The safety fragment describes ω-regular languages for which there
exists a set of so-called bad prefixes. Every infinite word with such a bad prefix does
not belong to the safety language. Complementary, for a co-safety language there exists
a language of good prefixes, such that after consuming a good prefix the infinite word
belongs to the language, independently of the infinite suffix. The translation of the
(co-)safety fragments is well-known and we rely on the construction of Rabinizer (see,
e.g., [EKS16]). The resulting automaton of a co-safety language contains a unique state
with an accepting true self-loop, whereas the automaton of a safety language contains a
unique rejecting state with a rejecting true self-loop.

Product automaton. Each individual automaton for every subformula is joined via
a product construction. The standard product construction runs every automaton
synchronously and yields an automaton in the size of the product of all automata sizes
in the worst case.

As this synchronous tracking of automata states may not be necessary, we introduced
some enhancements in the standard product. For this, we introduced some extra states
per automaton with a fixed semantics: qacc is a state which accepts every infinite word,
qrej is a state which rejects every infinite word, and qhold signals that an arbitrary finite
amount of time can be waited without changing the accepted words (“the automaton
is put on hold”). To get an intuition behind the enhancement consider the conjunction
of a co-safety LTL formula and a fairness LTL formula and the equivalent automata.
Since the co-safety part is decided on the finite prefixes, whereas the fairness part is
decided on the infinite behavior, the two formula should be checked sequentially and not
in parallel. For this, the fairness automaton is put on hold, i.e., his state is qhold and the

14

co-safety automaton checks whether the co-safety part is satisfied. If a finite prefix has
been consumed satisfying the co-safety part, the co-safety automaton switches to qacc and
the fairness automaton starts checking whether the fairness part is satisfied immediately.

DPLL-based positivity check. The succinct Emerson-Lei acceptance complicates check-
ing positivity for MDPs (does “Prmax

M (Φ) > 0 hold?”). In fact, [EL87] proved the
NP-completeness of the analogous problem in automata theory: Does an automaton A
with an Emerson-Lei acceptance Φ accept at least one word? The proof directly transfers
to the positivity problem. We can extend this result in such a way, that for every class
of Emerson-Lei acceptances, for which the satisfiability problem of the corresponding
class of Boolean formulas is NP-complete, the positivity problem is NP-complete as well.

The strong connection between Boolean formulas and Emerson-Lei acceptance inspired
us to a DPLL-based algorithm for checking positivity. As the DPLL-algorithm requires the
input formula to be in conjunctive normal form, we modified Tseytin’s transformation to
provide an Emerson-Lei acceptance in conjunctive normal form. To achieve a polynomial
size we introduce slack variables. In subsequent positivity we check for every MEC
whether it contains an EC satisfying the acceptance condition. For this, we branch over
the slack variables and the Fin (·) variables. We keep track of a current EC, which may be
pruned during the branching process in case of a Fin (·) variable, and split up into several
sub-ECs. By some heuristics, we can achieve a polynomial run time of our DPLL-based
algorithm if the Emerson-Lei acceptances are Streett or generalized Rabin acceptance.

Experiments. For benchmarking our approach we consider the LTL-to-UBA translation
and an integration of our DPLL-based positivity check into PRISM.

For our standard LTL benchmark set (with 94 formulas from [SB00; EH00; DAC99])
produced automata with a number of states comparable to SPOT and a slight advantage
over Rabinizer. Overall, Delag produced automata with a minimal state space in 77
cases among ltl2tgba and Rabinizer, slightly surpassed by ltl2tgba with 78 formulas.
Delag tends to produce automata with bigger acceptance condition than SPOT, but for
those automata where SPOT produces a smaller acceptance condition, Delag produces
equivalent automata with a smaller state space.

For evaluating the Emerson-Lei acceptance in the context of probabilistic model
checking, we used the IEEE 802.11 WLAN handshaking protocol. We evaluated four
LTL formulas on it, for two of them we asked for both the minimal and the maximal
probability, obtaining overall seven properties. For each property, the running time of
PRISM with Delag is comparable to the best running time among PRISM with SPOT and
PRISM with Rabinizer, with one exception, where a heuristic applied to the automaton
produced by SPOT but not to the automaton produced by Delag.

6 Conclusion

In this thesis we presented three new automata-based approaches different from the
standard approach that employs deterministic Rabin automata in order to avoid or cope

15

with the double-exponential blow-up.
Good-for-games automata were a promising candidate for MDP analysis. We showed

that a modified product construction and a standard MEC and reachability analysis are
sufficient for MDP analysis against a GFG automaton specification. The overall approach
starting from LTL can be done in double-exponential time, thus meeting the lower bound
for MDP analysis under LTL specifications. Nonetheless, practical evaluation showed
that good-for-games automata fell behind the standard approach of using [GO01] to
generate a non-deterministic Büchi automaton and Safra’s determinization [Saf88] to
determinize it. The bad performance of the good-for-games approach in the benchmarks
can be led back to the GFG automata generation algorithm developed by Henzinger and
Piterman. This observation asks for an improved generation algorithm.

Unambiguous automata on the other hand showed an advantage over deterministic
automata both on a theoretical level and in a practical evaluation. The single-exponential
blow-up of the LTL-to-UBA translation gives UBA an edge over deterministic automata,
but the actual model checking process becomes more complicated although still polynomial.
Still, the performance of the overall process heavily depends on efficient LTL-to-UBA
translators.

The principle that smaller automata likely lead to a more efficient model checking
process also holds for our UBA-based approach to Markov chain analysis. The problem of
UBA generation has not been studied in depth, but is current research by us. Currently,
only one LTL-to-UBA translator is available, which uses an adaption of [Cou99], see
also [Dur17]. A comparison in a symbolic setting as well as a comparison with the other
single-exponential approaches of [BRV04] and [CSS03] is also still open.

The Emerson-Lei acceptance differs from unambiguity and good-for-games, as it works
on the acceptance level, not on the non-determinism of the automaton. The product
construction allows a reflection of the Boolean structure of the input LTL formula into the
acceptance condition, not into the state space of the automaton. Since in our application
to PMC, we rely on deterministic EL automata, the double-exponential blow-up from
LTL to deterministic automata cannot be avoided. Still, in the automata generation part
our tool Delag could compete with other standard automata tools like Rabinizer and
SPOT.

In the application for model checking, EL automata are well-suited for the analysis of
Markov chains, as checking positivity is still possible in polynomial time. For Markov
decision processes, the situation becomes more complicated. The positivity problem
relates closely to satisfiability of Boolean formulas, and thus, becomes NP-complete. As
solution, we took inspiration from the DPLL algorithm. As an advantage, our DPLL-
based algorithm works in polynomial time for the commonly used acceptances generalized
Rabin and Streett. Our practical evaluation on the WLAN handshaking protocol shows,
that it is worth to take the overhead of solving the NP-complete positivity problem, as
the overhead is comparably small.

The translation of full LTL remains an open question. A reasonable starting point
would be NBA and then a modification of a suitable determinization algorithm.

16

References

[AD94] Rajeev Alur and David L. Dill. “A Theory of Timed Automata”. In: Theo-
retical Computer Science 126.2 (1994), pp. 183–235.

[Arn85] André Arnold. “Deterministic and non ambiguous rational omega-languages”.
In: Automata on Infinite Words. Vol. 192. Lecture Notes in Computer Science.
Springer, 1985, pp. 18–27.

[Bab+15] Tomáš Babiak, František Blahoudek, Alexandre Duret-Lutz, Joachim Klein,
Jan Křetínský, David Müller, David Parker, and Jan Strejček. “The Hanoi
Omega-Automata Format”. In: 27th International Conference on Computer
Aided Verification (CAV). Vol. 9206. Lecture Notes in Computer Science.
Springer, 2015, pp. 479–486.

[Bai+16] Christel Baier, Stefan Kiefer, Joachim Klein, Sascha Klüppelholz, David
Müller, and James Worrell. “Markov Chains and Unambiguous Büchi Au-
tomata”. In: 28th International Conference on Computer Aided Verification
(CAV) - Part I. Vol. 9779. Lecture Notes in Computer Science. Springer,
2016, pp. 23–42.

[Bel57] Richard Bellman. “A Markovian decision process”. In: Indiana Univ. Math.
J. 6 (1957), pp. 679–684.

[BGC09a] Christel Baier, Marcus Größer, and Frank Ciesinski. “Model Checking
Linear-Time Properties of Probabilistic Systems”. In: Handbook of Weighted
Automata. Monographs in Theoretical Computer Science. Springer, 2009.
Chap. 13, pp. 519–570.

[BGC09b] Christel Baier, Marcus Größer, and Frank Ciesinski. “Quantitative Analysis
under Fairness Constraints”. In: 7th International Symposium on Automated
Technology for Verification and Analysis (ATVA). Vol. 5799. Lecture Notes
in Computer Science. Springer, 2009, pp. 135–150.

[BK08] Christel Baier and Joost-Pieter Katoen. Principles of Model Checking. MIT
Press, 2008.

[BLW13] Michael Benedikt, Rastislav Lenhardt, and James Worrell. “LTL Model
Checking of Interval Markov Chains”. In: 19th International Conference on
Tools and Algorithms for the Construction and Analysis of Systems (TACAS).
Vol. 7795. Lecture Notes in Computer Science. Springer, 2013, pp. 32–46.

[BLW14] Michael Benedikt, Rastislav Lenhardt, and James Worrell. Model Checking
Markov Chains Against Unambiguous Büchi Automata. arXiv:1405.4560.
2014.

[BRV04] Doron Bustan, Sasha Rubin, and Moshe Y. Vardi. “Verifying ω-Regular
Properties of Markov Chains”. In: 16th International Conference on Computer
Aided Verification (CAV). Vol. 3114. Lecture Notes in Computer Science.
Springer, 2004, pp. 189–201.

17

[BY04] Johan Bengtsson and Wang Yi. “Timed Automata: Semantics, Algorithms
and Tools”. In: Lectures on Concurrency and Petri Nets: Advances in Petri
Nets. Vol. 3098. Lecture Notes in Computer Science. Springer, 2004, pp. 87–
124.

[CES86] Edmund M. Clarke, Ernest A. Emerson, and A. Prasad Sistla. “Automatic
Verification of Finite-State Concurrent Systems Using Temporal Logic Speci-
fications”. In: ACM Transactions on Programming Languages and Systems
8.2 (1986), pp. 244–263.

[Col09] Thomas Colcombet. “The Theory of Stabilisation Monoids and Regular
Cost Functions”. In: 36 International Colloquium on Automata, Languages
and Programming (ICALP). Vol. 5556. Lecture Notes in Computer Science.
Springer, 2009, pp. 139–150.

[Col12] Thomas Colcombet. “Forms of Determinism for Automata”. In: 29th Inter-
national Symposium on Theoretical Aspects of Computer Science, (STACS).
Vol. 14. Leibniz International Proceedings in Informatics. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2012, pp. 1–23.

[Col15] Thomas Colcombet. “Unambiguity in Automata Theory”. In: 17th Interna-
tional Workshop on Descriptional Complexity of Formal Systems (DCFS).
Vol. 9118. Lecture Notes in Computer Science. Springer, 2015, pp. 3–18.

[Cou99] Jean-Michel Couvreur. “On-the-Fly Verification of Linear Temporal Logic”.
In: 1st World Congress on Formal Methods in the Development of Computing
Systems (FM). Vol. 1708. Lecture Notes in Computer Science. Springer, 1999,
pp. 253–271.

[CSS03] Jean-Michel Couvreur, Nasser Saheb, and Grégoire Sutre. “An Optimal
Automata Approach to LTL Model Checking of Probabilistic Systems”.
In: 10th International Conference on Logic for Programming, Artificial
Intelligence, and Reasoning (LPAR). Vol. 2850. Lecture Notes in Computer
Science. Springer, 2003, pp. 361–375.

[CY88] Costas Courcoubetis and Mihalis Yannakakis. “Verifying temporal properties
of finite-state probabilistic programs”. In: 29th Symposium on Foundations
of Computer Science (FOCS). IEEE computer society, 1988, pp. 338–345.

[CY95] Costas Courcoubetis and Mihalis Yannakakis. “The Complexity of Proba-
bilistic Verification”. In: Journal of the ACM 42.4 (1995), pp. 857–907.

[DAC99] Matthew B. Dwyer, George S. Avrunin, and James C. Corbett. “Patterns
in Property Specifications for Finite-State Verification”. In: International
Conference on Software Engineering (ICSE). ACM, 1999, pp. 411–420.

[DLL62] Martin Davis, George Logemann, and Donald W. Loveland. “A Machine
Program for Theorem-Proving”. In: Communications of the ACM 5.7 (1962),
pp. 394–397.

[DP60] Martin Davis and Hilary Putnam. “A Computing Procedure for Quantifica-
tion Theory”. In: Journal of the ACM 7.3 (1960), pp. 201–215.

18

[Dur14] Alexandre Duret-Lutz. “LTL translation improvements in Spot 1.0”. In:
International Journal of Critical Computer-Based Systems 5.1/2 (2014),
pp. 31–54.

[Dur17] Alexandre Duret-Lutz. “Contributions to LTL and ω-Automata for Model
Checking”. Habilitation Thesis. Université Pierre et Marie Curie (Paris 6),
2017.

[EC80] Ernest A. Emerson and Edmund M. Clarke. “Characterizing Correctness
Properties of Parallel Programs Using Fixpoints”. In: 7th International
Conference on Automata, Languages and Programming (ICALP). Vol. 85.
Lecture Notes in Computer Science. Springer, 1980, pp. 169–181.

[EH00] Kousha Etessami and Gerard J. Holzmann. “Optimizing Büchi Automata”. In:
11th International Conference on Concurrency Theory (CONCUR). Vol. 1877.
Lecture Notes in Computer Science. Springer, 2000, pp. 153–167.

[EKS16] Javier Esparza, Jan Křetı́nský, and Salomon Sickert. “From LTL to Determin-
istic Automata - A Safraless Compositional Approach”. In: Formal Methods
in System Design 49.3 (2016), pp. 219–271.

[EL87] Ernest A. Emerson and Chin-Laung Lei. “Modalities for Model Checking:
Branching Time Logic Strikes Back”. In: Science of Computer Programming
8.3 (1987), pp. 275–306.

[FV96] Jerzy Filar and Koos Vrieze. Competitive Markov Decision Processes. Springer,
1996.

[GO01] Paul Gastin and Denis Oddoux. “Fast LTL to Büchi Automata Translation”.
In: 13th International Conference on Computer Aided Verification, (CAV).
Vol. 2102. Lecture Notes in Computer Science. Springer, 2001, pp. 53–65.

[Hos04] Wolfgang Hoschek. The Colt Distribution: Open Source Libraries for High
Performance Scientific and Technical Computing in Java. 2004.

[HP06] Thomas A. Henzinger and Nir Piterman. “Solving Games Without Deter-
minization”. In: 20th International Workshop on Computer Science Logic
(CSL). Vol. 4207. Lecture Notes in Computer Science. Springer, 2006, pp. 395–
410.

[KB06] Joachim Klein and Christel Baier. “Experiments with deterministic ω-automata
for formulas of linear temporal logic”. In: Theoretical Computer Science 363.2
(2006), pp. 182–195.

[Kle+14] Joachim Klein, David Müller, Christel Baier, and Sascha Klüppelholz. “Are
Good-for-Games Automata Good for Probabilistic Model Checking?” In: 8th
International Conference on Language and Automata Theory and Applications
(LATA). Vol. 8370. Lecture Notes in Computer Science. Springer, 2014,
pp. 453–465.

19

[KNP12] Marta Z. Kwiatkowska, Gethin Norman, and David Parker. “The PRISM
Benchmark Suite”. In: 9th International Conference on Quantitative Evalua-
tion of SysTems (QEST). IEEE Computer Society, 2012, pp. 203–204.

[KNS02] Marta Zofia Kwiatkowska, Gethin Norman, and Jeremy Sproston. “Proba-
bilistic Model Checking of the IEEE 802.11 Wireless Local Area Network
Protocol”. In: Second Joint International Workshop on Process Algebra
and Probabilistic Methods, Performance Modeling and Verification, (PAPM-
PROBMIV). Vol. 2399. Lecture Notes in Computer Science. Springer, 2002,
pp. 169–187.

[KPV06] Orna Kupferman, Nir Piterman, and Moshe Y. Vardi. “Safraless Compo-
sitional Synthesis”. In: 18th International Conference on Computer Aided
Verification, (CAV). Vol. 4144. Lecture Notes in Computer Science. Springer,
2006, pp. 31–44.

[KR11] Orna Kupferman and Adin Rosenberg. “The Blow-up in Translating LTL to
Deterministic Automata”. In: 6th International Workshop on Model Checking
and Artificial Intelligence (MoChArt). Vol. 6572. Lecture Notes in Computer
Science. Springer, 2011, pp. 85–94.

[KV05] Orna Kupferman and Moshe Y. Vardi. “From Linear Time to Branching
Time”. In: Transactions on Computational Logic 6.2 (2005), pp. 273–294.

[KV15] Dileep Kini and Mahesh Viswanathan. “Limit Deterministic and Probabilistic
Automata for LTL \ G U”. In: 21st International Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS). Vol. 9035.
Lecture Notes in Computer Science. Springer, 2015, pp. 628–642.

[LP85] Orna Lichtenstein and Amir Pnueli. “Checking That Finite State Concur-
rent Programs Satisfy Their Linear Specification”. In: 12th Symposium on
Principles of Programming Languages (POPL). ACM, 1985, pp. 97–107.

[LPY95] Kim G. Larsen, Paul Pettersson, and Wang Yi. “Model-Checking for Real-
Time Systems”. In: Fundamentals of Computation Theory. Lecture Notes in
Computer Science 965. 1995, pp. 62–88.

[LSS94] Nancy Lynch, Isaac Saias, and Roberto Segala. “Proving Time Bounds for
Randomized Distributed Algorithms”. In: 13th Symposium on Principles of
Distributed Computing (PODC). ACM, 1994, pp. 314–323.

[MS17] David Müller and Salomon Sickert. “LTL to Deterministic Emerson-Lei
Automata”. In: 8th International Symposium on Games, Automata, Logics
and Formal Verification (GandALF). Vol. 256. Electronic Proceedings of
Theoretical Computer Science. Open Publishing Association, 2017, pp. 180–
194.

[Pnu77] Amir Pnueli. “The Temporal Logic of Programs”. In: 18th Symposium on
Foundations of Computer Science (FOCS). IEEE Computer Society, 1977,
pp. 46–57.

20

[PPS06] Nir Piterman, Amir Pnueli, and Yaniv Sa’ar. “Synthesis of Reactive(1)
Designs”. In: 7th International Conference on Verification, Model Checking,
and Abstract Interpretation (VMCAI). Vol. 3855. Lecture Notes in Computer
Science. Springer, 2006, pp. 364–380.

[Put94] Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dy-
namic Programming. John Wiley & Sons, Inc., 1994.

[Saf88] Shmuel Safra. “On The Complexity of ω-Automata”. In: 29th Symposium on
Foundations of Computer Science (FOCS). IEEE Computer Society, 1988,
pp. 319–327.

[SB00] Fabio Somenzi and Roderick Bloem. “Efficient Büchi Automata from LTL
Formulae”. In: 12th International Conference on Computer Aided Verification
(CAV). Vol. 1855. Lecture Notes in Computer Science. Springer, 2000, pp. 248–
263.

[SF07] Sven Schewe and Bernd Finkbeiner. “Bounded Synthesis”. In: Fifth Inter-
nation Symposium on Automated Technology for Verification and Analysis
(ATVA). Vol. 4762. Lecture Notes in Computer Science. Springer, 2007,
pp. 474–488.

[Sic+16] Salomon Sickert, Javier Esparza, Stefan Jaax, and Jan Křetı́nský. “Limit-
Deterministic Büchi Automata for Linear Temporal Logic”. In: 28th Interna-
tional Conference on Computer Aided Verification (CAV). Vol. 9780. Lecture
Notes in Computer Science. Springer, 2016, pp. 312–332.

[Var85] Moshe Y. Vardi. “Automatic Verification of Probabilistic Concurrent Finite-
State Programs”. In: 26th IEEE Symposium on Foundations of Computer
Science (FOCS). IEEE Computer Society, 1985, pp. 327–338.

[Var99] Moshe Y. Vardi. “Probabilistic Linear-Time Model Checking: An Overview
of the Automata-Theoretic Approach”. In: Fifth International AMAST Work-
shop on Formal Methods for Real-Time and Probabilistic Systems (ARTS).
Vol. 1601. Lecture Notes in Computer Science. Springer, 1999, pp. 265–276.

[VW86] Moshe Y. Vardi and Pierre Wolper. “An Automata-Theoretic Approach to
Automatic Program Verification”. In: 1st Symposium on Logic in Computer
Science (LICS). IEEE Computer Society, 1986, pp. 332–344.

21

	Introduction
	Markovian models, ω-automata and LTL
	Good-for-games automata
	Unambiguous automata
	Emerson-Lei acceptance
	Conclusion

