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Abstract. The fundamentals of probabilistic model checking for Marko-
vian models and temporal properties have been studied extensively in
the past 20 years. Research on methods for computing conditional prob-
abilities for temporal properties under temporal conditions is, however,
comparably rare. For computing conditional probabilities or expected
values under ω-regular conditions in Markov chains, we introduce a new
transformation of Markov chains that incorporates the effect of the con-
dition into the model. For Markov decision processes, we show that the
task to compute maximal reachability probabilities under reachability
conditions is solvable in polynomial time, while it was conjectured to
be computationally hard. Using adaptions of known automata-based
methods, our algorithm can be generalized for computing the maximal
conditional probabilities for ω-regular events under ω-regular conditions.
The feasibility of our algorithms is studied in two benchmark examples.

1 Introduction

Probabilistic model checking has become a prominent technique for the quantita-
tive analysis of systems with stochastic phenomena. Tools like PRISM [20] or
MRMC [18] provide powerful probabilistic model checking engines for Marko-
vian models and temporal logics such as probabilistic computation tree logic
(PCTL) for discrete models and its continuous-time counterpart CSL (continuous
stochastic logic) or linear temporal logic (LTL) as formalism to specify complex
path properties. The core task for the quantitative analysis is to compute the
probability of some temporal path property or the expected value of some random
variable. For finite-state Markovian model with discrete probabilities, this task
is solvable by a combination of graph algorithms, matrix-vector operations and
methods for solving linear equation systems or linear programming techniques
[25,9,15,7]. Although probabilistic model checking is a very active research topic
and many researchers have suggested sophisticated methods e.g. to tackle the
state explosion problem or to provide algorithms for the analysis of infinite-state
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stochastic models or probabilistic games, there are important classes of properties
that are not directly supported by existing probabilistic model checkers. Among
these are conditional probabilities that are well-known in probability theory and
statistics, but have been neglected by the probabilistic model checking community.
Exceptions are [1,2] where PCTL has been extended by a conditional probability
operator and recent approaches for discrete and continuous-time Markov chains
and patterns of path properties with multiple time- and cost-bounds [13,17].

The usefulness of conditional probabilities for anonymization protocols has
been illustrated in [1,2]. Let us provide here some more intuitive examples that
motivate the study of conditional probabilities. For systems with unreliable
components one might ask for the conditional probability to complete a task
successfully within a given deadline, under the condition that no failure will occur
that prevents the completion of the task. If multiple tasks θ1, . . . , θk have to be
completed, assertions on the conditional probability or the conditional costs to
complete task θi, under the condition that some other task θj will be completed
successfully might give important insights on how to schedule the tasks without
violating some service-level agreements. For another example, the conditional
expected energy requirements for completing a task, under the condition that a
certain utility value can be guaranteed, can provide useful insights for the design
of power management algorithms. Conditional probabilities can also be useful
for assume-guarantee-style reasoning. In these cases, assumptions on the stimuli
of the environment can be formalized by a path property ψ and one might then
reason about the quantitative system behavior using the conditional probability
measure under the condition that ψ holds.

Given a purely stochastic system modelM (e.g. a Markov chain), the analysis
under conditional probability measures can be carried out using standard methods
for unconditional probabilities, as we can simply rely on the mathematical
definition of the conditional probability for ϕ (called here the objective) under
condition ψ:

PrMs
(
ϕ |ψ

)
=

PrMs (ϕ ∧ ψ)

PrMs (ψ)

where s is a state in M with PrMs (ψ) > 0. If both the objective ϕ and the
condition ψ are ω-regular path properties, e.g. specified by LTL formulas or some
ω-automaton, then ϕ∧ψ is again ω-regular, and the above quotient is computable
with standard techniques. This approach has been taken by Andrés and van
Rossum [1,2] for the case of discrete Markov chains and PCTL path formulas,
where ϕ ∧ ψ is not a PCTL formula, but a ω-regular property of some simple
type if nested state formulas are viewed as atoms. Recently, an automata-based
approach has been developed for continuous-time Markov chains and CSL path
formulas built by cascades of the until-operator with time- and cost-bounds [13].
This approach has been adapted in [17] for discrete-time Markov chains and
PCTL-like path formulas with multiple bounded until-operators.

For models that support both the representation of nondeterministic and
probabilistic behaviors, such as Markov decision processes (MDPs), reasoning
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about (conditional) probabilities requires the resolution of the nondeterministic
choices by means of schedulers. Typically, one is interested in guarantees that can
be given even for worst-case scenarios. That is, we are interested in the maximal
(or minimal) conditional probability for the objective ϕ under condition ψ when
ranging over all schedulers. Unfortunately, there is no straightforward reduction
to unconditional maximal (or minimal) probabilities, simply because extrema
of quotients cannot be computed by the quotient of the extremal values of the
numerator and the denominator. [1,2] present a model checking algorithm for
MDP and PCTL extended by a conditional probability operator. The essential
features are algorithms for computing the maximal or minimal conditional prob-
abilities for the case where both the objective and the condition are given as
PCTL path formulas. These algorithms rely on transformations of the given
MDP into an acyclic one and the fact that for PCTL objectives and conditions
optimal schedulers that are composed by two memoryless schedulers (so-called
semi history-independent schedulers) exist. The rough idea is to consider all semi
history-independent schedulers and compute the conditional probabilities for
them directly. This method suffers from the combinatorial blow-up and leads to an
exponential-time algorithm. [1,2] also present reduction and bounding heuristics
to omit some semi history-independent schedulers, but these cannot avoid the
exponential worst-case time complexity. We are not aware of an implementation
of these methods.

Contribution. The theoretical main contribution is twofold. First, for discrete
Markov chains we present an alternative approach that relies on a transformation
where we switch from the original Markov chain M to a modified Markov chain
Mψ such that the conditional probabilities in M agree with the (unconditional)
probabilities in Mψ for all measurable path properties ϕ. That is, Mψ only
depends on the condition ψ, but not on the objective ϕ. Second, for MDPs
we provide a polynomial-time algorithm for computing maximal conditional
probabilities when both the objective ϕ and the condition ψ are reachability
properties. (This task was suspected to be computationally hard in [2].) Moreover,
we show that adaptions of known automata-based approaches are applicable to
extend this method for ω-regular objectives and conditions. In both cases, the
time complexity of our methods is roughly the same as for computing (extremal)
unconditional probabilities for properties of the form ϕ ∧ ψ.

Outline. Section 2 summarizes the relevant concepts of Markov chains and
MDPs. The theoretical foundations of our approach will be presented for Markov
chains in Sections 3 for MDPs in Section 4. Section 5 reports on experimental
results. Section 6 contains some concluding remarks. Omitted proofs and other
additional material can be found in the appendix of this paper [6].

2 Preliminaries

We briefly summarize our notations used for Markov chains and Markov decision
processes. Further details can be found in textbooks on probability theory and
Markovian models, see e.g. [24,19,16].
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Markov chains. A Markov chain is a pair M = (S, P ) where S is a countable
set of states and P : S × S → [0, 1] a function, called the transition probability
function, such that

∑
s′∈S P (s, s′) = 1 for each state s. Paths in M are finite or

infinite sequences s0 s1 s2 . . . of states built by transitions, i.e., P (si−1, si) > 0
for all i ≥ 1. If π = s0 s1 . . . sn is a finite path then first(π) = s0 denotes the
first state of π, and last(π) = sn the last state of π. The notation first(π) will be
used also for infinite paths. We refer to the value

Pr(π) =
∏

1≤i≤n
P (si−1, si)

as the probability for π. The cylinder set Cyl(π) is the set of all infinite paths ς
where π is a prefix of ς. We write FPaths(s) for the set of all finite paths π with
first(π) = s. Similarly, Paths(s) stands for the set of infinite paths starting in s.

Given a state s, the probability space induced by M and s is defined using
classical measure-theoretic concepts. The underlying sigma-algebra is generated by
the cylinder sets of finite paths. This sigma-algebra does not depend on s. We refer
to the elements of this sigma-algebra as (measurable) path events. The probability
measure PrMs is defined on the basis of standard measure extension theorems that
yield the existence of a probability measure PrMs with PrMs

(
Cyl(π)

)
= Pr(π)

for all π ∈ FPaths(s), while the cylinder sets of paths π with first(π) 6= s have
measure 0 under PrMs .

Markov decision processes (MDPs). MDPs can be seen as a generalization
of Markov chains where the operational behavior in a state s consists of a
nondeterministic selection of an enabled action α, followed by a probabilistic
choice of the successor state, given s and α. Formally, an MDP is a tuple
M = (S,Act , P ) where S is a finite set of states, Act a finite set of actions and
P : S ×Act × S → [0, 1] a function such that for all states s ∈ S and α ∈ Act:∑

s′∈S
P (s, α, s′) ∈ {0, 1}

We write Act(s) for the set of actions that are enabled in s, i.e., P (s, α, s′) > 0
for some s′ ∈ S. For technical reasons, we require that Act(s) 6= ∅ for all states
s. State s is said to be probabilistic if Act(s) = {α} is a singleton, in which case
we also write P (s, s′) rather than P (s, α, s′). A trap state is a probabilistic state
s with P (s, s) = 1. Paths are finite or infinite sequences s0 s1 s2 . . . of states such
that for all i ≥ 1 there exists an action αi with P (si−1, αi, si) > 0. (For our
purposes, the actions are irrelevant in paths.) Several notations that have been
introduced for Markov chains can now be adapted for Markov decision processes,
such as first(π), FPaths(s), Paths(s).

Reasoning about probabilities for path properties in MDPs requires the
selection of an initial state and the resolution of the nondeterministic choices
between the possible transitions. The latter is formalized via schedulers, often
also called policies or adversaries, which take as input a finite path and select
an action to be executed. For the purposes of this paper, it suffices to consider
deterministic, possibly history-dependent schedulers, i.e., partial functions S :
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FPaths → Act such that S(π) ∈ Act
(

last(π)
)

for all finite paths π. Given a
scheduler S, an S-path is any path that might arise when the nondeterministic
choices in M are resolved using S. Thus, π = s0 s1 . . . sn is an S-path iff
P
(
sk−1,S(s0 s1 . . . sk−1), sk

)
> 0 for all 1 ≤ k ≤ n. In this case, S[π] denotes

the scheduler “S after π” given by S[π](t0 t1 . . . tk) = S(s0 s1 . . . sn t1 . . . tk) if
sn = t0. The behavior of S[π] for paths not starting in sn is irrelevant. The
probability of π under S is the product of the probabilities of its transitions:

PrS(π) =
n−1∏
i=0

P
(
sk−1,S(s0 s1 . . . sk−1), sk

)
Infinite S-paths are defined accordingly.

For a pointed MDP (M, sinit), i.e. an MDP as before with some distinguished
initial state sinit ∈ S, the behavior of (M, sinit) under S is purely probabilistic and
can be formalized by an infinite tree-like Markov chain MS

s where the states are
the finite S-paths starting in s. The probability measure PrSM,s for measurable

sets of the infinite paths in the Markov chain MS
s , can be transferred to infinite

S-paths inM starting in s. Thus, if Φ is a path event then PrSM,s(Φ) denotes its
probability under scheduler S for starting state s. For a worst-case analysis of a
system modeled by an MDPM, one ranges over all initial states and all schedulers
(i.e., all possible resolutions of the nondeterminism) and considers the maximal
or minimal probabilities for Φ. If Φ represents a desired path property, then
Prmin
M,s(Φ) = infS PrSM,s(Φ) is the probability for Φ in M that can be guaranteed

even for the worst-case scenarios. Similarly, if Φ stands for a bad (undesired)
path event, then Prmax

M,s(Φ) = supS PrSM,s(Φ) is the least upper bound that can
be guaranteed for the likelihood of Φ in M.

Temporal-logic notations, path properties. Throughout the paper, we
suppose that the reader is familiar with ω-automata and temporal logics. See e.g.
[8,14,5]. We often use LTL- and CTL-like notations and identify LTL-formulas
with the set of infinite words over the alphabet 2AP that are models for the
formulas, where AP denotes the underlying set of atomic propositions. For the
Markov chain or MDP M under consideration we suppose then that they are
extended by a labeling function L : S → 2AP, with the intuitive meaning that
precisely the atomic propositions in L(s) hold for state s. At several places, we
will use temporal state and path formulas where single states or sets of states
in M are used as atomic propositions with the obvious meaning. Similarly, if
M arises by some product construction, (sets of) local states will be treated as
atomic propositions. For the interpretation of LTL- or CTL-like formulas in M,
the probability annotations (as well as the action labels in case of an MDP) are
ignored and M is viewed as an ordinary Kripke structure.

By a path property we mean any language consisting of infinite words over
2AP. Having in mind temporal logical specifications, we use the logical operators
∨, ∧, ¬ for union, intersection and complementation of path properties. A path
property Φ is said to be measurable if the set of infinite paths π in M satisfying
Φ is a path event, i.e., an element of the induced sigma-algebra. Indeed, all
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ω-regular path properties are measurable [25]. We abuse notations and identify
measurable path properties and the induced path event. Thus,

PrSM,s(ϕ) = PrSM,s

({
π ∈ Paths(s) : π |= ϕ

})
denotes the probability for ϕ under scheduler S and starting state s.

Assumptions. For the methods proposed in the following sections, we suppose
that the state space of the given Markov chain and the MDP is finite and that
all transition probabilities are rational.

3 Conditional probabilities in Markov chains

In what follows, let M = (S, P ) be a finite Markov chain as in Section 2 and ψ
an ω-regular condition. We present a transformation M  Mψ such that the
conditional probabilities PrMs (ϕ |ψ ) agree with the (unconditional) probabilities
PrMψ

sψ
(ϕ ) for all ω-regular objectives ϕ. Here, s is a state inM with PrMs (ψ) > 0

and sψ the “corresponding” state in Mψ. We first treat the case where ψ is a
reachability condition and then explain a generalization for ω-regular conditions.

Reachability condition. Let G ⊆ S be a set of goal states and ψ = ♦G.
Intuitively, the Markov chain Mψ arises from M by a monitoring technique that
runs in parallel to M and operates in two modes. In the initial mode “before
or at G”, briefly called before mode, the attempt is to reach G by avoiding all
states s with s 6|= ∃♦G. The transition probabilities for the states in before mode
are modified accordingly. As soon as G has been reached, Mψ switches to the
normal mode where Mψ behaves as M. In what follows, we write sbef and snor

for the copies of state s in the before and normal mode, respectively. For V ⊆ S,
let V bef =

{
sbef : s ∈ V, s |= ∃♦G

}
the set of V -states where PrMs (♦G) is positive

and V nor =
{
snor : s ∈ V

}
. The Markov chainMψ = (Sψ, Pψ) is defined as follows.

The state space ofMψ is Sψ = Sbef ∪Snor . For s ∈ S \G and v ∈ S with s |= ∃♦G
and v |= ∃♦G:

Pψ(sbef , vbef ) = P (s, v) · PrMv (♦G)

PrMs (♦G)

For s ∈ G, we define Pψ(sbef , vnor) = P (s, v), modeling the switch from before to
normal mode. For the states in normal mode, the transition probabilities are
given by Pψ(snor , vnor) = P (s, v). In all other cases, Pψ(·) = 0. For the labeling
with atomic propositions, we suppose that each state s in M and its copies sbef

and snor in Mψ satisfy the same atomic propositions.
By applying standard arguments for finite Markov chains we obtain that

Pr
Mψ

sbef
(♦Gbef ) = 1 for all states s in M with s |= ∃♦G. (This is a simple conse-

quence of the fact that all states in Sbef can reach Gbef .) Thus, up to the switch
from G to Gbef , the condition ♦G (which we impose for M) holds almost surely
for Mψ. For each path property ϕ, there is a one-to-one correspondence between
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the infinite paths π in M with π |= ϕ ∧ ♦G and the infinite paths πψ in Mψ

with πψ |= ϕ. More precisely, each path πψ in Mψ induces a path πψ|M in M by
dropping the mode annotations. Vice versa, each path π inM can be augmented
with mode annotations to obtain a path πψ inMψ with πψ|M = π, provided that
π either contains some G-state or consists of states s with s |= ∃♦G. This yields
a one-to-one correspondence between the cylinder sets in Mψ and the cylinder
sets spanned by finite paths of M that never enter some state s with s 6|= ∃♦G
without having visited G before.

Theorem 1 (Soundness of the transformation). If Φ is a path event for
M (i.e., a measurable set of infinite paths) then Φ|M =

{
πψ : π ∈ Φ, π |=

♦G ∨�∃♦G
}

is measurable in Mψ. Moreover, for each s of M with s |= ∃♦G:

PrMs
(
Φ |♦G

)
= Pr

Mψ

sbef

(
Φ|M

)
Hence, PrMs

(
ϕ |♦G

)
= Pr

Mψ

sbef

(
ϕ
)

for all measurable path properties ϕ.

Thus, once Mψ has been constructed, conditional probabilities for arbitrary
path properties in M can be computed by standard methods for computing
unconditional probabilities in Mψ, with the same asymptotic costs. (The size of
Mψ is linear in the size of M.) Mψ can be constructed in time polynomial in
the size of M as the costs are dominated by the computation of the reachability
probabilities PrMs (♦G). Mψ can also be used to reason about the conditional
expected value of a random function f on infinite paths in M, as we have:

EM( f |♦G
)

= EMψ
(
fψ |♦(Gbef ∪Gnor)

)
where fψ(π′) = f

(
π′
∣∣
M

)
and EN (·) denotes the expected-value operator in N .

An important instance is expected accumulated rewards to reach a certain set of
states. See Appendix A.2.

ω-regular conditions. Suppose now that the condition ψ is given by a deter-
ministic ω-automaton A with, e.g., Rabin or Streett acceptance. To construct
a Markov chain that incorporates the probabilities in M under the condition
ψ, we rely on the standard techniques for the quantitative analysis of Markov
chains against automata-specifications [26,5]. The details are straightforward, we
just give a brief outline. First, we build the standard product M⊗A of M and
A, which is again a Markov chain. Let G be the union of the bottom strongly
connected components C of N =M⊗A that meet the acceptance condition of
A. Then, the probability PrMs (ψ) equals PrN〈s,qs〉(♦G), where 〈s, qs〉 is the state in
M⊗A that “corresponds” to s. We then apply the transformation for N  Nψ
as explained above and obtain that for all measurable path properties ϕ:

PrMs
(
ϕ |ψ

)
= PrN〈s,qs〉

(
ϕ |♦G

)
= Pr

Nψ
〈s,qs〉(ϕ)

for all states s in M where PrMs (ψ) is positive. This shows that the task to com-
pute conditional probabilities for ω-regular conditions is solvable by algorithms
for computing (unconditional) probabilities for ω-regular path properties.
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4 Conditional probabilities in Markov decision processes

We now consider the task to compute maximal conditional probabilities in MDPs.
We start with the “core problem” where the objective and the condition are
reachability properties. The general case of ω-regular objectives and conditions
will be treated in Section 4.2.

4.1 Conditional reachability probabilities in MDPs

Let (M, sinit) be a pointed MDP where M = (S,Act , P ) and let F , G ⊆ S such
that sinit |= ∃♦G, in which case Prmax

M,sinit (♦G) > 0. The task is to compute

max
S

PrSM,sinit

(
♦F |♦G) = max

S

PrSM,sinit

(
♦F ∧ ♦G

)
PrSM,sinit

(
♦G
)

where S ranges over all schedulers for M such that PrSM,sinit (♦G) > 0. By the
results of [1,2], there exists a scheduler S maximizing the conditional probability
for ♦F , given ♦G. (This justifies the use of max rather than sup.)

Only for simplicity, we assume that F ∩G = ∅. Thus, there are just two cases
for the event ♦F ∧ ♦G: “either F before G, or G before F”. We also suppose
sinit /∈ F ∪G and that all states s ∈ S are accessible from sinit .

Step 1: normal form transformation

We first present a transformation M M′ such that the maximal conditional
probability for “♦F , given ♦G” agrees with the maximal conditional probabil-
ity for “♦F ′, given ♦G′” in M′ where F ′ and G′ consist of trap states. This
can be seen as some kind of normal form for maximal conditional reachability
probabilities and relies on the following observation.

Lemma 1 (Scheduler improvement). For each scheduler S there is a sched-
uler T such that for all states s with PrSM,s(♦G) > 0:

(1) PrSM,s

(
♦F |♦G

)
≤ PrTM,s

(
♦F |♦G

)
(2) Pr

T[π]
M,t(♦G) = Prmax

M,t(♦G) for all t ∈ F and π ∈ Πs...t

(3) Pr
T[π]
M,u(♦F ) = Prmax

M,u(♦F ) for all u ∈ G and finite paths π ∈ Πs...u

where Πs...u denotes the set consisting of all finite paths s0 s1 . . . sn in M with
s0 = s, sn = u and {s0, s1, . . . , sn−1} ∩ (F ∪G) = ∅.

Recall that S[π] denotes the scheduler “S after π”. The idea is that T behaves
as S as long as neither F nor G has been reached. As soon as a G-state (resp. F -
state) has been entered, T mimics some scheduler that maximizes the probability
to reach F (resp. G). This scheduler satisfies (2) and (3) by construction. Item
(1) follows after some calculations (see Appendix B.1).
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As a consequence of Lemma 1, for studying the maximal conditional proba-
bility for ♦F given ♦G, it suffices to consider schedulers T satisfying conditions
(2) and (3). Let M′ be the MDP that behaves as M as long as no state in F or
G has been visited. After visiting an F -state t, M′ moves probabilistically to a
fresh goal state with probability Prmax

M,t(♦G) or to a fail state with the remaining
probability. Similarly, after visiting a G-state u, M′ moves probabilistically to
the goal state or to a new state stop. Formally, M′ = (S′,Act , P ′) where the
state space of M′ is S′ = S ∪ T and

T =
{

goal , stop, fail
}

.

The transition probabilities inM′ for the states in S \ (F ∪G) agree with those in
M, i.e., P ′(s, α, s′) = P (s, α, s′) for all s ∈ S \ (F ∪G), s′ ∈ S and α ∈ Act . The
states t ∈ F and u ∈ G are probabilistic in M′ with the transition probabilities:

P ′(t, goal) = Prmax
M,t(♦G)

P ′(t, fail) = 1− Prmax
M,t(♦G)

P ′(u, goal) = Prmax
M,u(♦F )

P ′(u, stop) = 1− Prmax
M,u(♦F )

The three fresh states goal , fail and stop are trap states. Then, by Lemma 1:

Corollary 1 (Soundness of the normal form transformation). For all
states s in M with s |= ∃♦G:

Prmax
M,s

(
♦F |♦G

)
= Prmax

M′,s

(
♦goal

∣∣♦(goal ∨ stop)
)

Optional simplification of M′. Let W be the set of states w in M′ such that for
some scheduler S, the goal-state is reachable from w via some S-path, while the
trap state stop will not be reached along S-paths from w. Then, all states in W
can be made probabilistic with successors goal and fail and efficiently computable
transition probabilities. This transformation of M′ might yield a reduction of
the reachable states, while preserving the maximal conditional probabilities for
♦goal , given ♦(goal ∨ stop). For details, see Appendix B.2.

Step 2: reduction to ordinary maximal reachability probabilities

We now apply a further transformation M′  Mϕ|ψ such that the maximal
conditional probability for ϕ = ♦goal , given ψ = ♦(goal ∨ stop), in M′ agrees
with the maximal (unconditional) probability for ♦goal in Mϕ|ψ.

Let us first sketch the ratio of this transformation. Infinite paths in M′
that violate the condition ψ do not “contribute” to the conditional probability
for ♦goal . The idea is now to “redistribute” their probabilities to all the paths
satisfying the condition ψ. Speaking roughly, we aim to mimic a stochastic
process that generates a sequence π0, π1, π2 . . . of sample paths inM′ starting in
sinit until a path πi is obtained where the condition ψ holds. To formalize this
“redistribution procedure” by switching from M′ to some new MDP Mϕ|ψ we
need some restart mechanism to discard generated prefixes of paths πj violating
ψ by returning to the initial state sinit , from which the next sample run πj+1 will
be generated. Note that by discarding paths that do not satisfy ψ, the proportion
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of the paths satisfying ϕ∧ψ and the paths satisfying ψ is not affected and almost
surely a path satisfying ψ will be generated. Thus, the conditional probability
for ϕ ∧ ψ given ψ under some scheduler of the original MDP agrees with the
(unconditional) probability for ϕ under the corresponding scheduler of the new
MDP Mϕ|ψ.

The restart policy is obvious for finite paths that enter the trap state fail .
Instead of staying in fail , we simply restart the computation by returning to the
initial state sinit . The second possibility to violate ψ are paths that never enter
one of the three trap states in T . To treat such paths we rely on well-known
results for finite-state MDPs stating that for all schedulers S almost all S-paths
eventually enter an end component (i.e., a strongly connected sub-MDP), stay
there forever and visit all its states infinitely often [11,12]. The idea is that we
equip all states s that belong to some end component without any T -state with
the restart-option, i.e., we add the nondeterministic alternative to return to the
initial state sinit . To enforce that such end components will be left eventually
by taking the restart-transition, one might impose strong fairness conditions for
the schedulers in Mϕ|ψ. Such fairness assumptions are, however, irrelevant for
maximal reachability conditions [3,4].

Let B be the set of (bad) states v such that there exists a scheduler S that
never visits one of the three trap states goal , stop or fail when starting in v:

v ∈ B iff

{
there exists a scheduler S

such that PrSM′,v

(
♦T
)

= 0

The MDP Mϕ|ψ = (S′,Act ∪ {τ}, Pϕ|ψ) has the same state space as the normal
form MDP M′. Its action set extends the action set of M′ by a fresh action
symbol τ for the restart-transitions. For the states s ∈ S′ \ B with s 6= fail ,
the new MDP Mϕ|ψ behaves as M′, i.e., Pϕ|ψ(s, α, s′) = P ′(s, α, s′) for all
s ∈ S′ \ (B∪{fail}), α ∈ Act and s′ ∈ S′. The fresh action τ is not enabled in the
states s ∈ S′ \ (B ∪ {fail}). For the fail-state, Mϕ|ψ returns to the initial state,
i.e., Pϕ|ψ(fail , τ, sinit) = 1 and Pϕ|ψ(fail , τ, s′) = 0 for all states s′ ∈ S′ \ {sinit}.
No other action than τ is enabled in fail . For the states v ∈ B, Mϕ|ψ decides
nondeterministically to behave asM or to return to the initial state sinit . That is,
if v ∈ B, α ∈ Act , s′ ∈ S′ then Pϕ|ψ(v, α, s′) = P ′(v, α, s′) and Pϕ|ψ(v, τ, sinit) = 1.
In all remaining cases, we have Pϕ|ψ(v, τ, ·) = 0.

Paths inM′ that satisfy �B or that end up in fail , do not “contribute” to the
conditional probability for ♦goal , given ♦(goal ∨ stop). Instead the probability
for the infinite paths π with π ∈ �B or π |= ♦fail in M′ are “distributed” to
the probabilities for ♦goal and ♦stop when switching to conditional probabilities.
This is mimicked by the restart-transitions to sinit in Mϕ|ψ.

Theorem 2 (Soundness of step 2). For the initial state s = sinit , we have:

Prmax
M′,s

(
♦goal

∣∣♦(goal ∨ stop)
)

= Prmax
Mϕ|ψ,s

(
♦goal

)
Algorithm and complexity. As an immediate consequence of Theorem 2,
the task to compute maximal conditional reachability probabilities in MDPs is
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reducible to the task to compute maximal ordinary (unconditional) reachability
probabilities, which is solvable using linear programming techniques [24,7]. The
size of the constructed MDP is linear in the size of M′, which again is linear
in the size of M. The construction of M′ and Mϕ|ψ is straightforward. For M′
we need to compute ordinary maximal reachability probabilities in M. Using
standard algorithms for the qualitative fragment of PCTL, the set B of bad
states is computable by a graph analysis in polynomial time (see e.g. [5]). Thus,
maximal conditional probabilities for reachability objectives and conditions can
be computed in time polynomial in the size of M.

4.2 Conditional probabilities in MDPs for other events

Using standard automata-based techniques, our method can be generalized to
deal with ω-regular properties for both the objective and the condition.

ω-regular objectives under reachability conditions. Using a standard
automata-based approach, the suggested technique is also applicable to com-
pute maximal conditional probabilities Prmax

M,s

(
ϕ
∣∣♦G ). Here, we deal with a

deterministic ω-automaton A for ϕ and then compute the maximal conditional
probabilities Prmax

N ,〈s,qs〉
(
♦F

∣∣♦G ) in the product-MDP N =M⊗A where F is
the union of all end components inM⊗A satisfying the acceptance condition of
A. Here, 〈s, qs〉 denotes the state in M⊗A that “corresponds” to s.

(co-)safety conditions. If ψ is regular co-safety condition then we can use a
representation of ψ by a deterministic finite automaton (DFA) B, switch from
M to the product-MDP M⊗ B with the reachability condition stating that
some final state of B should be visited. With slight modifications, an analogous
technique is applicable for regular safety conditions, in which case we use a DFA
for the bad prefixes of ψ. See Appendix B.4. This approach is also applicable
for MDPs with positive state rewards and if ψ is a reward-bounded reachability
condition ♦≤ra.

ω-regular conditions. If the condition ψ and the objective ϕ are ω-regular
then the task to compute Prmax

M,s

(
ϕ |ψ

)
is reducible to the task of computing

maximal conditional probabilities for reachability objectives and some strong
fairness condition ψ′. The idea is to simply use deterministic Streett automata A
and B for ϕ and ψ and then to switch from M to the product-MDP M⊗A⊗B.
The condition ψ can then be replaced by B’s acceptance condition. The goal set
F of the objective ♦F arises by the union of all end components in M⊗A⊗B
where the acceptance conditions of both A and B hold.

It remains to explain how to compute Prmax
M,s

(
ϕ |ψ

)
where ϕ = ♦F is a

reachability objective and ψ is a strong fairness (i.e., Streett) condition, say:

ψ =
∧

1≤i≤k
(�♦Ri → �♦Gi)

We can rely on very similar ideas as for reachability conditions (see Section 4.1).
The construction of a normal form MDP M′ (step 1) is roughly the same except
that we deal only with two fresh trap states: goal and fail . The restart mechanism
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in step 2 can be realized by switching from M′ to a new MDP Mϕ|ψ that is
defined in the same way as in Section 4.1, except that restart-transitions are only
added to those states v where v ∈ Ri for some i ∈ {1, . . . , k}, and v is contained
in some end component that does not contain goal and does not contain any
Gi-state. For further details we refer to Appendices B.5 and B.6.

5 PRISM Implementation and Experiments

We have implemented most of the algorithms proposed in this paper in the
popular model checker Prism [21], extending the functionality of version 4.1. Our
implementation is based on the “explicit” engine of Prism, i.e., the analysis is
carried out using an explicit representation of the reachable states and transitions.
We have extended the explicit engine to handle LTL path properties for Markov
chains using deterministic Rabin automata and Prism’s infrastructure.

For Markov chains, we implemented the presented transformation M Mψ

where ψ and ϕ are given as LTL formulas. The presented method for reachability
conditions ψ = ♦G has been adapted in our implementation for the more general
case of constrained reachability conditions ψ = H UG. Our implementation also
supports a special treatment of conditions ψ consisting of a single step-bounded
modality ♦≤n, U≤n or �≤n. Besides the computation of conditional probabilities,
our implementation also provides the option to compute conditional expected
rewards under (constrained) reachability or ω-regular conditions. We used the
three types of expected rewards supported by Prism: the expected accumulated
reward until a target set F is reached or within the next n ∈ N steps, and
the expected instantaneous reward obtained in the n-th step. For MDPs, our
current implementation only supports the computation of maximal conditional
probabilities for reachability objectives and reachability conditions based on the
algorithm presented in Section 4.1.

Experiments with Markov Chains. To evaluate our transformation-based
approach for Markov chains we carried out a series of experiments with the
Markov chain model for the bounded retransmissions protocol presented in [10].
The model specifications are from the Prism benchmark suite [22] (see http:

//www.prismmodelchecker.org/casestudies/brp.php). A sender has to trans-
mit N fragments of a file using a simple protocol over lossy channels, where
the probability of losing a message is 0.01, while the probability of losing an
acknowledgment is 0.02. A parameter M specifies the maximum number of retries
for each fragment. We applied our method to compute:

(B1) PrMs
(
♦ “second retry for fragment”

∣∣�¬“finish with error”
)

(B2) PrMs
(
♦ “finish with success”

∣∣♦ “2 fragments transmitted”
)

(B3) PrMs
(
�¬“retry”

∣∣♦ “finish with success” ∧ �“retries ≤ 2”
)

All calculations for this paper were carried out on a computer with 2 Intel E5-
2680 8-core CPUs at 2.70 GHz with 384Gb of RAM. Table 1 lists results for the
calculation of the conditional probabilities (B1)–(B3), with N = 128 fragments

http://www.prismmodelchecker.org/casestudies/brp.php
http://www.prismmodelchecker.org/casestudies/brp.php
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model M PrMs (ϕ |ψ ) via transformation via quotient
states build st. Mψ M Mψ calc in Mψ total time total time

(B1) 18,701 0.5 s 17,805 19.2 s 5.5 s 24.7 s 58.7 s
(B2) 18,701 0.5 s 18,679 1.7 s 17.0 s 18.7 s 39.2 s
(B3) 18,701 0.5 s 3,976 10.5 s 1.2 s 11.7 s 14.9 s

Table 1. Statistics for the computation of (B1), (B2), (B3) for N = 128, M = 10.

and M = 10 retries. We report the number of states and the time for building the
model and statistics for the calculation of PrMs (ϕ

∣∣ψ ) with the method presented

in Section 3 and via the quotient of PrMs (ϕ ∧ ψ) and PrMs (ψ ). In addition
to the total time for the calculation, for our method we list as well the size of
the transformed model Mψ, the time spent in the transformation phase and
the time spent to calculate the probabilities of ϕ in Mψ. In these experiments,
our transformation method outperforms the quotient approach by separating
the treatment of ψ and ϕ. As expected, the particular condition significantly
influences the size of Mψ and the time spent for the calculation in Mψ. We
plan to allow caching of Mψ if the task is to treat multiple objectives under the
same condition ψ. We have carried out experiments for conditional rewards with
similar scalability results as well, see Appendix C.

Experiments with MDPs. We report on experimental studies with our im-
plementation of the calculation of Prmax

M,s

(
♦F |♦G

)
for the initial state s =

sinit of the parameterized MDP presented in [23]; see also [22], http://www.

prismmodelchecker.org/casestudies/wlan.php. It models a two-way hand-
shake mechanism of the IEEE 802.11 (WLAN) medium access control scheme
with two senders S1 and S2 that compete for the medium. As messages get
corrupted when both senders send at the same time (called a collision), a proba-
bilistic back-off mechanism is employed. The model deals with the case where a
single message from S1 and S2 should be successfully sent. We consider here:

(W1) Prmax
M,s

(
♦ “c2 collisions”

∣∣♦ “c1 collisions”
)

(W2) Prmax
M,s

(
♦“deadline t expired without success of S1”

∣∣♦ “c collisions”
)

The parameter N specifies the maximal number of back-offs that each sender
performs. The atomic propositions “c collisions” are supported by a global counter
variable in the model that counts the collisions (up to the maximal interesting
value for the property). For (W2), the deadline t is encoded in the model by a
global variable counting down until the deadline is expired.

Calculating (W1). Table 2 lists results for the calculation of (W1) with c2 = 4
and c1 = 2. We report the number of states and the time for building the
model. The states in the transformed MDP Mϕ|ψ consist of the states in the
original MDP M plus the three trap states introduced in the transformation.
We list the time for the transformation M Mϕ|ψ and for the computation
in Mϕ|ψ separately. For comparison, we list as well the time for calculating the
unconditional probabilities Prmax

M (ϕ ) and Prmax
M (ψ ) for all states in the model,

which account for a large part of the transformation. As can be seen, our approach
scales reasonably well.

http://www.prismmodelchecker.org/casestudies/wlan.php
http://www.prismmodelchecker.org/casestudies/wlan.php
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model M Prmax
M,s(ϕ

∣∣ψ) Prmax
M (ϕ) Prmax

M (ψ)
N states build M Mϕ|ψ calc in Mϕ|ψ total time total total

3 118,280 2.3 s 1.6 s 3.2 s 4.8 s 1.1 s 0.4 s
4 345,120 5.5 s 3.2 s 9.0 s 12.3 s 1.6 s 1.3 s
5 1,295,338 21.0 s 12.6 s 33.8 s 46.5 s 3.9 s 4.9 s
6 5,007,668 99.4 s 38.8 s 126.0 s 164.9 s 12.7 s 18.7 s

Table 2. Statistics for the calculation of (W1) with c1 = 2 and c2 = 4.

model M Prmax
M,s(ϕ|ψ) Prmax

M (ϕ) Prmax
M (ψ)

t c states build M Mϕ|ψ calc in Mϕ|ψ total time total total

50 1 539,888 10.0 s 6.4 s 0.4 s 6.8 s 6.0 s 0.1 s
50 2 539,900 9.5 s 7.1 s 4.6 s 11.7 s 6.0 s 0.6 s

100 1 4,769,199 95.1 s 194.6 s 2.4 s 197.1 s 192.0 s 0.5 s
100 2 4,769,235 93.3 s 199.8 s 85.5 s 285.5 s 184.4 s 10.4 s

Table 3. Statistics for the calculation of (W2) with N = 3.

Calculating (W2). Table 3 lists selected results and statistics for (W2) with
N = 3, deadline t ∈ {50, 100} and number of collisions in the condition c ∈
{1, 2}. Again, the time for the transformation is dominated by the computations
of Prmax

M (ϕ) and Prmax
M (ψ). However, in contrast to (W1), the time for the

computation in Mϕ|ψ is significantly lower. The complexity in practice thus
varies significantly with the particularities of the model and the condition.

6 Conclusion
We presented new methods for the computation of (maximal) conditional proba-
bilities via reductions to the computation of ordinary (maximal) probabilities in
discrete Markov chains and MDPs. These methods rely on transformations of the
model to encode the effect of conditional probabilities. For MDPs we concentrated
on the computation of maximal conditional probabilities. Our techniques are,
however, also applicable for reasoning about minimal conditional probabilities
as: Prmin

M,s

(
ϕ |ψ

)
= 1 − Prmax

M,s

(
¬ϕ |ψ

)
. By our results, the complexity of the

problem that asks whether the (maximal) conditional probabilities meets a given
probability bound is not harder than the corresponding question for uncondi-
tional probabilities. This is reflected in our experiments. In our experiments
with Markov chains, our new method outperforms the näıve approach. In future
work, we will extend our implementations for MDPs that currently only supports
reachability objectives and conditions and study methods for the computation of
maximal or minimal expected conditional accumulated rewards.
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Appendix

A Conditional and rewards probabilities
in Markov chains

We often make use of the well-known fact that for each finite-state Markov chain
M = (S, P ) and each starting state s, almost all paths will eventually reach a
bottom strongly connected component (BSCC) and visit all its states infinitely
often.

A.1 Proof of Theorem 1

We now provide the proof for Theorem 1. We are given a Markov chainM and a
path event Φ inM. The task is to show that for each state s ofM with s |= ∃♦G.
We have:

PrMs
(
Φ |♦G

)
= Pr

Mψ

sbef

(
Φ|M

)
It suffices to show that the above conditions hold for cylinder sets Φ = Cyl(π)
spanned by some finite path inM that contains a G-state or never enters a state
s with s 6|= ∃♦G. We only address the first case and pick some finite path π =
s0 s1 . . . sk . . . sn in M containing at least one G-state. Let k ∈ {0, 1, . . . , n−1}
such that sk ∈ G and

{
s0, . . . , sk−1

}
∩ G = ∅. We show that the conditional

probability of the cylinder set of π inM agrees with the unconditional probability
of the cylinder set of

πψ = sbef0 sbef1 . . . sbefk snork+1 . . . s
nor
n

in Mψ. Indeed, we have:

PrMψ
(

Cyl(πψ)
)

=
k−1∏
i=0

Pψ(sbefi , s
bef

i+1) · Pψ(sbefk , s
nor

k+1) ·
n−1∏
i=k+1

Pψ(snori , snori+1)

=
k−1∏
i=0

(
P (si, si+1) ·

PrMsi+1
(♦G)

PrMsi (♦G)

)
·
n−1∏
i=k

P (si, si+1)

=
n−1∏
i=0

P (si, si+1) ·
k−1∏
i=0

PrMsi+1
(♦G)

PrMsi (♦G)

= PrM(π) · 1
PrMs0 (♦G)

= PrMs0
(

Cyl(π) |♦G
)

The argument of finite paths in M that do not contain a G-state, but consist of
states s with s |= ∃♦G, is analogous.
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A.2 Conditional accumulated rewards in Markov chains

Suppose we are given a Markov chain M and a reward function rew : S → Q for
the states in M. We regard the random function formalizing the accumulated
reward up to a goal set F . Formally, for an infinite path π = s0 s1 s2 . . ., rew(π)
is the sum of the rewards along the shortest prefix s0 s1 . . . sn of π with si /∈ F
for 0 ≤ i ≤ n and sn+1 ∈ F . If π does not contain an F -state then rew(π)
is ∞. The expected accumulated reward EMs (♦F ) is the expected value of the
random function rew on infinite paths starting in s. (If PrMs (♦F ) < 1 then then
EMs (♦F ) =∞.) We write EMs (♦F |♦G) for the expected value of rew when dealing
with the conditional probability measure rather than the standard probability
measure. By Theorem 1, we have:

EMs (♦F |♦G
)

= EMψ
s

(
♦(F bef ∪ F nor)

)
B Extremal conditional probabilities in MDP

When reasoning about MDPs we often make use of the concept of end components
[11,12]. Intuitively, an end component of an MDP M = (S,Act , P ) is a strongly
connected sub-MDP. This can be formalized by a pair E = (E,A) where E is a
nonempty subset of S and A : E → 2Act a function such that:

– for each state s ∈ E, A(s) is a nonempty subset of Act(s) with s′ ∈ E for all
α ∈ A(s) with P (s, α, s′) > 0,

– the underlying directed graph of E with node set E and the edges (s, s′)
where P (s, α, s′) > 0 for some α ∈ A(s) is strongly connected.

Given a scheduler S and an infinite S-path π, let Eπ = (inf(π), Aπ) where inf(π)
is the set of states that appear infinitely often in π and Aπ(s) be the set of actions
α ∈ Act(s) that are taken infinitely often in π from s, i.e., there are infinitely
many finite prefixes π′ of π that end in state s and such that S(π′) = α. The
crucial observation made by de Alfaro [11,12] is that for each scheduler S and
each state s:

PrSM,s

{
π ∈ Paths(s) : Eπ is an end component

}
= 1

B.1 Soundness of step 1: normal form transformation

We first provide the proof for the scheduler improvement formalized in Lemma 1.
As a consequence we then obtain the soundness of the normal form transition
M M′ stated in Corollary 1.

Proof of the scheduler improvement (Lemma 1). The task is show that
for each scheduler S there is a scheduler T such that for all states s with
PrSM,s(♦G) > 0:



18 Christel Baier, Joachim Klein, Sascha Klüppelholz, Steffen Märcker

(1) PrSM,s

(
♦F |♦G

)
≤ PrTM,s

(
♦F |♦G

)
(2) Pr

T[π]
M,t(♦G) = Prmax

M,t(♦G) for all t ∈ F and π ∈ Πs...t

(3) Pr
T[π]
M,u(♦F ) = Prmax

M,u(♦F ) for all u ∈ G and finite paths π ∈ Πs...u

Recall, for the sake of simplicity, we first assume that F ∩G = ∅. Hence, there
are only two cases for the event ♦F ∧ ♦G: “either F before G, or G before F”.
We observe that for all states s in M and schedulers S:

PrSM,s

(
♦F ∧ ♦G

)
= PrSM,s

(
¬G U(F ∧ ♦G)

)
+ PrSM,s

(
¬F U(G ∧ ♦F )

)
Here, U denotes the LTL until operator. Hence, if PrSs (♦G) > 0 then

PrSM,s

(
♦F |♦G

)
=

XS + Y S

XS + ZS

where:
XS = PrSM,s

(
¬G U (F ∧ ♦G)

)
Y S = PrSM,s

(
¬F U (G ∧ ♦F )

)
ZS = PrSM,s

(
¬F U G

)
Consider first Y S and ZS. Suppose s is fixed and let Πu = Πs...u denote the set
consisting of all finite paths s0 s1 . . . sn in M with:

s0 = s, sn = u and {s0, s1, . . . , sn−1} ∩ (F ∪G) = ∅

Then:
Y S = PrSM,s

(
¬F U (G ∧ ♦F )

)
=

∑
u∈G

∑
π∈Πu

PS(π) · PrS[π]
u (♦F )

≤
∑
u∈G

∑
π∈Πu

PS(π) · Prmax
u (♦F )︸ ︷︷ ︸
≤1

def
= Ỹ S

≤
∑
u∈G

∑
π∈Πu

PS(π) = ZS

Recall that scheduler S[π] is “S after π” and PS(π) denotes the “probability”
for π under S. We get:

PrSM,s

(
♦F |♦G

)
≤ XS + Ỹ S

XS + ZS

Consider now XS.

XS = PrSM,s

(
¬G U (F ∧ ♦G)

)
=

∑
t∈F

∑
π∈Πt

PS(π) · Pr
S[π]
t (♦G)

≤
∑
t∈F

∑
π∈Πt

PS(π) · Prmax
t (♦G)

def
= X̃S
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This yields:

PrSM,s

(
♦F |♦G

)
≤ XS + Ỹ S

XS + ZS
≤ X̃S + Ỹ S

X̃S + ZS

The latter is a consequence of Remark 2.5.8 in the PhD Thesis by Miguel E.
Andrés [2] (see also Lemma 2 in Section D below) with x = XS, y = Ỹ S, z = ZS

and x̃ = X̃S.
The result obtained so far permits to modify the given scheduler S to obtain

a “better” scheduler T as follows. For any finite path π where G or F has not
yet been visited, T behaves as S. For the S-paths π ∈ Πu with u ∈ G, T mimics
some deterministic memoryless scheduler that maximizes the probabilities for
the event ♦F . Similarly, for the S-paths π ∈ Πt with t ∈ F , T mimics some
deterministic memoryless scheduler that maximizes the probabilities for the event
♦G. This yields the statement of Lemma 1.

If we drop the assumption that F ∩G 6= ∅, the events F and G may occur
either one after another or at the same time. We incorporate the latter in Y S

and therefore redefine XS:

XS = PrSM,s

(
¬G U (F ∧ ¬G ∧ ♦G)

)
“F strictly before G”

Y S = PrSM,s

(
¬F U (G ∧ ♦F )

)
“G before F or simultaneously”

Our previous calculations carry over to the new definition of XS. Particularly,
we have:

Y S = PrSM,s

(
¬F U (G ∧ ♦F )

)
=

∑
u∈G\F

∑
π∈Πu

PS(π) · PrS[π]
u (♦F ) + PrSM,s

(
♦(G ∩ F )

)
≤

∑
u∈G\F

∑
π∈Πu

PS(π) · Prmax
u (♦F )︸ ︷︷ ︸
≤1

+
∑

u∈G∩F

∑
π∈Πu

PS(π)

def
= Ỹ S

≤
∑
u∈G

∑
π∈Πu

PS(π) = ZS

The normal form MDPM′ = (S′,Act , P ′) is defined as before, the only difference
being that P ′(u, goal) = 1 for u ∈ G∩F . The transition probabilities of all other
states are defined as in Section 4.

Soundness of the normal form transformation (Corollary 1). Each sched-
uler T for M satisfying conditions (2) and (3) in Lemma 1 can be viewed as a
scheduler for M′. We have:

PrTM,s

(
♦F |♦G

)
≤ PrTM′,s

(
♦goal

∣∣♦(goal ∨ stop)
)

Vice versa, for each scheduler ρ forM′ there is a scheduler T forM that behaves
as ρ as long as no state in F or G has been visited. As soon as ρ enters F or G,
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scheduler T switches mode and mimics some deterministic memoryless scheduler
for M that maximizes the probabilities to reach G or F , respectively. Thus,
again, T enjoys the properties stated in items (2) and (3) in Lemma 1. We then
also have:

PrTM,s

(
♦F |♦G

)
≤ PrρM′,s

(
♦goal

∣∣♦(goal ∨ stop)
)

We conclude:

Prmax
M,s

(
♦F |♦G

)
≤ Prmax

M′,s

(
♦goal

∣∣♦(goal ∨ stop)
)

This yields the statement of Corollary 1.

B.2 Optional reduction of the normal form MDP

The normal form MDPM′ obtained after step 1 can be transformed into an MDP
M′W that simplifies M′ and might have a smaller state space when removing
states in M′W that are not reachable from sinit . This step is optional and could
be dropped.

The transformation M  M′W relies on the following observation. The
branching structure of those states w from which the trap state stop will never
be visited, but goal will be visited with positive probability under some scheduler,
can be simplified as follows. Let W be the set of those states. That is:

w ∈W iff

{
there exists a scheduler S such that

PrSM′,w

(
♦goal

)
> 0 and PrSM′,w

(
♦stop

)
= 0

To compute W , we consider the MDP M′\stop that results from M′ by removing

stop and then iteratively removing actions α from Act(s) with P (s, α, s′) > 0
where s′ has been removed before as well as states where all enabled actions have
been removed. We then compute

pv = Prmax
M′,v(♦goal) for all states v in M′\stop .

Then:
W =

{
w ∈ S′\stop : pw > 0

}
where S′\stop denotes the state space of M′\stop . We then apply the same trans-

formation for the W \ T -states in M′ (not M′\stop , which we needed only to

compute W and the values pw) as we did for the F -states when switching from
M to M′. That is, we turn each state w ∈W \ T into a probabilistic state with
the transition probabilities

P ′(w, v) =

pw : if v = goal
1− pw : if v = fail
0 : otherwise

The fact that the transformation M′  M′W preserves the maximal conditional
probabilities is a consequence of the following observation. We pick some de-
terministic memoryless scheduler ρmax that maximizes the probabilities for the
event ♦goal in M′\stop .
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Part 1. Let S be any scheduler for M′. For fixed state s, we use the following
shorthand notations (where U denotes the LTL until operator):

X = PrSM′,s

(
¬W U goal

)
Z = PrSM′,s

(
¬W U stop

)
XW =

∑
w∈W\T

∑
λ∈ΛS

w

PS(λ) · Pr
S[λ]
M′,w

(
♦goal

)
ZW =

∑
w∈W\T

∑
λ∈ΛS

w

PS(λ) · Pr
S[λ]
M′,w

(
♦stop

)
where ΛS

w denotes the set of all finite paths s0 s1 . . . sn with:

s0 = s, sn = w and
{
s0, . . . , sn−1

}
∩ (W ∪ T ) = ∅

Let ΛS be the union of the sets ΛS
w for w ∈W \ T . Since

Pr
S[λ]
M′,w

(
♦goal

)
≤ pw

we get:

XW ≤
∑

w∈W\T

∑
λ∈ΛS

w

PS(λ) · pw
def
= X ′W

Let S′ be the scheduler for M′ that behaves as S for all S-paths that have no
prefix in ΛS. For the finite paths s0 s1 . . . sn sn+1 . . . sm with s0 s1 . . . sn ∈ ΛS

w

for some w ∈W \ T , scheduler S′ behaves as ρmax for state sm If Z > 0 then by
Lemma 2:

PrSM′,s

(
♦goal

∣∣♦(goal ∨ stop)
)

= X +XW
X +XW + Z + ZW

≤ X +X ′W
X +X ′W + Z + ZW

≤ X +X ′W
X +X ′W + Z

= PrS
′

M′,s

(
♦goal

∣∣♦(goal ∨ stop)
)

By ignoring S′’s decisions for paths ending in a W -state, we obtain a “corre-
sponding” scheduler T for the modified MDPM′W that has the same conditional
probability as S′. That is, T behaves as S′ as long as the given finite path does
not end in a W -state. From the W -states, M′W moves probabilistically within
one step to one the trap states in T .

Part 2. Suppose we are given some scheduler T for M′W . We consider the
scheduler S′ for M′ that mimics T as long as no W -state has been reached and
behaves as ρmax for input paths containing a W -state. Then, T and S′ have the
same conditional probabilities for ♦goal under the condition ♦(goal ∨ stop).
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Consequence of parts 1 and 2.
For each state s in M′ where Prmax

M′,s

(
♦(goal ∨ stop)

)
is positive:

max
S

PrSM′,s

(
♦goal

∣∣♦(goal ∨ stop)
)

= max
T

PrTM′
W ,s

(
♦goal

∣∣♦(goal ∨ stop)
)

As stated above, the switch from M′ to M′W is optional. Dealing with M′W
might have several advantages. First, the reachable fragment from sinit might
be smaller. Second, the W -states are probabilistic in M′W . More precisely, the
fragment of M′W that is reachable from the W -states is a Markov chain and the
probabilities for reaching goal and stop, respectively, from some W -state do not
depend on a scheduler. These values can be computed in a preprocessing step
and reused in later steps.

B.3 Soundness of step 2: proof of Theorem 2

The task is to show that the maximal conditional probability in M′ for the
objective ♦goal and the condition ♦(goal ∨ stop) agrees with the maximal (un-
conditional) probability in Mϕ|ψ for ♦goal .

Fair schedulers. We rely on the fact that the maximal reachability probabilities
under realizable fairness constraints agree with the maximal probabilities for the
same reachability condition [3,4]. Hence, in the MDP Mϕ|ψ we have:

Prmax
Mϕ|ψ,s

(
♦goal

)
= max

Sϕ|ψ fair
Pr

Sϕ|ψ
Mϕ|ψ,s

(
♦goal

)
where Sϕ|ψ ranges over all fair schedulers Sϕ|ψ for Mϕ|ψ with respect to the
unconditional fairness constraint �♦¬B, i.e., all schedulers Sϕ|ψ for Mϕ|ψ such
that

Pr
Sϕ|ψ
Mϕ|ψ,s

(
�♦¬B

)
= 1

for all states s. In what follows, such schedulers Sϕ|ψ are said to be fair. Note
that all B-states have the τ -transition to sinit . Hence, the unconditional fairness
constraint �♦¬B is realizable, i.e., fair schedulers exist.

Finite-memory schedulers. We also use the result by [1,2] stating that there exists
a deterministic finite-memory scheduler for M′ that maximizes the conditional
probability. For the formal definition of finite-memory schedulers, we refer to [5].
Intuitively, S is called a finite-memory scheduler if S operates like a deterministic
finite-state transducer where the states serve as memory cells that store the
relevant information of the “history” (i.e., the input path). The input of the
transducer is the state of the MDP that is reached by the probabilistic choice
associated with the last action scheduled by S and the output is the next action
to be taken. The central property of finite-memory schedulers that we use here is
that the Markov chainMS

s0 induced by a finite-memory scheduler S and state s0
can be seen as a finite Markov chain where the states are pairs 〈s,m〉 consisting
of a state s in M and a memory cell m of the transducer.
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Part 1. We first show that the maximal conditional probability for ♦goal , given
♦(goal ∨ stop) in M′ is bounded above by the maximal probability for ♦goal
under fairness constraints. Pick some deterministic finite-memory scheduler S for
M′. Then, almost all infinite S-paths π either end up in one of the trap states in
T or, if they never enter T , then they have an infinite suffix that constitutes an
end component of M′ consisting of B-states. The former condition means that π
has the form

π = s0 s1 . . . sn t t t t . . .

for some state t ∈ T . The second condition means that

π = s0 s1 . . . sn sn+1 sn+2 sn+3 . . .︸ ︷︷ ︸
constitute an

end component inM′

consisting of B-states

and the set inf(π) of all states s ∈ S′ that appear infinitely often in π is contained
in B and constitutes an end component. The latter means that there is an action
assignment s 7→ A(s) for the states s ∈ inf(π) where ∅ 6= A(s) ⊆ Act(s) such that
s ∈ inf(π), α ∈ A(s) and P ′(s, α, s′) > 0 implies s′ ∈ inf(π) and the underlying
graph of inf(π) with the edges induced by A is strongly connected.

We construct a fair scheduler Sϕ|ψ for Mϕ|ψ as follows. Sϕ|ψ mimics S for
each finite S-path that contains no state in T and no state in B. For an input
S-path π that ends in a state v ∈ B, Sϕ|ψ behaves as follows:

– If Pr
S[π]
M′,v(�B) = 1 then Sϕ|ψ schedules the restart-action τ from v to sinit .

– If Pr
S[π]
M′,v(�B) < 1 then Sϕ|ψ chooses the same action as S for π.

Since S is a finite-memory scheduler, the resulting scheduler Sϕ|ψ is indeed fair.
Assuming that PrSM′,s

(
♦(goal ∨ stop)

)
> 0 we have:

PrSM′,s

(
♦goal

∣∣♦(goal ∨ stop)
)

= Pr
Sϕ|ψ
Mϕ|ψ,s

(
♦goal

)
This yields:

Prmax
M′,s

(
♦goal

∣∣♦(goal ∨ stop)
)
≤ max

Sϕ|ψ fair
Pr

Sϕ|ψ
Mϕ|ψ,s

(
♦goal

)
Part 2. Let us show now that the maximal probability for ♦goal under fair
schedulers for Mϕ|ψ is less or equal than the maximal conditional probability for
the objective ♦goal under the condition ♦(goal ∨ stop) in M′. It is well-known
that there is some fair deterministic memoryless scheduler Sϕ|ψ for Mϕ|ψ that
maximizes the probability for ♦goal , see e.g. [3,4]. Let S be the scheduler for
M′ that behaves as Sϕ|ψ for all states s ∈ S′ \ B ∪ {fail}. The fail-state is
probabilistic in M′ and there is no decision to make in fail . For state v ∈ B, S
mimics some deterministic memoryless scheduler ρ with Prρv(�B) = 1 if Sϕ|ψ
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schedules a restart for v by taking the τ -transition to sinit . If Sϕ|ψ takes an action
α ∈ Act then S takes the same action. Again, we get:

PrSM′,s

(
♦goal

∣∣♦(goal ∨ stop)
)

= Pr
Sϕ|ψ
Mϕ|ψ,s

(
♦goal

)
This completes the proof of Theorem 2.

B.4 Co-safety and safety conditions

Let the objective ϕ be an arbitrary ω-regular property. To compute Prmax
M,s

(
ϕ
∣∣ψ )

where the condition ψ is a regular co-safety condition given by a deterministic
finite automaton B, we might consider the product-MDPM⊗B and then replace
ψ with the condition ♦Final(B) where Final(B) denotes the set of states 〈s, q〉
in the product-MDP M⊗B where q is a final state of B. Then:

Prmax
M,s

(
ϕ |ψ

)
= Prmax

M⊗B,〈s,qs〉
(
ϕ
∣∣♦Final(B)

)
= Prmax

M⊗A⊗B,〈s,ps,qs〉
(
♦AccEC (A)

∣∣♦Final(B)
)

Again, A is a deterministic ω-automaton for ϕ and AccEC (A) is the union of
all end components in the product-MDP where A’s acceptance condition holds.
This technique is, for instance, is applicable to LTL formulas ψ of the form aU b
or �(a→©b), where a and b are atomic propositions. Following [BLW13], we
can also deal with an unambiguous NFA B rather than a DFA if M is a Markov
chain.

If ψ is a regular safety property, we deal with a DFA B for the bad prefixes
for ψ. I.e., the accepted language L(B) of B consists of all finite words w such no
extension of w satisfies ψ. Again, we use B as a monitor and put B in parallel
with M⊗A – where, as before, A is a deterministic ω-automaton for ϕ – and
treat the states 〈s, p, q〉 in M⊗A⊗B where q is a final state of B as fail-states.
I.e., we modify M⊗ A ⊗ B by adding a restart-transition (as an additional
nondeterministic alternative) from all states 〈s, p, q〉 where q is final to the fixed
initial state ofM⊗A⊗B. Let N be the resulting MDP. The maximal conditional
probabilities Prmax

M,s

(
ϕ |ψ

)
in M then agrees with the maximal probabilities the

acceptance condition of A in the MDP N . This technique is, for instance, is
applicable to LTL formulas ψ of the form �a or aW b or aR b, where W and
R denote the weak until and release operator, respectively, and a and b are
atomic propositions. It is also applicable for MDP with positive rewards for the
states and if ψ is a reward-bounded reachability condition ♦≤ra stating that an
a-state will be reached along some finite path π where the accumulated reward is
bounded by r. Note that for positive rewards, ♦≤ra is indeed a safety condition.

B.5 ω-regular conditions and reachability objectives

We now consider the case of computing maximal conditional reachability prob-
abilities Prmax

M,s

(
♦F

∣∣ψ ) under some ω-regular condition ψ. The objective is a
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reachability condition ϕ = ♦F . Without loss of generality, we assume that ψ is
given by a deterministic Streett automaton B. By considering the product-MDP
M⊗B, condition ψ for the paths inM can be identified with B’s Streett condition
for the paths in M⊗B:

Prmax
M,s

(
♦F

∣∣ψ ) = Prmax
M⊗B,〈s,qs〉

(
♦F

∣∣ acc(B)
)

Thus, it suffices to present an algorithm for the computation of Prmax
M,s

(
♦F

∣∣ψ )
in a given MDPM where the condition ψ is a strong fairness (Streett) condition:

ψ =
∧

1≤i≤k

(�♦Ri → �♦Gi )

The idea is to use a similar technique as for computing Prmax
M,s

(
♦F

∣∣♦G ).
Step 1: normal form transformation. We apply the normal form transformation
M  M′ for ♦F , i.e., we deal here with the set T =

{
goal , fail

}
consisting

of only two additional trap states. The state space of the normal form MDP
M′ is S′ = S ∪ T . For the states s ∈ S \ F , M′ behaves as M. The transition
probabilities in M′ for the states s ∈ F are given by:

P ′(s, goal) = Prmax
M,s(ψ)

P ′(s, fail) = 1− Prmax
M,s(ψ)

The value Prmax
M,s(ψ) is computable in time polynomial in the size of M using

standard techniques [4], namely by computing the maximal probability to reach
an end component E = (E,A) where the fairness constraint given by ψ holds, i.e.,
such that for each i ∈ {1, . . . , k}: either E ∩Ri = ∅ or E ∩Gi 6= ∅ (or both).

The switch fromM toM′ is intuitively justified by the observation that once
F has been reached the optimal strategy is to maximize the probability of the
fairness condition ψ. That is, M and M′ have the same maximal conditional
probabilities for ♦F under condition ψ. Analogous to the soundness result of the
normal form transformation for reachability conditions we get:

Prmax
M,s

(
♦F |ψ

)
= Prmax

M′,s

(
♦goal |♦goal ∨ ψ

)
i.e., forM′ we deal with the new objective where the condition is ψ′ = ♦goal ∨ψ.
The objective is a reachability probability for a trap state.

Step 2: restart mechanism. We now consider how the restart mechanism for paths
violating condition ψ can be realized. Paths that reach the fail trap state via
some F -state are unproblematic, as they represent paths in the original MDPM
that violate ψ. However, we also need the “resetting” via the fail states to treat
infinite paths π ofM′ with π 6|= ♦T and π 6|= ψ. For this purpose, we consider the
set B of all states v inM′ that are contained in some end components E = (E,A)
of M′ such that E ∩ T = ∅ and for some i ∈ {1, . . . , k} we have: E ∩ Ri 6= ∅
and E ∩Gi = ∅. Note that all infinite paths π where inf(π) = E for such an end
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component E violate the objective ψ′.1 Vice versa, under each scheduler S, for
almost all S-paths π with π 6|= ψ′ either π |= ♦�fail or there exists such end
component E = (E,A) with inf(π) = E. (We use here the results by de Alfaro
[11,12] stating that under each scheduler S, for almost all S-paths π the set of
states that are visited infinitely often and their enabled actions that are taken
infinitely often in π constitute an end component.) Let

BR = B ∩
⋃

1≤i≤k

Ri

The MDP Mϕ|ψ arises from M′ by attaching restart-transitions to the states
v ∈ BR. That is:

Mϕ|ψ = (S′,Act ∪ {τ}, Pϕ|ψ)

where S′ denotes the state space of M′ and τ is a fresh action symbol for the
restart-transitions. For the states s ∈ S′ \BR with s′ 6= fail , the new MDPMϕ|ψ

behaves as M′. Formally:

Pϕ|ψ(s, α, s′) = P ′(s, α, s′) for all s ∈ S′ \ {fail}, α ∈ Act and s′ ∈ S′

The fresh action τ is not enabled in the states s ∈ S′ \(BR∪{fail}). The fail-state
in Mϕ|ψ returns deterministically to the initial state:

Pϕ|ψ(fail , τ, sinit) = 1

and Pϕ|ψ(fail , τ, s) = 0 for all states s′ ∈ S′ \ {sinit}. No other action than τ is
enabled in fail . For the states v ∈ BR, Mϕ|ψ decides nondeterministically to
behave as M or to return to the initial state sinit . That is, for all states v ∈ BR:

Pϕ|ψ(v, α, s′) = P ′(v, α, s′) if α ∈ Act , s′ ∈ S′

Pϕ|ψ(v, τ, sinit) = 1

and Pϕ|ψ(v, τ, ·) = 0 in all other cases.
Using similar arguments as before, we get for the initial state s = sinit :

Prmax
M′,s

(
♦goal

∣∣♦goal ∨ ψ
)

= max
S fair

PrSMϕ|ψ,s

(
♦goal

)
= Prmax

Mϕ|ψ,s

(
♦goal

)
where a scheduler is said to be fair if almost all its paths are strongly fair for the
restart-transition. This corresponds to strong fairness for the new action τ .

B.6 ω-regular objectives and ω-regular conditions

We now address the task to compute Prmax
M,s

(
ϕ
∣∣ψ ) where both ϕ and ψ are

ω-regular conditions. We show that this task is reducible to the task of computing
reachability objectives under ω-regular conditions as explained in Section B.5.

1 Here, inf(π) denotes the set of states that appear infinitely often in π.
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Again, we can use representations of ϕ and ψ by deterministic ω-automata
A and B and switch from M to M⊗A⊗ B, which permits to replace ϕ and
ψ by the acceptance conditions of A and B. To simplify the presentation, we
identify M with M⊗A⊗B and suppose that both ϕ and ψ are given as strong
fairness (Streett) conditions over the states of M. Due to the conjunctive nature
of Streett conditions, the conjunction ϕ ∧ ψ is likewise a Streett condition.

An end component E of M is said to satisfy ϕ ∧ ψ, denoted E |= ϕ ∧ ψ, if for
each of its Streett pairs (R,G): either no state in E belongs to R or E contains
at least one state in G (or both). Let F be the set of states that are contained in
some end components E such that E |= ϕ ∧ ψ. Our goal is to show:

Prmax
M,s

(
ϕ
∣∣ψ ) = Prmax

M,s

(
♦F

∣∣ψ )
That is, we have to show that:

Prmax
M,s

(
ϕ ∧ ψ

∣∣ψ ) = Prmax
M,s

(
♦F

∣∣ψ )
For a given scheduler S, we construct the scheduler S′ that mimics S until a
state in F is reached. As soon as F has been entered, say via a finite path ending
in state s, S′ picks some end component E satisfying ϕ ∧ ψ and schedules all
actions in E in a fair manner, such that E will never be left and almost surely all
states in E are visited infinitely often. Clearly, almost all S′-paths that visit F
satisfy ϕ ∧ ψ, i.e.:

PrS
′

M,s

(
♦F → (ϕ ∧ ψ)

)
= 1

This yields:

PrSM,s

(
�¬F ∧ ϕ ∧ ψ

)
= PrS

′

M,s

(
�¬F ∧ ϕ ∧ ψ

)
= 0

Given any scheduler S, we show that for the scheduler S′ constructed as described
above the following inequalities hold:

(1) PrS
′

M,s

(
♦F

∣∣ψ ) ≥ PrSM,s

(
ϕ ∧ ψ

∣∣ψ )
(2) PrS

′

M,s

(
ϕ ∧ ψ

∣∣ψ ) ≥ PrSM,s

(
♦F

∣∣ψ )
As a consequence of (1) we get:

Prmax
M,s

(
ϕ ∧ ψ

∣∣ψ) ≤ Prmax
M,s

(
♦F

∣∣ψ)
Vice versa, statement (2) implies:

Prmax
M,s

(
ϕ ∧ ψ

∣∣ψ) ≥ Prmax
M,s

(
♦F

∣∣ψ)
Thus, from (1) and (2) we get the desired result Prmax

M,s

(
ϕ∧ψ

∣∣ψ) = Prmax
M,s

(
♦F

∣∣ψ).
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Proof of statement (1). We have

PrSM,s

(
ϕ ∧ ψ

∣∣ψ) =
PrSM,s

(
ϕ ∧ ψ

)
PrSM,s

(
ψ
)

=
PrSM,s

(
ϕ ∧ ψ

)
PrSM,s

(
ϕ ∧ ψ

)
+ PrSM,s

(
¬ϕ ∧ ψ

)
= XS

XS + Y S + ZS

where:

XS = PrSM,s

(
♦F ∧ ϕ ∧ ψ

)
Y S = PrSM,s

(
♦F ∧ ¬ϕ ∧ ψ

)
ZS = PrSM,s

(
�¬F ∧ ¬ϕ ∧ ψ

)
As noted above we can ignore the fourth case �¬F ∧ ϕ∧ψ, as for all schedulers
PrSM,s

(
�¬F ∧ ϕ ∧ ψ

)
= 0. Furthermore, we have:

PrS
′

M,s

(
♦F

∣∣ψ ) =
PrS

′

M,s

(
♦F ∧ ψ

)
PrS

′

M,s

(
ψ
)

= X̃S + Ỹ S

X̃S + Ỹ S + Z̃S

with

X̃S = PrS
′

M,s

(
♦F ∧ ϕ ∧ ψ

)
Ỹ S = PrS

′

M,s

(
♦F ∧ ¬ϕ ∧ ψ

)
Z̃S = PrS

′

M,s

(
�¬F ∧ ¬ϕ ∧ ψ

)
As before, we can ignore the case �¬F ∧ ϕ ∧ ψ. By construction of S′ we have:

PrS
′

M,s

(
♦F → (ϕ ∧ ψ)

)
= 1

Thus, X̃S = PrS
′

M,s

(
♦F ) and Ỹ S = 0. Furthermore, as S′ behaves exactly like

S before reaching F we obtain:

X̃S = PrSM,s

(
♦F

)
Z̃S = PrSM,s

(
�¬F ∧ ¬ϕ ∧ ψ

)
= ZS
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As PrSM,s

(
♦F

)
≥ PrSM,s

(
♦F ∧ ϕ ∧ ψ

)
we have X̃S ≥ XS. Hence:

PrS
′

M,s

(
♦F

∣∣ψ) = X̃S

X̃S + ZS

PrSM,s

(
ϕ ∧ ψ

∣∣ψ) = XS

XS + Y S + ZS

with X̃S ≥ XS. Applying Lemma 3 (see Section D) then yields:

PrS
′

M,s

(
♦F

∣∣ψ) ≥ PrSM,s

(
ϕ ∧ ψ

∣∣ψ),
This completes the proof of statement (1).

Proof of statement (2). We have

PrSM,s

(
♦F

∣∣ψ) =
PrSM,s

(
♦F ∧ ψ

)
PrSM,s

(
ψ
)

= XS + Y S

XS + Y S + ZS

with
XS = PrSM,s

(
♦F ∧ ϕ ∧ ψ

)
Y S = PrSM,s

(
♦F ∧ ¬ϕ ∧ ψ

)
ZS = PrSM,s

(
�¬F ∧ ¬ϕ ∧ ψ

)
.

Furthermore, we have:

PrS
′

M,s

(
ϕ ∧ ψ

∣∣ψ ) =
PrS

′

M,s

(
ϕ ∧ ψ

)
PrS

′

M,s

(
ψ
)

=
PrS

′

M,s

(
ϕ ∧ ψ

)
PrS

′

M,s

(
ϕ ∧ ψ

)
+ PrS

′

M,s

(
¬ϕ ∧ ψ

)
= X̃S

X̃S + Z̃S

with

X̃S = PrS
′

M,s

(
♦F

)
and Z̃S = PrS

′

M,s

(
�¬F ∧ ¬ϕ ∧ ψ

)
,

as by construction

PrS
′

M,s

(
ϕ ∧ ψ

)
= PrS

′

M,s

(
♦F

)
.
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The term Z̃S in the above quotient is justified by the fact that

PrS
′

M,s

(
♦F → (ϕ ∧ ψ)

)
= 1,

which yields PrS
′

M,s

(
(¬ϕ∧ψ) → �¬F

)
= 1. As the scheduler S′ behaves exactly

as the scheduler S before F is reached, we have:

X̃S = PrS
′

M,s

(
♦F

)
= PrSM,s

(
♦F

)
and

Z̃S = PrS
′

M,s

(
�¬F ∧ ¬ϕ ∧ ψ

)
= PrSM,s

(
�¬F ∧ ¬ϕ ∧ ψ

)
= ZS

Since

PrSM,s

(
♦F

)
≥ PrSM,s

(
♦F ∧ ϕ ∧ ψ

)
+ PrSM,s

(
♦F ∧ ¬ϕ ∧ ψ

)
we have X̃S ≥ XS + Y S. This yields:

PrS
′

M,s

(
ϕ ∧ ψ

∣∣ψ) = X̃S

X̃S + ZS

PrSM,s

(
♦F

∣∣ψ) = XS + Y S

XS + Y S + ZS

with X̃S ≥ XS + Y S. Then, Lemma 4 (see Section D) yields the desired result:

PrS
′

M,s

(
ϕ ∧ ψ

∣∣ψ ) ≥ PrS
′

M,s

(
♦F

∣∣ψ )
C Further experiments

We report here on some additional experiments we carried out to evaluate our
implementation for Markov chain of expected accumulated rewards under a given
condition, i.e., of the form EMs (♦F

∣∣ψ ) for conditions ψ that are supported
by our implementation. The implementation also supports special handling of
queries of the form EMs (♦F |♦F ), i.e., where the target set of the expected
accumulated reward is the same as the target set of a reachability condition and
the behavior after visiting an F -state is irrelevant.

We augmented the Markov chain for the bounded retransmission protocol (see
Section 5) with a reward structure modeling some (arbitrary) energy consumption
of the sender. The sender consumes one unit of energy per step in the idle state
and the success state, consumes 5 units of energy while sending a frame and two
units of energy when waiting for an acknowledgment.

We consider here:

(E1) EMs (♦ “finish with success” |♦ “finish with success”
)

(E2) EMs (♦ “finish with error” |♦ “finish with error”
)

(E3) EMs (♦ “finish w. success” |♦ “finish w. success” ∧ ♦“second retry”
)

(E4) EMs (♦ “finish w. success” |♦ “finish w. success” ∧ �“retries ≤ 2”
)
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model M EM
s (♦F

∣∣ψ)
query states build states Mψ M Mψ calc in Mψ total time

(E1) 18,701 0.5 s 17,293 18.2 s 2.2 s 20.4 s
(E2) 18,701 0.5 s 18,156 14.5 s 1.4 s 15.9 s
(E3) 18,701 0.5 s 32,789 44.0 s 5.1 s 49.1 s
(E4) 18,701 0.5 s 3,976 8.3 s 0.7 s 8.9 s

Table 4. Statistics for conditional expected accumulated rewards, N = 128, M = 10.

Table 4 lists results for the calculation of (E1)-(E4), with N = 128 fragments
and M = 10 retries. The structure is similar to Table 1, with the difference
that the calculation in the transformed model Mψ now refers to an expected
accumulated reward calculation. As the quotient method is not available in this
setting, we only report results using our transformation method.

The results show that our transformation method is applicable as well to
compute expected rewards under conditions. Again, the actual performance
significantly depends on the particular structure of the model and the condition.
For example, when comparing (E3) and (E4), the state space of the transformed
model for (E4) is significantly smaller due to the more restrictive condition. This
then allows as well a faster computation in the transformed model.

D General observation on quotients of sums

The following lemma is Remark 2.5.8 in the PhD Thesis by Miguel E. Andrés [2].
For the sake of completeness, we verify it again:

Lemma 2. Let x, y, z, x̃ be real numbers such that x ≤ x̃ and y ≤ z and x+z > 0.
Then:

x+ y

x+ z
≤ x̃+ y

x̃+ z

Proof.
(x+ y) · (x̃+ z) − (x+ z) · (x̃+ y)

=
(
xx̃+ xz + yx̃+ yz

)
−
(
xx̃+ xy + zx̃+ zy

)
= xz + yx̃− xy − zx̃

= y(x̃− x) − z(x̃− x)

= −(z − y) · (x̃− x) ≤ 0

The latter holds as x ≤ x̃ and y ≤ z. We obtain:

(x+ y) · (x̃+ z) ≤ (x+ z) · (x̃+ y)

This yields the claim.
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Lemma 3. Let x, y, z and x̃ be non-negative real numbers such that x ≤ x̃,
x+ y + z > 0 and x̃+ z > 0. Then:

x

x+ y + z
≤ x̃

x̃+ z

Proof. This statement is just an instance of Lemma 2 as we have:

x
x+ y + z ≤ x

x+ z ≤ x̃
x̃+ z(i) (ii)

(i) holds since y ≥ 0 and (ii) by Lemma 2.

Lemma 4. Let x, y, z and x̃ be non-negative real numbers such that x+ y ≤ x̃
and x+ y + z > 0. Then:

x+ y

x+ y + z
≤ x̃

x̃+ z

Proof. Note that x+ y ≤ x̃ and x+ y + z > 0 yields x̃+ z > 0. This is again a
consequence of Lemma 2.
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