
Advances in Symbolic Probabilistic Model
Checking with PRISM?

Extended version (2016-02-18)

Joachim Klein, Christel Baier, Philipp Chrszon, Marcus Daum,
Clemens Dubslaff, Sascha Klüppelholz, Steffen Märcker, and David Müller

Institute of Theoretical Computer Science
Technische Universität Dresden, 01062 Dresden, Germany

Abstract. For modeling and reasoning about complex systems, symbolic
methods provide a prominent way to tackle the state explosion problem.
It is well known that for symbolic approaches based on binary decision
diagrams (BDD), the ordering of BDD variables plays a crucial role for
compact representations and efficient computations. We have extended the
popular probabilistic model checker PRISM with support for automatic
variable reordering in its multi-terminal-BDD-based engines and report on
benchmark results. Our extensions additionally allow the user to manually
control the variable ordering at a finer-grained level. Furthermore, we
present our implementation of the symbolic computation of quantiles and
support for multi-reward-bounded properties, automata specifications
and accepting end component computations for Streett conditions.

1 Introduction

One prominent approach to cope with the well-known state-explosion prob-
lem in model checking is the use of symbolic methods based on binary deci-
sion diagrams (BDDs) [8,31]. Various BDD-variants have been studied and
implemented in tools for the quantitative analysis of probabilistic systems,
see, e.g.,[17,4,18,34,19,32,23,28,10]. The prominent probabilistic model-checker
PRISM [34,26,35] uses symbolic approaches relying on a multi-terminal binary
decision diagram (MTBDD) [3,15] representation of the model. Among others,
PRISM provides support for modeling and the analysis of discrete-time Markov
chains (DTMC) and Markov decision processes (MDP) as well as continuous-time
Markov chains (CTMC) against temporal logical specifications. While the behav-
ior of Markov chains is purely probabilistic, MDPs exhibit both probabilistic and
nondeterministic choices. The typical task of the analysis of MDPs is to compute
a scheduler for resolving the nondeterminism that maximizes or minimizes the
probability for a given path property or an expectation. The symbolic imple-
mentation of PRISM comes in three flavors: a purely symbolic engine Mtbdd

? The authors are supported by the DFG through the collaborative research centre
HAEC (SFB 912), the Excellence Initiative by the German Federal and State Govern-
ments (cluster of excellence cfAED and Institutional Strategy), the Research Training
Groups QuantLA (GRK 1763) and RoSI (GRK 1907), the DFG/NWO-project
ROCKS, and Deutsche Telekom Stiftung.

2 J. Klein et. al.

and two semi-symbolic engines, called Hybrid and Sparse. The Mtbdd engine
performs all computations using MTBDDs, while the Hybrid engine combines
the MTBDD-based representation of the transition matrix of the model with an
explicit representation of the solution state value vector in the computation [24].
The latter is motivated by the observation that the MTBDD representation of
such state value vectors can be of substantive size even for models with compact
MTBDD representation during probabilistic model-checking algorithms. The
Sparse engine constructs an explicit, sparse matrix from the MTBDD-based
transition matrix for numerical computations and performs computations using
this explicit representation. In addition to the three symbolic engines, which rely
internally on the infrastructure of the C-based CUDD library [37] for MTBDD
storage and manipulation, the fourth engine, Explicit, is fully implemented in
Java, builds an explicit representation of the reachable state space of the model
and carries out all analysis on this explicit representation. Depending on the
concrete model structure and size, each of the four engines has situations where
it can show its particular strength.

It is well known that the variable order of the BDD variables plays a crucial
role for obtaining a compact representation of the model and for model checking
performance. PRISM provides limited influence on the variable order, mainly
during modeling by the order in which individual modules are placed in the model
file and the order of the individual state variables inside a module. While care has
been taken to use a sensible variable order derived from the structure of elements
in the model file [34], PRISM lacks any support for automatically identifying a
good variable order using techniques such as sifting [36,33], which are routinely
employed in symbolic model checkers for non-probabilistic systems (e.g., [11]).
In our previous work on complex case studies, we have reached several times
the point where we had to resort to manually swapping the module and variable
definitions in the model file to try and find a better ordering, in particular for
models where explicit approaches were infeasible (e.g., [13]).

Contribution. The main purpose of this paper is to present several refinements
of PRISM’s symbolic engines. First, we added support for the automated variable
reordering of the MTBDD-based model representation by enabling CUDD’s
implementation of group sifting and by extensions of PRISM’s input modeling
language that allow to rearrange and interleave the orders of the bits of state
variables within the same module as well as (the bits) of state variables of different
modules. The impact of the automated reordering has been evaluated using the
examples from the PRISM benchmark suite [27] and in the context of the symbolic
quantile computations. Our second contribution are symbolic implementations
of computation schemes for cost- or reward-bounded reachability properties in
discrete Markovian models (DTMCs or MDPs) and corresponding quantiles.1

The latter are, e.g., useful to compute the minimal energy budget required to
ensure a 90% chance for completing a list of jobs. Algorithms for the computation

1 While PRISM supports the computation of expected costs or rewards and probabilities
for step-bounded properties, it does not contain implementations of algorithms for
computing probabilities for reachability conditions with cost/reward constraints.

Advances in Symbolic Probabilistic Model Checking with PRISM 3

Module M1

Module M2

State var. M1V1

State var. M1V2

State var. M2V1

State var. M2V2

Bit M1V1B1

Bit M1V1B2

Bit M1V2B1

Bit M2V1B1

Bit M2V1B2

Bit M2V2B1

Bit M2V2B2

row

col

row

col

row

col

row

col

row

col

row

col

row

col

Preallocated extra state bits
row

col
. . .

Preallocated extra nondet. choice bits

Nondeterministic choice bits
0

23

24

25

64

65

66

67

68

69

70

71

72

73

74

75

76

77

. . .

. . .

MTBDD
variables

Fig. 1. Schema for the standard variable ordering used by PRISM. The arrows indicate
the effect of syntactic reordering in the PRISM model file on the variable order.

of quantiles have been presented in [38,5] and prototypically implemented using
(non-symbolic) explicit representations of the model. Within this paper, we report
on the results of comparative experimental studies of the explicit and the new
symbolic implementation. The third contribution are enhancements of PRISM’s
engines for the automata-based analysis of DTMCs and MDPs. This includes the
treatment of Streett acceptance conditions in MDPs (PRISM only offers engines
for Rabin acceptance and its generalized variant) and an extension of PRISM’s
property syntax for automata-specifications (rather than LTL-specifications).

Outline. Section 2 presents our new approaches for variable reordering in PRISM.
Section 3 summarizes the main features of our implementations for cost/reward-
bounded properties and quantiles, while Section 4 presents the automata-based
extensions. For further details (implementation, experiments) and an extended
version [21] see http://wwwtcs.inf.tu-dresden.de/ALGI/PUB/TACAS16/. We
are collaborating with PRISM’s authors to integrate our extensions into the main
PRISM version and would like to thank David Parker for fruitful discussions.

2 Automatic variable reordering in PRISM

Here, we will briefly describe the relevant infrastructure in PRISM for dealing
with variable ordering. The MTBDD variable ordering of the symbolic model
representation is determined by the order of module and variable definitions
in the PRISM model file. Fig. 1 sketches the general schema.2 In a first block,

2 The depicted scheme corresponds to the default ordering for the Hybrid and Sparse
engines. There are subtle differences when using the Mtbdd engine, discussed in
appendix A. Additionally, standard PRISM preallocates only extra state variables,
mainly for the product with deterministic automata. To support generic symbolic
model transformations, we also preallocate choice variables, i.e., for fresh actions in
the transformed MDP.

http://wwwtcs.inf.tu-dresden.de/ALGI/PUB/TACAS16/

4 J. Klein et. al.

MTBDD variables for nondeterministic choices are allocated. This includes a
unary encoding of the synchronizing actions (i.e., one MTBDD variable for
each action), scheduling variables (one MTBDD variable indicating that a given
module is active) as well as several bits for representing local choices, e.g., between
alternative commands for the same synchronizing action. Then, two blocks of
extra variables are preallocated to serve in later model transformations, e.g.,
during a product construction with a deterministic ω-automaton for LTL model
checking. For each individual bit of a state variable in the model, two MTBDD
variables are allocated, one serving in the representation of the rows and one for
the columns of the transition matrix. The MTBDD variables for representing the
possible values of the (integer-valued) state variables are allocated in the order
in which they appear in the PRISM model file, with each state variable forming
a block of row/column pairs. The bits for each state variable are ordered from
most-significant to least-significant. Global state variables are treated as if they
were contained in a single module located before the “real” modules.

The arrows in Fig. 1 indicate the extent of the influence that can be applied
to the variable ordering by syntactically reordering the PRISM source file: At the
highest level, the order of the modules can be changed. Additionally, inside each
module, the order of the definition of the state variables can be changed. Note
that such changes of the ordering in the PRISM model file do not lead to any
semantic changes in the model, but can lead to cosmetic changes, e.g., in the order
of the states for exported models. To complement the manual, trial-and-error
approach for finding a good order in the model file, we detail our automatic
approach in the next section.

2.1 Automatic variable reordering using group sifting

PRISM internally relies on the CUDD (MT)BDD library [37] for the management
of a set of BDDs that arise during probabilistic model checking. CUDD provides
implementations of several heuristics for (dynamic) variable reordering which in
principle should be available to be used by PRISM. Unfortunately, the implemen-
tation of PRISM heavily relies on the assumption that the variable ordering of the
MTBDD does not change at all. The order of the MTBDD variables is assumed
to correspond with the order of the respective variables in the underlying PRISM
model, i.e., that the variable index (logical index) and the variable level (index
in the current variable order) need to agree. Eliminating this restriction on the
variable order would require a substantial refactoring of PRISM’s infrastructure,
touching many parts of the implementation.

Our approach presented in this section makes automatic variable reordering
available to a PRISM user while avoiding any substantial refactoring of PRISM’s
infrastructure. First, a symbolic, MTBDD-based representation of the model
is built by PRISM as usual. After the model is built, we trigger the group
sifting reordering heuristic [36,33] via the CUDD library, using several variable
grouping constraints that will be detailed later. After this reordering, the MTBDD-
based model representation violates PRISM’s assumptions, which renders further
computations in PRISM impossible. Thus, we perform an analysis of the variable

Advances in Symbolic Probabilistic Model Checking with PRISM 5

ordering found by group sifting and translate the changes in variable locations
back to the source level of the PRISM model. This way, we obtain a syntactically
reordered PRISM model, where the placement of the PRISM modules und state
variables reflects the calculated variable ordering. Our implementation then
allows using this reordered model directly after the reordering computation via
the following trick: After reordering, we delete the MTBDDs of the model and
reset the variable ordering in CUDD to the one that PRISM expects, where
each variable index corresponds to the variable level in the BDD. Then, we
build the BDDs for the model a second time, this time using the syntactically
reordered PRISM model. We thus obtain the reordered model again, but now
with the underlying assumptions of PRISM intact, allowing to use the full PRISM
machinery. This approach provides transparent and convenient access to the
reordering functionality to the user. Additionally, we also support exporting the
reordered model to a file, which can then be used in future PRISM runs. This
way, the time for reordering can be amortized over multiple model-checking runs.

For this approach to work, it is crucial that we are able to seamlessly convert
between the reordered variable ordering obtained after sifting and the variable
order that is induced by syntactically reordering the elements of the PRISM
model file. To achieve this, we introduce appropriate groups of MTBDD variables
represented by a tree structure and used in the groups sifting. The grouping
reflects the structure of the given model file: Each PRISM module forms a group of
BDD variables that can be reordered as a block. This corresponds to syntactically
changing the order of modules in the model file. Additionally, inside each module,
the MTBDD variables for each state variable form another group. Reordering
those groups corresponds to changing the order of the variable declarations
inside a PRISM module. The remaining variables, e.g., those for nondeterministic
choices remain in fixed positions. Hence, the above approach allows for creating all
variable orders that can result from permutations of modules and state variables
within the PRISM model file. In the next section we show how a more fine-grained
control can be achieved.

2.2 Bit-level control over the variable order using views

Although it is well known that for some operators, e.g., the addition of two
integers, an efficient representation relies on the interleaving of the individual
bit-variables, there is no way of interleaving the individual bits of multiple state
variables in PRISM up to now.

Our implementation provides the option of syntactically “exploding the bits”
of all the state variables in a PRISM model file: Each multi-bit state variable
s is replaced with the appropriate number of single-bit variables si. To keep
this transformation simple and transparent to the user we introduce a syntactic
enhancement of the PRISM modeling language called a view. A view forms a
virtual variable s over bit variables sj . This virtual variable can be used in guards
and updates of transition definitions just as ordinary variables. Hence, exploding
the bits does not affect any of the transition definitions given in the model file.

6 J. Klein et. al.

module M

s_bit_2 : [0..1];

s_bit_1 : [0..1];

s_bit_0 : [0..1];

s : view (s_bit_2,s_bit_1,s_bit_0) <=> [2..7] init 3;

[inc] s<7 -> 1:(s’=s+1);

endmodule

Fig. 2. Defining a view s with data domain (2, 7) from three single-bit state variables.

As an example, consider the PRISM module in Fig. 2. Here, the virtual
state variable s with an integer data domain of 2 6 s 6 7 requires three bits to
represent all values, as internally integer variables are encoded by first subtracting
the lower bound of the data domain (2 is internally represented as 0, etc.). The
actual storage is provided by the three single-bit state variables s bit i. The
order of the single-bit state variables in the view definition determines their use
in the encoding, with the most-significant bit appearing first. As can be seen, the
virtual view variable s is being used just like a standard PRISM state variable.

Note that “exploding the bits” of a PRISM model file alone will not change
the variable ordering and MTBDD representation, as the encoding and ordering
of the newly introduced single-bit state variables correspond to the standard
encoding used for the original variables. When applying the automatic reordering
detailed in the previous section to an “exploded” model file, the individual bits
of the state variables can be now be sifted and interleaved, as their grouping
is removed. However, the MTBDD variables are still restricted from crossing
module boundaries. We detail how to remove this restriction in the next section.

2.3 Interleaving state variables of different modules

To overcome the limitation that state variables cannot be interleaved across
modules our implementation provides the option of “globalizing” all state variables
in a PRISM model file: Each state variable inside a PRISM module is moved from
the module to become a global variable, while keeping the order they appeared in
the original model file. Realizing this requires to loosen some restrictions on the
use of global variables imposed by PRISM. In standard PRISM, global variables
cannot be updated in synchronous actions, as this has the potential of resulting
in conflicting updates from multiple modules. We removed this restriction, as in
our setting only the “previous owner” of a variable, i.e., the module in which the
variable was initially declared, will update the global variable in the transformed
model. This ensures that there can be no conflicting updates introduced by
globalizing variables. Our implementation supports such global variable updates
for similar situations as well, i.e., where it is apparent by a syntactic inspection
that no conflicting updates can happen.

The options for exploding the bits and globalizing the variables can be used
separately and in a combined fashion (cf. Fig. 3) and the resulting model yields

Advances in Symbolic Probabilistic Model Checking with PRISM 7

module M1

x : [0..3] init 0;

[a] true -> 0.5:(x’=0)

+ 0.5:(x’=y);

endmodule

module M2

y : [0..3] init 0;

[a] true -> 1:(y’=0);

[b] y<3 -> 1:(y’=y+1);

endmodule

global x_bit_1 : [0..1];

global x_bit_0 : [0..1];

global y_bit_1 : [0..1];

global y_bit_0 : [0..1];

global x :

view (x_bit_1,x_bit_0) <=> [0..3] init 0;

global y :

view (y_bit_1,y_bit_0) <=> [0..3] init 0;

module M1

[a] true -> 0.5:(x’=0) + 0.5:(x’=y);

endmodule

module M2

[a] true -> 1:(y’=0);

[b] y<3 -> 1:(y’=y+1);

endmodule

Fig. 3. Example of both “exploding bits” and “globalizing variables” for a PRISM
model file (before on the left, after on the right).

a starting point for group sifting. This way, fine-grained control of the variable
ordering for all state variables in the model becomes possible. Within the following
section we will evaluate our implementation by means of a number of case studies.

2.4 Benchmarking automatic variable reordering of PRISM models

To explore the effect of automatic variable reordering using our implementation,
we performed benchmarks using the DTMC, CTMC and MDP models in the
PRISM benchmark suite [27]. The models are parametrized in various parameters,
affecting both the number of states and the size of the MTBDD representation.
In total, we performed benchmarks with 208 model instances (70 DTMCs,
70 CTMCs, 68 MDPs). We present here statistics for the “top” initial variable
ordering [34] used by default in the Hybrid engine. Results using the default
variable ordering of the Mtbdd engine were roughly similar.

Fig. 4 presents statistics for the basic case, i.e., reordering without any syntac-
tic transformations beforehand. Similar plots for reordering with the “globalize
variables” (Sec. 2.3) and “explode bits” (Sec. 2.2) transformations being applied
can be found in the appendix.3 In the plots, the model instances are grouped
by their base model. The size of the MTBDD refers to the number of nodes in
the shared MTBDD structure storing the various individual MTBDDs. Those
individual MTBDDs represent the model in PRISM, i.e., its transition matrix, a
0/1-version of the transition matrix representing the underlying graph structure

3 The benchmarks for reordering were carried out on a machine with two Intel Xeon
L5630 4-core CPUs at 2.13GHz and 192GB RAM, with a timeout of 1 hour and a
CUDD memory limit of 10GB. The max-growth factor of CUDD was set to 2, i.e.,
allowing a doubling in MTBDD size before sifting is abandoned.

8 J. Klein et. al.

of the model, the set of reachable states, representations for the transition and
state rewards.

As can be seen in the second plot from the top in Fig. 4, the automatic
reordering was able to achieve significant reductions for many of the model
instances. As a particularly striking example, the reordering was very effective
for the “mapk-cascade” model, a CTMC: For the instance with parameter N = 8,
the MTBDD size was reduced from 1,478,511 nodes to 96,718 nodes, a reduction
of more than 90%. The time for building the symbolic representation of this
model instance was reduced from 174 s to 2 s for the reordered model. Most of the
time, the reduction in the MTBDD size is accompanied by a reduction in the time
needed for building the MTBDDs for the reordered model. The major outlier to
this are several instances of the “crowds” model, where the time for building the
reordered model was substantially worse compared with the original model. Our
investigation revealed that this is due to the point in time at which our reordering
is performed, i.e., after the symbolic transition matrix has been restricted to the
reachable part of the state space, which is the symbolic representation that is
then used for the actual model checking. The reordering heuristic thus produced
a variable order tailored for this state space and which is not particularly suitable
for the representation of the individual, not yet restricted parts of the model
used during the building phase. This is a classic example of the case where an
asynchronous reordering, i.e., continuously adapting the variable ordering during
the construction phase, would be helpful.

In general, the time for reordering tends to be related to the size of the MTBDD
before reordering, as expected. As noted above, even substantial reordering times
might be worthwhile, as the reordered model can be stored and subsequently
reused multiple times, profiting, e.g., from the reduced build time and more
compact symbolic representation.

There were three models (“brp”, “nand” and “poll”), where instances exhibited
an overall reduction in the size of the MTBDD, but an increase in the size of the
MTBDD for the transition matrix alone (in all cases the increase was less than
10%). This is explained by the fact that the reordering operates on the whole
shared MTBDD data structure and thus does not necessarily optimize all the
individual MTBDD functions that are stored.

We have also benchmarked the effect of our syntactic transformations on the
automatic reordering and present here (Table 1) some notable examples. For
further, detailed statistics we refer to the appendix. As already seen in Fig. 4,
the “tandem” model has no reduction in MTBDD size when it is reordered
as-is. However, when the state variables are “exploded”, reordering becomes
profitable, with additional reductions when combined with the “globalize variables”
transformations. Globally, for every model instance from the benchmark suite, at
least one of the variants achieved some reduction. As is to be expected, no variant
is uniformly best. Consider the statistics for the “cluster” model in Table 1.
For N = 32, “exploding” and “globalizing” are individually successful, but in
combination lead to only minor reductions. For N = 256, “exploding” is in the
lead, while for N = 512, “globalizing” by itself leads to the most reductions. For

Advances in Symbolic Probabilistic Model Checking with PRISM 9

101

102

103

104

105

106

107

M
T

B
D

D
 n

o
d
e
s

MTBDD size (before reordering)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

re
d
u
ct

io
n
 M

T
B

D
D

 n
o
d
e
s

(i
n
 %

)

reduction in MTBDD size due to reordering

 0.1

 1

 10

 100

 1000

 10000

tim
e
 (

in
 s

e
co

n
d
s)

change in build time (original vs reordered)
build time (original)

 0.1

 1

 10

 100

 1000

 10000

b
rp

cr
o
w

d
s

e
g
l

h
e
rm

a
n

le
a
d
e
r-

sy
n
c

n
a
n
d

cl
u
st

e
r

e
m

b
e
d
d
e
d

fm
s

ka
n
b
a
n

m
a
p
k-

ca
sc

a
d
e

p
o
ll

ta
n
d
e
m

co
in

cs
m

a
fir

e
w

ir
e

fir
e
w

ir
e
-a

b
st

fir
e
w

ir
e
-d

l

fir
e
w

ir
e
-i
m

p
l-
d
l

w
la

n

ze
ro

co
n
f

tim
e
 (

in
 s

e
co

n
d
s)

time for reordering

Fig. 4. Statistics for reordering without syntactic transformations: The number of
MTBDD nodes before reordering, the reduction (larger numbers represent more re-
duction) in the number of MTBDD nodes, the change in time for building the model
(before/after reordering) and the time spent reordering. Times below 0.1 seconds are
clipped to 0.1 for visualization purposes. There was one timeout, reordering the “csma4 6”
instance (45 minutes of the 1 hour timeout spent on building, with 3,589,198 nodes).

10 J. Klein et. al.

Table 1. Selected statistics for the reduction achieved using reordering on the standard
model instance and where the “explode bits” and “globalize variables” transformations
were applied. In the last column, both transformations are applied. For reference, the
MTBDD size before reordering is included as well. For full details, see appendix.

MTBDD reduction in %
Model instance before standard explode globalize exp.+glob.

tandem c=255 4 917 0.0 26.0 0.0 35.1
tandem c=4095 103 233 0.0 35.7 0.0 64.3

cluster N=32 7 391 45.5 47.9 52.2 8.3
cluster N=256 61 749 53.6 58.7 24.2 41.4
cluster N=512 132 908 55.1 59.3 61.5 46.2

kanban t=6 14 001 27.5 34.0 1.2 32.3

“kanban” with t = 6, “globalizing” alone leads to worse reductions than reordering
on the standard model. As can be seen, it remains an area of experimentation
to select the reordering variant that is a good fit for a particular model and
model instance. As a good first assumption, the time for model checking tends
to be related in general to the compactness of the symbolic representation. We
experimented with some of the properties in the benchmark suite (cf. appendix B
for some examples). In the next section, we will additionally report on significant
reductions in model-checking time in the context of quantile computations with
reordered models.

3 Computing Quantiles for Markov Decision Processes

Models in PRISM can be annotated with rewards (non-negative values) specify-
ing the costs or the gain for visiting certain states or taking certain transitions.
PRISM provides implementations of algorithms for reasoning about expected
rewards, but lacks support for computing the probabilities for reward-bounded
path properties, unless for unit-reward functions that count the number of steps.
We have extended PRISM with support for the computation of (extremal) prob-
abilities of cost-/reward-bounded simple path formulas for DTMCs and MDPs
with non-negative integer rewards, e.g., of Prmax(♦≤r Φ) for a reward bound r.
This includes conjunctions of multiple reward bounds and step bounds [1], relying
on a product transformation with a counter automaton tracking the accumulated
reward. This is implemented for both the explicit and symbolic engines.

In our recent work [38,5], we addressed the computation of quantiles for
probability constraints on reward-bounded reachability conditions and carried
out experiments with a prototypical implementation based on PRISM’s Explicit
engine. In the mean time, this implementation has been refined and extended
by a symbolic implementation. In what follows, we describe some details of the
latter. We consider here MDP with a reward function rew : S × Act → N>0,
mapping state-action pairs (s, α) to the non-negative integer reward rew(s, α).
The quantiles under consideration (for details we refer to [5]) are optimal reward

Advances in Symbolic Probabilistic Model Checking with PRISM 11

thresholds that guarantee that the maximal or minimal probability of a reward-
bounded reachability path formula meets some probability bound. Examples
are min

{
r : Prmax(♦≤r Φ) > p

}
or max

{
r : Prmin(♦≥r Φ) > p

}
where r can

be seen as a parametric reward bound, Φ is a state formula and p a rational
probability bound. Quantiles yield a useful concept for the cost-utility analysis,
e.g., in terms of the minimal amount of energy r required to reach some goal Φ
with probability at least p for some/all schedulers. The approach for computing
quantiles as proposed in [5] consists of a two-step process. A precomputation
step determines all states s ∈ S for which the quantile exists, i.e., is finite. In the
simplest case, this amounts to the computation of the maximal probability for
unbounded reachability. In other cases, the computation requires the analysis of
zero-reward and positive-reward end components [5]. For the remaining states,
an iterative approach is used, which we illustrate here for a quantile of the form
min

{
r : Prmax(♦≤r Φ) > p

}
where we suppose the MDP has a unique initial

state s0. Successively, the values xs,r = Prmax
s (♦≤r Φ) for r = 1, 2, 3, . . . are

computed for all states s ∈ S until some r with xs0,r > p is reached, using the
equation xs,r = max{As, Bs} with

As = max
α∈Act(s),rew(s,α)=0

∑
t∈S

Pr(s, α, t) · xt,r

Bs = max
α∈Act(s),rew(s,α)>0

∑
t∈S

P (s, α, t) · xt,r−rew(s,α)

where Pr(s, α, t) is the probability of reaching state t when action α is chosen in
state s. For states satisfying Φ, xs,r is set to 1 for all r. The values As, handling the
zero-reward actions, are computed using value iteration. The values Bs, handling
the positive-reward actions, are determined by inserting the previously calculated
values xt,i for i < r. For the other quantile variants, similar computations are
performed [5]. The time complexity of this approach is exponential, meeting the
complexity-theoretic optimum [16].

3.1 Symbolic computation of quantiles

We have extended PRISM with a symbolic implementation for the computation of
quantiles, following the general approach outlined above. For the precomputation
step, we rely on the PRISM machinery for the computation of maximal/minimal
probabilities for unbounded path formulas and for the computation of (maximal)
end components, adapted for identifying states in positive-reward end components
and zero-reward end components by appropriate symbolic model transformations.

For the iterative computation of the values xs,r for r = 1, 2, 3, . . . until the
probability threshold p is reached, the values xs,r are stored symbolically, using
one MTBDD per bound r to represent the functions xr : S → Q. The state-
action pairs with positive reward are handled first, computing the MTBDD
B : S → Q. Here, all state-action pairs with identical reward value are handled
simultaneously. Consequently, this symbolic approach tends to be most efficient if
there are many state-action pairs, but few distinct reward values in the model. To

12 J. Klein et. al.

subsequently handle the zero-reward state-action pairs, we symbolically transform
the MDP. First, all positive-reward actions are stripped and replaced by a single
fresh τ -action for each state. These τ -actions model the choice of choosing the
“best” positive-reward action in a state s and go to a special goal trap state
with probability B(s) and to a fail trap state with probability 1 − B(s). The
computation of xs,i then amounts to a standard maximal/minimal reachability
probability computation in the transformed model by means of value iteration,
relying on the computation engine chosen by the user, i.e., either the Mtbdd,
Hybrid or Sparse engine. As the state value vectors xr are stored symbolically
in all cases and the use of the semi-symbolic techniques of the Hybrid and
Sparse engines is thus limited, we denote these engines as SemiHybrid and
SemiSparse in the context of our symbolic quantile implementation.

3.2 Benchmarks for quantile computations

To perform benchmarking of our implementation, we have reused several models
and quantile queries that were first considered in [5] for benchmarking our quantile
implementation for PRISM’s Explicit engine. We present here (Table 2) statistics
for some noteworthy model instances, for further statistics and details on the
models and quantile queries we refer to appendix C. 4

As can be seen in Table 2, there are model instances were the quantile im-
plementation in the Explicit engine easily outperforms our symbolic approach,
e.g., for the “self-stabilizing” case study, despite a very compact MTBDD repre-
sentation of the model. To put computation times such as 2153.2 s (for N=18)
into context, the number of iterations in the quantile computation has to be kept
in mind: Here, 392 iterations were required, with an average time per iteration
of around 5 s. The large number of iterations thus amplifies the time spent in
each iteration. For the “asynchronous leader-election” case study, our symbolic
implementation becomes competitive for N=8 because of the time spent for model
construction in the Explicit engine due to the large state space. The symbolic
computations still yield results for N=9, where the explicit approach times out.
A similar picture is seen for query Q7 of the “energy-aware job scheduling” case
study. For the instances of this case study and query Q8 shown in Table 2, the
symbolic implementation vastly outperforms the explicit implementation. This is
mainly due to the large amount of time spent there for the precomputation step
(1971 s for N=6), while the symbolic engines perform this step in around 2 s. This
appears to be due to inefficiencies in some of the end component computations
in the Explicit engine, which we are currently investigating and working on a
potential fix. For the “energy-aware job scheduling” case study, the computations
were carried out in a reordered model, which lead to a significant decrease in
MTBDD size and computation time. For instance, for (Q7) and N=6 we observed
a reduction in the size of the transition matrix of 78.2 % and the quantile compu-
tation (SemiHybrid) took 43,832.9 s in the original model instead of 3808.4 s in
the reordered model, with similar reductions for Mtbdd and SemiSparse.

4 The benchmarks for the quantile computations were carried out on a machine with
two Intel E5-2680 8-core CPUs at 2.70 GHz with 384GB of RAM running Linux.

Advances in Symbolic Probabilistic Model Checking with PRISM 13

Table 2. Quantile computations for selected case studies, with statistics for the model
size (reachable state space, MTBDD size of symbolic transition matrix) and times spent
for model building and computing the quantile query (in seconds). The “it.” column
depicts the number of overall iterations in the quantile computation.

symbolic quantile computations
N States MTBDD it. Explicit SemiHybrid SemiSparse Mtbdd

size tbuild tquery tbuild tquery tbuild tquery tbuild tquery

Self-stabilizing algorithm (Israeli/Jalfon), N processes (query Q1)

11 2047 433 144 0.5 0.2 <0.1 2.5 <0.1 2.3 <0.1 2.0
15 32767 729 271 1.6 3.9 <0.1 119.1 <0.1 114.7 <0.1 159.3
18 262143 993 392 9.8 53.8 <0.1 2135.2 <0.1 2865.1 <0.1 2240.3

Asynchronous leader election, N processes (query Q3)

7 2095783 180383 206 63.1 83.2 5.9 358.8 7.0 369.8 7.6 402.7

8 18674484 392093 238 1633.2 891.8 20.6 1228.4 24.6 1307.4 21.9 1448.8

9 167748115 868257 279 – – 106.1 7751.9 92.3 5728.1 92.9 7545.6

Energy-aware job scheduling, N processes (query Q7)

5 6079533 187458 302 334.1 285.9 7.8 1196.2 7.2 1128.0 7.9 1142.9

6 44072357 507805 416 – – 21.7 3808.4 22.8 4045.9 25.0 3962.8

Energy-aware job scheduling, N processes (query Q8)

5 3049471 25363 13 62.5 398.6 0.8 86.0 0.9 74.3 0.9 104.6

6 7901694 38911 15 210.0 2375.5 1.8 390.6 1.8 378.1 1.3 317.1

Quantiles in Feature-Oriented Systems. In product lines, collections of
systems are described through the combination of features. Thus, the systems in
a product line usually share a lot of common behaviors, which makes symbolic
approaches appealing. Using a family-based approach, i.e., modeling the product
line in a single model, in previous work [13] we performed experiments on an
energy-aware server product line eServer. There, we illustrated the benefits of
symbolic representations in product-line verification and showed that variable
orderings have a crucial impact on the analysis performance. However, due to
the lack of a symbolic quantile implementation, an energy-utility analysis of
eServer had to be postponed as future work.

In Table 3, we summarize statistics for the computation of quantiles on two
instances of eServer, becoming possible due to our symbolic implementation.
We computed the minimal amount of energy required to guarantee in 95% of
the cases a certain percentage of the time without any package drop. The table
shows the impact of our four reorder mechanisms on the model size and the
quantile computation time. We only included the results for the Mtbdd engine,
as the other engines struggled with the size of the model and reached a timeout
after one day. Within all computations, 1476 quantile iterations were required.
Interestingly, although the model presented in [13] already used heuristics to find
good initial variable orderings, the fully automatic reorder mechanisms presented
here allow for a further significant reduction of the model size and a speedup of
the analyses.

14 J. Klein et. al.

Table 3. Quantile computations for eServer, with statistics for the reachable state
space and MTBDD size of the transition matrix, reduction and time for reordering, and
time building the model and computing the quantile query (in seconds).

In
st

a
n
ce

2
In

st
a
n
ce

1
States MTBDD Reduction Mtbdd

nodes in % treorder tbuild tquery
original 145 984 112 64 030 - - 10.2 1 018.6
reordered “ 40 096 37.4 3.5 7.8 766.4
with explode “ 34 902 45.5 8.3 9.1 726.2
with globalize “ 36 149 43.5 2.9 6.3 704.3
with exp.+glob. “ 30 325 52.6 3.1 7.9 638.6

original 441 704 832 140 556 - - 27.2 3 664.6
reordered “ 72 565 48.4 68.5 16.6 3 510.5
with explode “ 66 874 52.4 32.3 17.7 3 204.7
with globalize “ 43 249 69.2 6.5 11.2 3 099.0
with exp.+glob. “ 37 674 73.3 8.5 12.1 2 833.0

4 Additional enhancements

We report here on additional enhancements we have implemented in PRISM
both for the symbolic and explicit engines, related to the support of ω-automata.

Accepting end component computations for Streett conditions. Tra-
ditionally, PRISM has relied on an internal implementation of Safra’s deter-
minization construction for generating the deterministic Rabin automata used
for LTL model checking, e.g., for computing Prmax(ϕ) or Prmin(ϕ) for an LTL
formula ϕ. Recently, support was added for automata with generalized Rabin
acceptance [9,2] to benefit from advances in the construction of small determin-
istic automata [14,22]. This includes support for calling external tools for the
transformation of LTL formulas into deterministic Muller-automata, relying on
the recent Hanoi Omega Automata (HOA) format [2], which supports the concise
representation of common acceptance conditions in a generic normal form.

We have extended PRISM’s MDP model checking with support for Streett
conditions, relying on the recursive algorithm for end-component analysis of [6].
Streett conditions are dual to Rabin conditions and are well suited for the
specification of fairness constraints and for conjunctions of properties. They
appear as well in the computation of conditional probabilities in MDPs [7]. It
is well known, both in theory [29] and in practice [20], that for some languages,
deterministic Streett automata can be significantly smaller than Rabin automata.

Extremal probabilities for automata specifications. We have furthermore
extended the property syntax of the probability operators in PRISM to allow the
use of a HOA-automaton file instead of an LTL formula, providing the full power of
ω-regular languages. For DTMC models, the full range of acceptance conditions
in the normal form of the HOA format [2] is supported. For MDPs, Rabin,
generalized Rabin and Streett conditions are supported. For the computation of
Prmin, which requires the complementation of the language of the automaton,
we support Rabin and Streett conditions, exploiting their duality.

Advances in Symbolic Probabilistic Model Checking with PRISM 15

5 Conclusion

In this paper, we have demonstrated the potential for automatic variable reorder-
ing for symbolic model checking in PRISM, including the benefits of now having
fine-grained control over the variable order using our syntactic transformations.
We have also shown that our symbolic implementation for quantiles is useful in
practice, particularly where explicit representations of the model are infeasible.
Future work: In the area of automatic variable reordering, it would be inter-
esting to support more structured reordering: Often, models are obtained from
templates with parametrization, e.g., specifying the number of copies of certain
modules in the model. By swapping the variables of all copies simultaneously,
it might be possible to discover good initial variable orders from instances with
few copies and apply these to instances with more copies. This approach would
also be interesting when the aim is to apply symmetry reduction [25,12], as all
copies would remain symmetrical. While our syntactic transformations provide
very fine-grained reordering for the state variables, it would be interesting to
have the option of adding back some restrictions or hints for the reordering by
annotating the variable declarations in the PRISM model. This would allow to
state preferences which variable should be kept together, etc. In this context
it would also make sense to revisit previous work on heuristics for good initial
variable orderings in PRISM [30], making use of the finer-grained control that is
now possible. In addition, our benchmark results serve as an indication that it
would be worthwhile to attempt a refactoring of PRISM to remove the variable
order assumptions and add support for asynchronous reordering.

For our symbolic quantile computations, it appears worthwhile to consider an
iterative implementation that fully exploits the approach of the Hybrid engine,
with a symbolic transition matrix and explicit state value vector storage. This
could allow the application of several of the techniques employed by the quantile
computations of the Explicit engine to speed-up the computations.

The implementation of the end component computation for Streett conditions
could serve as the base for supporting more complex types of fairness conditions
via the approach of [6], such as fairness for the scheduling of the modules in
a PRISM model. It would also be interesting to perform a detailed experimen-
tal evaluation on the use of Streett versus (generalized) Rabin automata for
probabilistic model checking in practice.

References

1. S. Andova, H. Hermanns, and J.-P. Katoen. Discrete-time rewards model-checked.
In Proc. Formal Modeling and Analysis of Timed Systems (FORMATS’03), volume
2791 of LNCS, pages 88–104. Springer, 2003.

2. T. Babiak, F. Blahoudek, A. Duret-Lutz, J. Klein, J. Křet́ınský, D. Müller, D. Parker,
and J. Strejček. The Hanoi omega-automata format. In Proc. Computer Aided
Verification, Part I (CAV’15), volume 9206 of LNCS, pages 479–486. Springer, 2015.

3. R. I. Bahar, E. A. Frohm, C. M. Gaona, G. D. Hachtel, E. Macii, A. Pardo, and
F. Somenzi. Algebraic decision diagrams and their applications. Formal Methods
in System Design, 10(2/3):171–206, 1997.

16 J. Klein et. al.

4. C. Baier, E. M. Clarke, V. Hartonas-Garmhausen, M. Z. Kwiatkowska, and M. Ryan.
Symbolic model checking for probabilistic processes. In Proc. International Col-
loquium on Automata, Languages and Programming (ICALP’97), volume 1256 of
LNCS, pages 430–440, 1997.

5. C. Baier, M. Daum, C. Dubslaff, J. Klein, and S. Klüppelholz. Energy-utility
quantiles. In Proc. NASA Formal Methods (NFM’14), volume 8430 of LNCS, pages
285–299. Springer, 2014.

6. C. Baier, M. Größer, and F. Ciesinski. Quantitative analysis under fairness con-
straints. In Proc. Automated Technology for Verification and Analysis (ATVA’09),
volume 5799 of LNCS, pages 135–150. Springer, 2009.

7. C. Baier, J. Klein, S. Klüppelholz, and S. Märcker. Computing conditional prob-
abilities in Markovian models efficiently. In Proc. Tools and Algorithms for the
Construction and Analysis of Systems (TACAS’14), volume 8413 of LNCS, pages
515–530. Springer, 2014.

8. J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang. Symbolic
model checking: 1020 states and beyond. Information and Computation, 98(2):142–
170, 1992.

9. K. Chatterjee, A. Gaiser, and J. Kret́ınský. Automata with generalized Rabin
pairs for probabilistic model checking and LTL synthesis. In Proc. Computer Aided
Verification (CAV’13), volume 8044 of LNCS, pages 559–575. Springer, 2013.

10. G. Ciardo, A. S. Miner, and M. Wan. Advanced features in SMART: the stochastic
model checking analyzer for reliability and timing. SIGMETRICS Performance
Evaluation Review, 36(4):58–63, 2009.

11. A. Cimatti, E. M. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri,
R. Sebastiani, and A. Tacchella. NuSMV 2: An opensource tool for symbolic model
checking. In Proc. Computer Aided Verification (CAV’02), volume 2404 of LNCS,
pages 359–364. Springer, 2002.

12. A. F. Donaldson, A. Miller, and D. Parker. Language-level symmetry reduction
for probabilistic model checking. In Proc. Quantitative Evaluation of Systems
(QEST’09), pages 289–298. IEEE, 2009.

13. C. Dubslaff, C. Baier, and S. Klüppelholz. Probabilistic model checking for feature-
oriented systems. Transactions on Aspect-Oriented Software Development, 12:180–
220, 2015.

14. J. Esparza and J. Kret́ınský. From LTL to deterministic automata: A Safraless
compositional approach. In Proc. Computer Aided Verification (CAV’14), volume
8559 of LNCS, pages 192–208. Springer, 2014.

15. M. Fujita, P. C. McGeer, and J. C.-Y. Yang. Multi-terminal binary decision
diagrams: An efficient data structure for matrix representation. Formal Methods in
System Design, 10(2/3):149–169, 1997.

16. C. Haase and S. Kiefer. The odds of staying on budget. In Proc. Automata,
Languages, and Programming (ICALP’15), volume 9135 of LNCS, pages 234–246.
Springer, 2015.

17. G. D. Hachtel, E. Macii, A. Pardo, and F. Somenzi. Markovian analysis of large
finite state machines. IEEE Trans. on CAD of Integrated Circuits and Systems,
15(12):1479–1493, 1996.

18. V. Hartonas-Garmhausen, S. V. A. Campos, and E. M. Clarke. ProbVerus: prob-
abilistic symbolic model checking. In Proc. Formal Methods for Real-Time and
Probabilistic Systems (ARTS’99), volume 1601 of LNCS, pages 96–110, 1999.

19. H. Hermanns, M. Z. Kwiatkowska, G. Norman, D. Parker, and M. Siegle. On the
use of MTBDDs for performability analysis and verification of stochastic systems.
Journal of Logic and Algebraic Programming, 56(1-2):23–67, 2003.

Advances in Symbolic Probabilistic Model Checking with PRISM 17

20. J. Klein and C. Baier. Experiments with deterministic ω-automata for formulas of
linear temporal logic. Theoretical Computer Science, 363(2):182–195, 2006.

21. J. Klein, C. Baier, P. Chrszon, M. Daum, C. Dubslaff, S. Klüppelholz, S. Märcker,
and D. Müller. Advances in symbolic probabilistic model checking with PRISM (ex-
tended version), 2016. http://wwwtcs.inf.tu-dresden.de/ALGI/PUB/TACAS16/.

22. Z. Komárková and J. Kret́ınský. Rabinizer 3: Safraless translation of LTL to
small deterministic automata. In Proc. Automated Technology for Verification and
Analysis (ATVA’14), volume 8837 of LNCS, pages 235–241. Springer, 2014.

23. M. Kuntz and M. Siegle. CASPA: symbolic model checking of stochastic systems.
In Proc. Measuring, Modelling and Evaluation of Computer and Communication
Systems (MMB’06), pages 465–468. VDE Verlag, 2006.

24. M. Z. Kwiatkowska, G. Norman, and D. Parker. Probabilistic symbolic model
checking with PRISM: a hybrid approach. Software Tools for Technology Transfer,
6(2):128–142, 2004.

25. M. Z. Kwiatkowska, G. Norman, and D. Parker. Symmetry reduction for proba-
bilistic model checking. In Proc. Computer Aided Verification (CAV’06), volume
4144 of LNCS, pages 234–248. Springer, 2006.

26. M. Z. Kwiatkowska, G. Norman, and D. Parker. PRISM 4.0: Verification of
probabilistic real-time systems. In Proc. Computer Aided Verification (CAV’11),
volume 6806 of LNCS, pages 585–591. Springer, 2011.

27. M. Z. Kwiatkowska, G. Norman, and D. Parker. The PRISM benchmark suite. In
Proc. Quantitative Evaluation of Systems (QEST’12), pages 203–204. IEEE, 2012.
Website: https://github.com/prismmodelchecker/prism-benchmarks/.

28. K. Lampka. A symbolic approach to the state graph based analysis of high-level
Markov reward models. PhD thesis, Universität Erlangen-Nürnberg, 2007.

29. C. Löding. Optimal bounds for transformations of omega-automata. In Proc. Foun-
dations of Software Technology and Theoretical Computer Science (FSTTCS’99),
volume 1738 of LNCS, pages 97–109. Springer, 1999.

30. V. Maisonneuve. Automatic heuristic-based generation of MTBDD variable order-
ings for PRISM models. Internship report, ENS Cachan & Oxford University, 2009.
http://www.prismmodelchecker.org/papers/vivien-bdds-report.pdf.

31. K. L. McMillan. Symbolic Model Checking. Kluwer, 1993.
32. A. S. Miner and D. Parker. Symbolic representations and analysis of large proba-

bilistic systems. In Validation of Stochastic Systems - A Guide to Current Research,
volume 2925 of LNCS, pages 296–338, 2004.

33. S. Panda and F. Somenzi. Who are the variables in your neighborhood. In Proc.
Computer-Aided Design (ICCAD’95), pages 74–77. IEEE, 1995.

34. D. Parker. Implementation of Symbolic Model Checking for Probabilistic Systems.
PhD thesis, University of Birmingham, 2002.

35. PRISM model checker. Website: http://www.prismmodelchecker.org/.
36. R. Rudell. Dynamic variable ordering for ordered binary decision diagrams. In

Proc. Computer-Aided Design (ICCAD’93), pages 42–47. IEEE, 1993.
37. F. Somenzi. CUDD: Colorado University decision diagram package. Website:

http://vlsi.colorado.edu/~fabio/CUDD/.
38. M. Ummels and C. Baier. Computing quantiles in Markov reward models. In

Proc. Foundations of Software Science and Computation Structures (FOSSACS’13),
volume 7794 of LNCS, pages 353–368. Springer, 2013.

http://wwwtcs.inf.tu-dresden.de/ALGI/PUB/TACAS16/
https://github.com/prismmodelchecker/prism-benchmarks/
http://www.prismmodelchecker.org/papers/vivien-bdds-report.pdf
http://www.prismmodelchecker.org/
http://vlsi.colorado.edu/~fabio/CUDD/

Appendix

A Initial variable order variants in PRISM

The variable order of Fig. 1 in Sec. 2 corresponds to the “top” variable ordering
discussed in Sec. 4.2.2 of [34] and is the standard variable ordering when using
the Hybrid and Sparse engines of PRISM. When using the Mtbdd engine, a
slightly different ordering is used by default: Here, the MTBDD variables for the
nondeterministic choice of scheduling, i.e., determining which module is active,
are not placed with the other nondeterministic choice variables but are instead
interleaved with the state variables of the modules, i.e., each module starts with
the scheduling MTBDD variable, followed by the MTBDD variables for the state
variables. This corresponds to the so-called “middle” variable ordering discussed
in Sec. 4.2.2 of [34]. In contrast to the Hybrid and Sparse engines that require
that all nondeterministic choice variables are placed before the first state variable
for algorithmic reasons, the Mtbdd engine has no such restrictions and thus
allows the more natural placement of the scheduling variable next to the state
variables.
The “middle” variable order and “globalizing state variables”. When
the “top” variable order is used, the syntactic transformation of “globalizing”
the state variables 2.3 does not change the resulting variable order. However,
when using the “middle” variable order, moving the state variables outside of
the PRISM modules leads to a subtly changed variable order: As the scheduling
choice variables remain with their modules, the effect is that all state variables
are located before the scheduling variables, which form a block at the bottom of
the MTBDD. This corresponds to the “bottom” ordering scheme considered in
Sec. 4.2.2 of [34], which was found to be often suboptimal. However, a command-
line switch allows to select the “top” ordering also for the Mtbdd engine, if so
desired.

Advances in Symbolic Probabilistic Model Checking with PRISM 19

B Further benchmark details: variable reordering

We provide here further statistics for our benchmarking of the automatic variable
reordering using the PRISM benchmark suite. The parameters are the same as
in the main part of the paper.

Fig. 5 shows statistics for the case where the “explode bits” syntactic trans-
formation is applied before reordering, i.e., allowing the state variables inside a
module to be reordered at the bit level.

Fig. 6 shows statistics for the case where the “globalize variables” syntactic
transformation is applied before reordering, i.e., allowing the state variables to
be reordered without being restricted by module boundaries.

Fig. 7 then shows statistics for the case where both syntactic transformations
are applied in combination before reordering. This provides the most flexibility in
reordering, as the individual bits of state variables may be interleaved, without
regard for the module boundaries.

As discussed before (Fig. fig:overview-reorder), the “csma4 6” instance had a
timeout during reordering.

To allow a detailed comparison of the reductions with the four considered
variants, we provide Tables 4–8 with the statistics for the individual model
instances.

20 J. Klein et. al.

10
1

10
2

10
3

10
4

10
5

10
6

10
7

M
T

B
D

D
 n

o
d

e
s

MTBDD size (before reordering)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

re
d
u

c
ti
o
n

 M
T

B
D

D
 n

o
d
e

s
 (

in
 %

)

reduction in MTBDD size due to reordering

 0.1

 1

 10

 100

 1000

 10000

ti
m

e
 (

in
 s

e
c
o
n
d
s
)

change in build time (original vs reordered)
build time (original)

 0.1

 1

 10

 100

 1000

 10000

b
rp

c
ro

w
d

s

e
g
l

h
e

rm
a
n

le
a
d
e
r-

s
y
n
c

n
a
n
d

c
lu

s
te

r

e
m

b
e
d
d
e
d

fm
s

k
a
n
b
a
n

m
a
p
k
-c

a
s
c
a
d
e

p
o
ll

ta
n
d
e
m

c
o
in

c
s
m

a
fi
re

w
ir
e

fi
re

w
ir
e
-a

b
s
t

fi
re

w
ir
e
-d

l

fi
re

w
ir
e
-i
m

p
l-
d
l

w
la

n

z
e
ro

c
o
n

f

ti
m

e
 (

in
 s

e
c
o

n
d

s
)

time for reordering

Fig. 5. Statistics for reordering after the “explode bits” syntactic transformation: the
number of MTBDD nodes before reordering, reduction in the number of MTBDD nodes,
the change in time for building the model (before/after reordering) and the time spent
reordering. Times below 0.1 seconds are clipped to 0.1 for visualization purposes.

Advances in Symbolic Probabilistic Model Checking with PRISM 21

10
1

10
2

10
3

10
4

10
5

10
6

10
7

M
T

B
D

D
 n

o
d

e
s

MTBDD size (before reordering)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

re
d
u

c
ti
o
n

 M
T

B
D

D
 n

o
d
e

s
 (

in
 %

)

reduction in MTBDD size due to reordering

 0.1

 1

 10

 100

 1000

 10000

ti
m

e
 (

in
 s

e
c
o
n
d
s
)

change in build time (original vs reordered)
build time (original)

 0.1

 1

 10

 100

 1000

 10000

b
rp

c
ro

w
d

s

e
g
l

h
e

rm
a
n

le
a
d
e
r-

s
y
n
c

n
a
n
d

c
lu

s
te

r

e
m

b
e
d
d
e
d

fm
s

k
a
n
b
a
n

m
a
p
k
-c

a
s
c
a
d
e

p
o
ll

ta
n
d
e
m

c
o
in

c
s
m

a
fi
re

w
ir
e

fi
re

w
ir
e
-a

b
s
t

fi
re

w
ir
e
-d

l

fi
re

w
ir
e
-i
m

p
l-
d
l

w
la

n

z
e
ro

c
o
n

f

ti
m

e
 (

in
 s

e
c
o

n
d

s
)

time for reordering

Fig. 6. Statistics for reordering after the “globalize variables” syntactic transformation:
the number of MTBDD nodes before reordering, reduction in the number of MTBDD
nodes, the change in time for building the model (before/after reordering) and the time
spent reordering. Times below 0.1 seconds are clipped to 0.1 for visualization purposes.

22 J. Klein et. al.

10
1

10
2

10
3

10
4

10
5

10
6

10
7

M
T

B
D

D
 n

o
d

e
s

MTBDD size (before reordering)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

re
d
u

c
ti
o
n

 M
T

B
D

D
 n

o
d
e

s
 (

in
 %

)

reduction in MTBDD size due to reordering

 0.1

 1

 10

 100

 1000

 10000

ti
m

e
 (

in
 s

e
c
o
n
d
s
)

change in build time (original vs reordered)
build time (original)

 0.1

 1

 10

 100

 1000

 10000

b
rp

c
ro

w
d

s

e
g
l

h
e

rm
a
n

le
a
d
e
r-

s
y
n
c

n
a
n
d

c
lu

s
te

r

e
m

b
e
d
d
e
d

fm
s

k
a
n
b
a
n

m
a
p
k
-c

a
s
c
a
d
e

p
o
ll

ta
n
d
e
m

c
o
in

c
s
m

a
fi
re

w
ir
e

fi
re

w
ir
e
-a

b
s
t

fi
re

w
ir
e
-d

l

fi
re

w
ir
e
-i
m

p
l-
d
l

w
la

n

z
e
ro

c
o
n

f

ti
m

e
 (

in
 s

e
c
o

n
d

s
)

time for reordering

Fig. 7. Statistics for reordering after the “globalize variables” and “explode bits” syn-
tactic transformations: the number of MTBDD nodes before reordering, reduction in
the number of MTBDD nodes, the change in time for building the model (before/after
reordering) and the time spent reordering. Times below 0.1 seconds are clipped to 0.1
for visualization purposes.

Advances in Symbolic Probabilistic Model Checking with PRISM 23

Table 4. (Part 1 of 5). Statistics for the reduction achieved using reordering on
the standard model instance and where the “explode bits” and “globalize variables”
transformations were applied. In the last column, both transformations are applied. For
reference, the MTBDD size before reordering is included as well.

MTBDD reduction in %
Model instance before standard explode globalize exp.+glob.

brp,N=16,MAX=2 4299 22.0 27.5 38.3 21.8
brp,N=16,MAX=3 4286 22.5 27.7 37.8 21.9
brp,N=16,MAX=4 4414 23.2 26.0 36.6 21.4
brp,N=16,MAX=5 4395 23.8 25.9 37.3 21.3
brp,N=32,MAX=2 4493 21.9 26.5 38.3 22.2
brp,N=32,MAX=3 4480 22.3 26.7 37.8 22.3
brp,N=32,MAX=4 4608 22.4 25.1 36.7 21.8
brp,N=32,MAX=5 4589 23.0 25.0 37.3 21.7
brp,N=64,MAX=2 4687 21.7 25.6 38.7 21.2
brp,N=64,MAX=3 4674 22.2 25.7 38.3 21.3
brp,N=64,MAX=4 4802 21.7 18.1 37.0 20.8
brp,N=64,MAX=5 4783 22.2 18.1 37.8 20.7

crowds,TR=3,CS=5 3465 29.6 37.8 29.6 37.8
crowds,TR=4,CS=5 5388 28.6 43.7 28.6 43.7
crowds,TR=5,CS=5 6612 28.8 41.4 28.8 41.4
crowds,TR=6,CS=5 7819 20.6 42.4 20.6 42.4

crowds,TR=3,CS=10 7187 29.4 33.3 29.4 33.3
crowds,TR=4,CS=10 12078 27.6 37.5 27.6 37.5
crowds,TR=5,CS=10 15242 27.0 32.9 27.0 32.9
crowds,TR=6,CS=10 18389 26.3 30.4 26.3 30.4
crowds,TR=3,CS=15 12215 33.8 32.3 33.8 32.3
crowds,TR=4,CS=15 21332 29.2 39.2 29.2 39.2
crowds,TR=5,CS=15 27227 28.3 32.2 28.3 32.2
crowds,TR=6,CS=15 33105 27.2 30.8 27.2 30.8
crowds,TR=3,CS=20 18660 31.6 40.4 31.6 40.4
crowds,TR=4,CS=20 33351 28.4 45.2 28.4 45.2
crowds,TR=5,CS=20 42800 28.2 40.0 28.2 40.0
crowds,TR=6,CS=20 52232 27.4 39.3 27.4 39.3

egl,N=5,L=2 15529 2.6 3.9 53.4 52.0
egl,N=5,L=4 37660 2.4 4.3 55.4 54.4
egl,N=5,L=6 52976 2.7 3.4 55.0 53.2
egl,N=5,L=8 88979 2.2 4.4 56.6 55.4

egl,N=10,L=2 35863 2.6 5.3 39.7 41.7
egl,N=10,L=4 89564 2.2 5.3 39.7 40.6
egl,N=10,L=6 127850 2.3 3.6 39.1 38.4
egl,N=10,L=8 216018 2.0 5.1 39.6 40.6
egl,N=15,L=2 63056 2.5 6.1 29.5 33.6
egl,N=15,L=4 160350 1.9 5.8 29.1 33.3
egl,N=15,L=6 230779 1.9 3.6 28.8 31.4
egl,N=15,L=8 391510 1.6 5.2 28.9 32.9
egl,N=20,L=2 97327 2.2 6.1 20.5 29.8
egl,N=20,L=4 250469 1.6 5.9 20.6 30.5
egl,N=20,L=6 362446 1.6 3.5 20.6 29.0
egl,N=20,L=8 616370 1.4 5.3 20.7 30.7

24 J. Klein et. al.

Table 5. (Part 2 of 5). Statistics for the reduction achieved using reordering on
the standard model instance and where the “explode bits” and “globalize variables”
transformations were applied. In the last column, both transformations are applied. For
reference, the MTBDD size before reordering is included as well.

MTBDD reduction in %
Model instance before standard explode globalize exp.+glob.

herman3 90 0.0 0.0 0.0 0.0
herman5 169 5.9 5.9 5.9 5.9
herman7 280 10.0 10.0 10.0 10.0
herman9 423 12.8 12.8 12.8 12.8

herman11 598 14.7 14.7 14.7 14.7
herman13 805 16.1 16.1 16.1 16.1
herman15 1044 17.2 17.2 17.2 17.2

leader sync3 2 664 7.7 8.3 25.3 25.0
leader sync3 3 1596 14.6 13.4 30.4 31.1
leader sync3 4 2521 22.2 24.7 36.5 37.8
leader sync4 2 1504 12.7 13.2 33.3 33.3
leader sync4 3 6201 24.1 24.3 36.9 38.2
leader sync4 4 14852 32.2 32.7 47.6 47.7
leader sync5 2 2799 14.0 14.3 38.5 38.5
leader sync5 3 18775 21.4 21.2 40.4 39.0
leader sync5 4 61211 24.6 24.9 47.9 46.9

nand,N=20,K=1 21684 15.4 48.8 15.4 48.8
nand,N=20,K=2 21707 15.3 48.7 15.3 48.7
nand,N=20,K=3 21709 15.3 48.7 15.3 48.7
nand,N=20,K=4 21730 15.3 48.6 15.3 48.6
nand,N=40,K=1 75215 9.5 56.7 9.5 56.7
nand,N=40,K=2 75238 9.4 56.6 9.4 56.6
nand,N=40,K=3 75240 9.4 56.6 9.4 56.6
nand,N=40,K=4 75261 9.4 56.6 9.4 56.6
nand,N=60,K=1 147017 10.3 56.9 10.3 56.9
nand,N=60,K=2 147040 10.3 56.9 10.3 56.9

cluster,N=2 983 10.3 10.3 1.4 1.4
cluster,N=4 1480 20.0 19.6 23.4 1.3
cluster,N=8 2333 29.7 29.5 35.4 2.0

cluster,N=16 3992 38.7 40.3 45.7 4.5
cluster,N=32 7391 45.5 47.9 52.2 8.3
cluster,N=64 14526 49.9 52.3 57.1 21.2

cluster,N=128 29638 52.5 41.0 21.9 33.4
cluster,N=256 61749 53.6 58.7 24.2 41.4
cluster,N=512 132908 55.1 59.3 61.5 46.2

embedded,MAX COUNT=2 2026 29.5 30.1 34.6 35.2
embedded,MAX COUNT=3 2663 39.6 39.5 47.9 22.2
embedded,MAX COUNT=4 2515 36.1 36.5 44.1 30.3
embedded,MAX COUNT=5 2721 39.5 40.0 48.1 21.6
embedded,MAX COUNT=6 2433 35.8 36.3 43.0 35.8
embedded,MAX COUNT=7 3261 46.0 44.4 55.7 26.6
embedded,MAX COUNT=8 3089 41.8 42.4 51.8 23.2

Advances in Symbolic Probabilistic Model Checking with PRISM 25

Table 6. (Part 3 of 5). Statistics for the reduction achieved using reordering on
the standard model instance and where the “explode bits” and “globalize variables”
transformations were applied. In the last column, both transformations are applied. For
reference, the MTBDD size before reordering is included as well.

MTBDD reduction in %
Model instance before standard explode globalize exp.+glob.

fms,n=1 2289 22.0 24.2 22.1 24.3
fms,n=2 10155 38.1 40.0 31.0 32.7
fms,n=3 23594 42.7 46.1 33.3 36.7
fms,n=4 57522 51.6 55.7 38.9 45.0
fms,n=5 99794 55.9 58.0 40.8 45.6
fms,n=6 139245 59.1 60.6 42.5 48.1
fms,n=7 230617 59.9 62.2 44.1 51.3
fms,n=8 376485 60.9 64.8 43.9 53.7
fms,n=9 539121 63.2 65.2 45.4 53.0

fms,n=10 658124 64.4 65.7 46.1 54.8
kanban,t=1 808 3.2 3.2 1.0 1.0
kanban,t=2 2721 8.7 12.3 1.5 7.0
kanban,t=3 4077 14.0 19.0 1.7 10.0
kanban,t=4 8307 19.1 28.2 1.7 23.5
kanban,t=5 10964 23.6 31.6 1.3 27.3
kanban,t=6 14001 27.5 34.0 1.2 32.3
kanban,t=7 17308 31.2 43.4 1.2 42.4

mapk cascade,N=1 4807 64.4 64.4 67.7 67.7
mapk cascade,N=2 47134 85.5 86.0 87.4 84.1
mapk cascade,N=3 103992 80.4 82.8 84.3 85.7
mapk cascade,N=4 260910 85.9 88.1 87.5 89.1
mapk cascade,N=5 414699 92.2 87.5 88.8 90.3
mapk cascade,N=6 610340 92.8 94.2 89.8 91.5
mapk cascade,N=7 856986 93.1 94.5 90.5 92.1
mapk cascade,N=8 1478511 93.5 95.3 91.1 93.6

poll3 313 0.3 0.6 0.3 0.6
poll4 442 2.9 2.9 2.9 2.9
poll5 664 3.9 1.8 4.1 1.5
poll6 847 1.5 4.7 1.5 4.8
poll7 1066 2.9 3.7 2.0 3.6
poll8 1297 4.6 5.6 4.6 6.1
poll9 1657 1.9 4.1 3.4 4.9

poll10 1942 2.4 4.8 4.7 7.0
poll11 2263 3.6 5.6 4.0 6.7
poll12 2596 4.7 7.2 5.0 6.1
poll13 2977 6.2 6.1 5.4 6.6
poll14 3358 5.5 6.6 5.9 7.0
poll15 3775 6.2 7.3 4.8 8.0
poll16 4204 7.0 7.7 5.2 11.3
poll17 4822 5.5 7.9 4.8 7.9
poll18 5305 3.9 6.8 5.2 8.7
poll19 5824 3.4 7.4 5.6 9.0
poll20 6355 5.3 6.3 6.0 10.8

26 J. Klein et. al.

Table 7. (Part 4 of 5). Statistics for the reduction achieved using reordering on
the standard model instance and where the “explode bits” and “globalize variables”
transformations were applied. In the last column, both transformations are applied. For
reference, the MTBDD size before reordering is included as well.

MTBDD reduction in %
Model instance before standard explode globalize exp.+glob.

tandem,c=5 290 2.4 2.1 2.4 2.1
tandem,c=7 286 0.0 3.5 0.0 3.5

tandem,c=15 441 0.0 4.3 0.0 4.3
tandem,c=31 716 0.0 5.7 0.0 5.7
tandem,c=63 1263 0.0 13.9 0.0 13.9

tandem,c=127 2418 0.0 20.8 0.0 20.8
tandem,c=255 4917 0.0 26.0 0.0 35.1
tandem,c=511 10360 0.0 29.7 0.0 46.3

tandem,c=1023 22203 0.0 32.3 0.0 53.9
tandem,c=2047 47870 0.0 34.3 0.0 59.9
tandem,c=4095 103233 0.0 35.7 0.0 64.3

coin2,K=2 671 0.0 2.5 14.3 2.5
coin2,K=4 724 0.0 3.3 11.6 3.3
coin2,K=8 777 0.0 4.0 9.3 4.0

coin2,K=16 830 0.0 4.6 7.2 4.6
coin4,K=2 3616 0.0 4.4 35.3 25.5
coin4,K=4 3709 0.0 4.6 31.7 20.1

csma2 2 4394 10.3 14.2 15.4 16.3
csma2 4 11141 14.5 21.8 19.6 28.9
csma2 6 24643 23.1 29.5 36.8 45.4
csma3 2 26363 9.6 12.2 7.9 14.3
csma3 4 152892 8.3 13.2 13.4 21.1
csma3 6 604313 13.5 15.0 30.5 31.3
csma4 2 110915 14.7 19.5 11.7 21.3
csma4 4 1139902 11.8 15.0 11.8 22.9
csma4 6 - - - - -

firewire,d=3 28627 39.3 47.6 45.2 48.8
firewire,d=36 164283 32.5 42.1 47.8 64.2

firewire abst,d=3 671 9.2 0.9 9.2 0.9
firewire abst,d=36 786 17.7 0.8 17.7 0.8

firewire dl,dl=200,d=3 8445 32.1 53.6 32.1 53.6
firewire dl,dl=400,d=3 14987 41.0 54.7 41.0 54.7
firewire dl,dl=600,d=3 20920 41.9 65.8 41.9 65.8
firewire dl,dl=800,d=3 21635 46.3 64.8 46.3 64.8

Advances in Symbolic Probabilistic Model Checking with PRISM 27

Table 8. (Part 5 of 5). Statistics for the reduction achieved using reordering on
the standard model instance and where the “explode bits” and “globalize variables”
transformations were applied. In the last column, both transformations are applied. For
reference, the MTBDD size before reordering is included as well.

MTBDD reduction in %
Model instance before standard explode globalize exp.+glob.

firewire dl,dl=200,d=36 17890 54.5 64.6 54.5 64.6
firewire dl,dl=400,d=36 19250 54.1 63.4 54.1 63.4
firewire dl,dl=600,d=36 19307 49.2 63.2 49.2 63.2
firewire dl,dl=800,d=36 19313 49.2 63.2 49.2 63.2

firewire impl dl,dl=200,d=3 106794 34.3 41.0 45.9 62.6
firewire impl dl,dl=400,d=3 146178 29.4 44.5 40.9 63.7
firewire impl dl,dl=600,d=3 176223 26.9 52.1 36.9 68.9
firewire impl dl,dl=800,d=3 178648 27.6 51.8 37.7 68.5

firewire impl dl,dl=200,d=36 1573881 24.7 28.2 46.0 71.5
firewire impl dl,dl=400,d=36 2348306 22.8 29.9 44.4 57.2
firewire impl dl,dl=600,d=36 2396942 21.3 31.0 32.1 58.8
firewire impl dl,dl=800,d=36 2396950 21.3 31.2 32.1 58.8

wlan0,COL=0 10289 24.7 27.1 28.2 29.5
wlan1,COL=0 14084 15.1 21.4 25.7 26.0
wlan2,COL=0 20646 12.8 18.2 41.6 42.6
wlan3,COL=0 25973 16.5 22.0 50.3 50.5
wlan4,COL=0 33506 11.8 18.2 57.3 57.0
wlan5,COL=0 39604 12.9 19.4 61.0 59.9
wlan6,COL=0 46304 14.7 17.5 64.1 62.4

zeroconf,r=t,N=20,K=2 5856 18.2 21.9 24.9 30.6
zeroconf,r=t,N=20,K=4 6085 19.2 23.4 25.7 31.7
zeroconf,r=t,N=20,K=6 6101 19.3 23.4 25.7 31.7
zeroconf,r=t,N=20,K=8 6314 20.6 24.9 26.8 32.9

zeroconf,r=t,N=1000,K=2 5856 18.2 21.9 24.9 30.6
zeroconf,r=t,N=1000,K=4 6085 19.2 23.4 25.7 31.7
zeroconf,r=t,N=1000,K=6 6101 19.3 23.4 25.7 31.7
zeroconf,r=t,N=1000,K=8 6314 20.6 24.9 26.8 32.9

zeroconf,r=f,N=20,K=2 59919 30.6 32.3 40.7 44.8
zeroconf,r=f,N=20,K=4 97931 26.0 30.8 38.2 47.4
zeroconf,r=f,N=20,K=6 184183 42.5 40.1 59.6 56.4
zeroconf,r=f,N=20,K=8 285854 48.1 51.9 64.3 66.1

zeroconf,r=f,N=1000,K=2 59919 30.6 32.3 40.7 44.8
zeroconf,r=f,N=1000,K=4 97931 26.0 30.8 38.2 47.4
zeroconf,r=f,N=1000,K=6 184183 42.5 40.1 59.6 56.4
zeroconf,r=f,N=1000,K=8 285854 48.1 51.9 64.3 66.1

zeroconf dl,r=t,dl=10,N=1000,K=1 9015 22.9 29.8 31.6 42.5
zeroconf dl,r=t,dl=20,N=1000,K=1 10101 26.6 33.4 34.6 44.7
zeroconf dl,r=t,dl=30,N=1000,K=1 10909 31.5 38.1 39.3 50.2
zeroconf dl,r=t,dl=40,N=1000,K=1 12118 34.6 40.3 40.4 50.2
zeroconf dl,r=t,dl=50,N=1000,K=1 12992 38.0 44.1 43.6 51.6
zeroconf dl,r=f,dl=10,N=1000,K=1 27810 22.0 34.7 31.1 40.4
zeroconf dl,r=f,dl=20,N=1000,K=1 67440 35.2 49.7 52.5 59.1
zeroconf dl,r=f,dl=30,N=1000,K=1 110040 54.4 51.1 64.8 63.5
zeroconf dl,r=f,dl=40,N=1000,K=1 158224 57.6 55.9 67.2 73.5
zeroconf dl,r=f,dl=50,N=1000,K=1 203142 64.7 62.5 72.5 77.4

28 J. Klein et. al.

Impact of reordering on the model checking time (PRISM
benchmark suite)

We present here statistics for two examples from the PRISM benchmark suite,
detailing the impact of the automatic reordering on the model checking time for
these instances.

Table 9. Statistics for the “egl” case study with “unfairA” query (L=8), Mtbdd engine
and “top” initial variable ordering. Reordering with “globalize” and “explode bits”.

reordered reduction tquery
Instance States MTBDD in % treorder original reordered

N=5 156 670 21 797 56.9 11.2 s 3.9 s 1.9 s

N=10 317 718 526 72 001 40.1 47.7 s 20.6 s 12.1 s

N=15 486 405 046 270 146 352 31.9 115.5 s 53.0 s 39.3 s

N=20 663 005 511 548 926 238 028 28.8 218.8 s 104.2 s 80.3 s

Table 10. Statistics for the “fms” case study with “productivity” query, Hybrid engine.
Reordering with “explode bits”.

reordered reduction tquery
Instance States MTBDD in % treorder original reordered

N=5 152 712 20 681 59.4 5.0 s 15.6 s 9.9 s

N=6 537 768 30 228 61.3 8.824 68.334 52.337

N=7 1 639 440 40 610 66.4 16.2 s 227.9 s 179.2 s

N=8 4 459 455 72 908 66.1 28.6 s 808.8 s 596.7 s

N=9 11 058 190 102 514 66.8 66.6 s 3458.0 s 1575.7 s

The reordering method was chosen to be the one that provided the best
reduction. For each instance, the tables present statistics for the number of
states in the reachable part of the state space, the size of the MTBDD for the
transition/rate matrix after reordering, the reduction in size of the MTBDD
representation of the matrix due to reordering and the time spent for reordering.
It has to be kept in mind that the reordering time can be amortized over multiple
runs of the model checker and multiple queries by reusing the reordered model.
Additionally, the tables depict the time for computing the respective query, once
for the original, unreordered model and once for the reordered model.

It can be seen that the more compact MTBDD representation leads here
to a reduction in the model checking time as well, with the largest relative
improvement achieved for N=8 in the “fms” case study.

Advances in Symbolic Probabilistic Model Checking with PRISM 29

C Further benchmark details: quantile computations

All quantile experiments were carried out on a server with two Intel E5-2680
8-core CPUs at 2.70 GHz with 384GB of RAM running Linux.

We provide details here for our experiments revisiting the benchmark case
studies of [5]. We computed the quantile value of the initial state of the model. Our
implementation supports the computation of quantiles for multiple probability
thresholds simultaneously, as the intermediate values in the iterative approach
can be used to determine the quantile value for thresholds with smaller quantile
values. For the computations we set a memory limit of 30GB for the Java Runtime-
Environment and allowed the (MT)BDD-library CUDD to use 20GB of the main
memory for handling the involved binary decision diagrams.

We provide here a brief description for the columns in the tables in the
following sections. “Instance” denotes the particular model instance, i.e., the
number N of processes for the respective protocol. “States” is the number of states
in the state space of the MDP and “MTBDD size” provides the number of nodes
in the transition matrix. The number of quantile iterations in the computation is
listed under “iter.”, with the time for building and for the computation of the
quantile given by tbuild and tquery, respectively.

C.1 Self-stabilising protocol

The self-stabilising protocol by Israeli and Jalfon5 is modeled as an MDP for N
equal processes organized in a ring, each having a token at the beginning and
aiming to randomly send and receive tokens until the ring is in a stable state,
i.e., only one process has a token.

The self-stabilising protocol works as follows: At the beginning, the N pro-
cesses all are active, i.e., have one token assigned to each of them. Then, the
protocol is reassigning tokens step-wise to the processes, where at each step, one
active process is selected through a scheduler to randomly pass its token either to
its right or left neighbor. If a process has two tokens, the tokens are merged into
one. The ring is in a stable state if exactly one process owns the last remaining
token.

For a given N and probability threshold p, we compute the following quantiles:

Q1: “The minimal number of steps required for reaching a stable state with
probability of at least p for the best scheduler.”

Q2: “The minimal number of steps required for reaching a stable state with
probability of at least p for all schedulers.”

We computed the quantiles for N ∈ {3, . . . , 18} with probability thresholds
p ∈ {0, 0.01, 0.05, 0.1, 0.2, . . . , 0.9, 0.95, 0.99}, using the multi-threshold approach,
i.e., computing the quantile for all thresholds in one run. The statistics of our
computations are presented in Table 11 and Table 12.

5 http://www.prismmodelchecker.org/casestudies/self-stabilisation.php#ij

http://www.prismmodelchecker.org/casestudies/self-stabilisation.php#ij

30 J. Klein et. al.

Table 11. Statistics for quantile Q1, self-stabilising protocol

symbolic quantile comput.
Instance States MTBDD iter. Explicit SemiHybrid SemiSparse Mtbdd

size tbuild tquery tbuild tquery tbuild tquery tbuild tquery

N = 3 7 36 9 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0

N = 4 15 69 17 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0

N = 5 31 109 28 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0

N = 6 63 153 41 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0

N = 7 127 201 57 0.1 0.0 0.0 0.1 0.0 0.1 0.0 0.1

N = 8 255 253 75 0.2 0.0 0.0 0.1 0.0 0.1 0.0 0.1

N = 9 511 309 95 0.3 0.1 0.0 0.3 0.0 0.3 0.0 0.3

N = 10 1023 369 118 0.4 0.1 0.0 0.9 0.0 0.8 0.0 0.8

N = 11 2047 433 144 0.5 0.2 0.0 2.5 0.0 2.3 0.0 2.0

N = 12 4095 501 172 0.5 0.4 0.0 6.0 0.0 5.9 0.0 6.1

N = 13 8191 573 202 0.7 0.8 0.0 18.1 0.0 16.2 0.0 15.4

N = 14 16383 649 235 1.0 1.7 0.0 52.3 0.0 45.4 0.0 42.9

N = 15 32767 729 271 1.6 3.9 0.0 119.1 0.0 114.7 0.0 159.3

N = 16 65535 813 308 2.6 10.4 0.0 404.6 0.0 382.6 0.0 366.0

N = 17 131071 901 349 4.8 22.9 0.0 979.5 0.0 820.9 0.0 755.3

N = 18 262143 993 392 9.8 53.8 0.0 2135.2 0.0 2865.1 0.0 2240.3

Table 12. Statistics for quantile Q2, self-stabilising protocol

symbolic quantile comput.
Instance States MTBDD iter. Explicit SemiHybrid SemiSparse Mtbdd

size tbuild tquery tbuild tquery tbuild tquery tbuild tquery

N = 3 7 36 9 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0

N = 4 15 69 18 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0

N = 5 31 109 29 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0

N = 6 63 153 44 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0

N = 7 127 201 61 0.1 0.1 0.0 0.1 0.0 0.1 0.0 0.1

N = 8 255 253 82 0.2 0.1 0.0 0.2 0.0 0.2 0.0 0.2

N = 9 511 309 105 0.3 0.3 0.0 0.4 0.0 0.4 0.0 0.4

N = 10 1023 369 131 0.4 0.3 0.0 1.3 0.0 1.1 0.0 1.1

N = 11 2047 433 160 0.5 0.4 0.0 3.0 0.0 3.5 0.0 3.0

N = 12 4095 501 192 0.5 0.7 0.0 8.4 0.0 8.1 0.0 7.9

N = 13 8191 573 227 0.7 1.2 0.0 22.2 0.0 21.5 0.0 20.9

N = 14 16383 649 265 1.0 2.3 0.0 65.6 0.0 59.1 0.0 78.7

N = 15 32767 729 306 1.6 4.8 0.0 161.5 0.0 159.8 0.0 180.8

N = 16 65535 813 349 2.6 11.4 0.0 449.9 0.0 448.2 0.0 459.6

N = 17 131071 901 396 4.8 29.9 0.0 1458.5 0.0 1303.9 0.0 1113.4

N = 18 262143 993 445 9.8 65.3 0.0 3527.2 0.0 2851.3 0.0 2809.7

Advances in Symbolic Probabilistic Model Checking with PRISM 31

C.2 Asynchronous leader-election protocol

This protocol aims to elect a leader, i.e., a uniquely designated process out of N
equal processes organised in a ring structure by sending messages to the other
processes. We considered an asynchronous variant of such a protocol, developed
by Itai and Rodeh and also described in the context of probabilistic model
checking within the benchmark suite of PRISM6.

All processes are located in a ring and are initially all active. Inactive processes
still pass along messages to their neighbors. The protocol operates in rounds
consisting of three phases. In the first phase each active process probabilistically
selects its preference, i.e., whether to remain active or to become inactive. Then,
a process communicates its preference to the next process along the ring. A
process is then allowed to become inactive only if the active process preceding it
in the ring prefers to remain active. In a third phase, the processes send a counter
around the ring to determine if only one active process remains, which then
becomes the leader. If no unique process remains active the protocol performs
another round.

One question of interest for this protocol is the minimal number of steps
or rounds r required to elect a leader with a certain probability p for some/all
schedulers:

Q3: “The minimal number of rounds required for electing a leader with proba-
bility of at least p for the best scheduler.”

Q4: “The minimal number of rounds required for electing a leader with proba-
bility of at least p for all schedulers.”

Q5: “The minimal number of steps required for electing a leader with probability
of at least p for the best scheduler.”

Q6: “The minimal number of steps required for electing a leader with probability
of at least p for all schedulers.”

We computed the quantiles for N ∈ {2, . . . , 9} with probability thresholds
p ∈ {0, 0.01, 0.05, 0.1, 0.2, . . . , 0.9, 0.95, 0.99}. The statistics of our computations
are presented in Tables 13 to 16.

6 http://www.prismmodelchecker.org/casestudies/asynchronous_leader.php

http://www.prismmodelchecker.org/casestudies/asynchronous_leader.php

32 J. Klein et. al.

Table 13. Statistics for quantile Q3, asynchronous leader election

symbolic quantile comput.
Instance States MTBDD iter. Explicit SemiHybrid SemiSparse Mtbdd

size tbuild tquery tbuild tquery tbuild tquery tbuild tquery

N = 2 36 635 8 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0

N = 3 364 3355 10 0.2 0.1 0.0 0.2 0.1 0.2 0.1 0.3

N = 4 3172 10760 11 0.4 0.1 0.1 1.1 0.1 1.4 0.1 1.7

N = 5 27299 31430 12 1.1 0.8 0.4 5.4 0.6 7.6 0.5 12.8

N = 6 237656 77999 12 5.3 8.2 1.5 39.1 1.8 34.2 1.8 52.6

N = 7 2095783 180383 13 63.1 109.0 5.9 253.8 7.0 197.9 7.6 247.3

N = 8 18674484 392093 13 1633.2 1098.2 20.6 2046.2 24.6 1443.1 21.9 916.6

N = 9 167748115 868257 14 – – 106.1 20217.9 92.3 13412.5 92.9 4945.8

Table 14. Statistics for quantile Q4, asynchronous leader election

symbolic quantile comput.
Instance States MTBDD iter. Explicit SemiHybrid SemiSparse Mtbdd

size tbuild tquery tbuild tquery tbuild tquery tbuild tquery

N = 2 36 635 8 0.1 0.1 0.0 0.1 0.0 0.1 0.0 0.1

N = 3 364 3355 10 0.2 0.2 0.0 0.2 0.1 0.2 0.1 0.4

N = 4 3172 10760 11 0.4 0.4 0.1 0.9 0.1 1.2 0.1 2.4

N = 5 27299 31430 12 1.1 1.4 0.4 9.1 0.6 12.0 0.5 21.5

N = 6 237656 77999 12 5.3 9.3 1.5 47.6 1.8 50.8 1.8 113.0

N = 7 2095783 180383 13 63.1 100.8 5.9 360.4 7.0 272.7 7.6 675.2

N = 8 18674484 392093 13 1633.2 1155.9 20.6 3283.9 24.6 1873.9 21.9 3616.3

N = 9 167748115 868257 14 – – 106.1 33645.4 92.3 17273.9 92.9 26244.7

Table 15. Statistics for quantile Q5, asynchronous leader election

symbolic quantile comput.
Instance States MTBDD iter. Explicit SemiHybrid SemiSparse Mtbdd

size tbuild tquery tbuild tquery tbuild tquery tbuild tquery

N = 2 36 635 43 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0

N = 3 364 3355 74 0.2 0.1 0.0 0.1 0.1 0.1 0.1 0.1

N = 4 3172 10760 104 0.4 0.1 0.1 1.4 0.1 1.9 0.1 1.5

N = 5 27299 31430 139 1.1 0.6 0.4 11.6 0.6 12.4 0.5 12.8

N = 6 237656 77999 168 5.3 7.9 1.5 78.9 1.8 67.8 1.8 67.4

N = 7 2095783 180383 206 63.1 83.2 5.9 358.8 7.0 369.8 7.6 402.7

N = 8 18674484 392093 238 1633.2 891.8 20.6 1228.4 24.6 1307.4 21.9 1448.8

N = 9 167748115 868257 279 – – 106.1 7751.9 92.3 5728.1 92.9 7545.6

Advances in Symbolic Probabilistic Model Checking with PRISM 33

Table 16. Statistics for quantile Q6, asynchronous leader election

symbolic quantile comput.
Instance States MTBDD iter. Explicit SemiHybrid SemiSparse Mtbdd

size tbuild tquery tbuild tquery tbuild tquery tbuild tquery

N = 2 36 635 43 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0

N = 3 364 3355 74 0.2 0.1 0.0 0.2 0.1 0.2 0.1 0.2

N = 4 3172 10760 104 0.4 0.1 0.1 1.7 0.1 2.3 0.1 1.9

N = 5 27299 31430 139 1.1 0.6 0.4 14.2 0.6 17.1 0.5 15.6

N = 6 237656 77999 168 5.3 7.3 1.5 102.6 1.8 88.9 1.8 83.7

N = 7 2095783 180383 206 63.1 95.7 5.9 440.4 7.0 464.3 7.6 468.1

N = 8 18674484 392093 238 1633.2 887.9 20.6 1771.8 24.6 2158.3 21.9 1853.9

N = 9 167748115 868257 279 – – 106.1 9906.6 92.3 8576.2 92.9 9404.0

34 J. Klein et. al.

C.3 Energy-aware job-scheduling protocol

This protocol [5] describes rules for the management of a shared resource when
multiple processes want to access the mentioned resource concurrently.

It models a system of N processes which need to enter a critical section in
order to perform tasks, each within a given deadline. Access to the critical section
is exclusively granted by a scheduler, which selects the process which can access
the resource out of a pool of processes which have requested to enter previously.
When a process states such a request, a deadline counter is set and decreased over
time even if the process did not enter the critical section yet. Since computing
a task also requires a certain amount of time in the critical section, deadlines
can be exceeded. Utility is hence provided in terms of tasks finished without
exceeding their deadline. Each process consumes energy, especially if it is in the
critical section, and the global energy consumption equals the sum of energy
consumed by all processes. Additional dependencies between utility and energy
arise as the scheduler can activate a turbo mode for the critical section, doubling
the computation speed but as a drawback also tripling the energy consumption.
For more in-depth details of the protocol we refer to [5].

For our calculations here, we fixed a deadline distribution δ = (1
3 :7, 23 :9), a

computation distribution γ = (13 :2, 23 :3) (time needed for computation in critical
section) and a timer distribution τ = (13 :5, 23 :4) (time between leaving the critical
section and a subsequent request for the shared resource). N denotes the number
of involved processes.

Minimal energy. Here, we are interested in computing the following quantile:

Q7: “The minimal energy that is required for gaining at least N utility with
probability of at least p for the best scheduler.”

We augmented our basic model with a module that is counting the finished tasks
that did not violate their deadline.

We computed quantiles for N ∈ {2, . . . , 6} with probability thresholds p ∈
{0, 0.01, 0.05, 0.1, 0.2, . . . , 0.9, 0.95, 0.99}. Table 17 shows the statistics of the
respective quantile calculations.

Table 17. Statistics for quantile Q7

symbolic quantile comput.
Instance States MTBDD iter. Explicit SemiHybrid SemiSparse Mtbdd

size tbuild tquery tbuild tquery tbuild tquery tbuild tquery

N = 2 917 2169 75 0.3 0.3 0.1 0.2 0.0 0.2 0.0 0.2

N = 3 16341 11589 177 1.2 0.9 0.2 7.0 0.2 6.9 0.2 6.3

N = 4 368521 46756 226 11.9 12.1 1.3 90.6 1.1 81.5 1.3 87.8

N = 5 6079533 187458 302 334.1 285.9 7.8 1196.2 7.2 1128.0 7.9 1142.9

N = 6 44072357 507805 416 – – 21.7 3808.4 22.8 4045.9 25.0 3962.8

Advances in Symbolic Probabilistic Model Checking with PRISM 35

Maximal utility. Here, we are interested in the following quantiles:

Q8: “The maximal utiliy that can be achieved consuming an energy-budget of
50 ·N with probability of at least p for the best scheduler.”

Q9: “The maximal utiliy that can be achieved consuming an energy-budget of
50 ·N with probability of at least p for all schedulers.”

Again, N is the numer of processes, ranging from 2 to 6 and the probability
thresholds are p ∈ {0.01, 0.05, 0.1, 0.2, . . . , 0.9, 0.95, 0.99}.

Note that we only consider here the utility-gain and the energy-consumption
of a specific fixed process instead of all processes as before.

The respective statistics of our calculations can be seen in Table 18 and in
Table 19.

Table 18. Statistics for quantile Q8

symbolic quantile comput.
Instance States MTBDD iter. Explicit SemiHybrid SemiSparse Mtbdd

size tbuild tquery tbuild tquery tbuild tquery tbuild tquery

N = 2 12828 6310 7 0.7 0.8 0.2 1.2 0.1 1.2 0.1 1.0

N = 3 143155 11247 8 2.5 3.1 0.3 6.0 0.3 4.7 0.3 7.3

N = 4 872410 14007 11 11.9 41.1 0.5 17.1 0.5 14.2 0.5 32.2

N = 5 3049471 25363 13 62.5 398.6 0.8 86.0 0.9 74.3 0.9 104.6

N = 6 7901694 38911 15 210.0 2375.5 1.8 390.6 1.8 378.1 1.3 317.1

Table 19. Statistics for quantile Q9

symbolic quantile comput.
Instance States MTBDD iter. Explicit SemiHybrid SemiSparse Mtbdd

size tbuild tquery tbuild tquery tbuild tquery tbuild tquery

N = 2 12828 6310 5 0.7 0.2 0.2 1.2 0.1 1.2 0.1 1.0

N = 3 143155 11247 5 2.5 1.5 0.3 5.8 0.3 4.4 0.3 18.7

N = 4 872410 14007 2 11.9 11.2 0.5 2.3 0.5 2.4 0.5 1.5

N = 5 3049471 25363 2 62.5 47.2 0.8 13.3 0.9 15.5 0.9 2.5

N = 6 7901694 38911 2 210.0 157.8 1.8 64.9 1.8 66.4 1.3 4.6

	Advances in Symbolic Probabilistic Model Checking with PRISM

