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Motivation

Probabilistic-Write/Copy-Select Protocol

I novel synchronization technique
I no locking but data duplication
I very low conflict probability

“What is the expected reading time under the condition that
no conflict will occur?”
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Motivation

What are conditional probabilities good for?

I multi-objective reasoning: tradeoffs between cost and utility
measures

I probabilistic programs: formalization of loop semantics under
the condition the loop terminates

I reliability analysis: “zoom in” failure scenarios to analyze
impact of errors, recovery costs, and resilience properties

I strong anonymity: probability of a culprit is not increased by
any observation
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Markovian Models
Structure

Transition System
purely nondetermistic
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Markovian Models
Probabilities

Markov Chains
I probabilities of reachability events:

computable by solving systems of linear equations

Markov Decision Processes
I nondeterminism is resolved by schedulers
I maximal and minimal probabilities of reachability events:

computable by solving linear programs

Complex Path Formulas in Linear Temporal Logic (LTL)

I reducible to reachability via automata and product construction
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Quotient Method
Straight-Forward Application of the Definition

The probability of an event O under the condition an event C occurs.

O the objective
C the condition

Definition of Conditional Probability

Pr(O | C) = Pr(O ∧ C)
Pr(C)

I applicable to MCs (if O and C have no time bounds)
I requires support for computing conjunctions of properties
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Scale Method
Re-Scaling Probabilities in the Model

Idea
Re-scale probabilities in model according to probability of condition.

Transform ModelM intoMC

PrM(O | C) = PrMC(O)

I applicable to MCs (if O, C have no time bounds)
I avoids computing conjunctions of properties
I enables computation of conditional expectations
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Scale Method
Re-Scaling Transformation

condition: “eventually G ” for set of states G ⊆ S

G

“before G ”

rescaled
probabilities

∃♦G G

“after G ”

original
probabilities

succ∗(G )]G
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Reset Method
Redistributing Failed Probabilities

Definition of Maximal Conditional Probability

Prmax
M,s(O | C) = max

σ

PrσM,s(O ∧ C)
PrσM,s(C)

Quotient and scale method not applicable to MDPs.
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Reset Method
Redistributing Failed Probabilities

Idea
Redistribute probabilities of all path that fail the condition.

Transform ModelM intoMR

Prmax
M,s(O | C) = Prmax

MR ,s(♦goal)

I applicable to MDPs and MCs
I applicable to Prmin

M,s(O | C) = 1− Prmax
M,s(¬O | C)

I time-complexity polynomial in size ofM
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Reset Method
Reset Transformation

objective: “eventually F ” for set of states F ⊆ S

condition: “eventually G ” for set of states G ⊆ S

F

G
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stopbad states

s
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Patterns for Simple Paths Formulas

Generic Treatment of (Complex) Path Formulas

I reduction to conditional reachability probabilities via
automata and product construction

Special Treatment of Simple Path Formulas

I slightly generalized scale/reset transformations
I use patterns to match types of simple path formulas
I reset method: combine patterns for simple path formulas with

generic handling of complex path formulas
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Implementations

Prism prototype for TACAS’14

I MCs: LTL conditions, patterns for reachability conditions
I MDPs: reachability objectives and conditions
I engines: explicit

Storm
I MCs, MDPs: reachability objectives and conditions
I engines: explicit and parametric (MCs)

Prism current implementation

I MCs, MDPs: LTL objectives and conditions,
patterns for all simple path formulas

I engines: explicit and (semi-)symbolic
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Benchmarks

Models
I chosen from Prism benchmark suite:

3 MCs (brp, crowds, egl) and 2 MDPs (wlan, consensus)
I criteria: meaningful conditional queries, scalability

Queries

I conditional expectations in MCs
I all combinations of patterns and LTL path formulas
I 190 runs for each MCs instance, 79 for each MDP instance

Setup

I benchmark all supported engines of Prism’s
I fix Java heap size and adjust the JVM’s integer cache
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Results of Method Comparison
1) Scale method outperforms reset and quotient method.
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Results of Method Comparison
2) Reset method close to conjunction of objective and condition.
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Results of Pattern Comparison
3) Specialized patterns perform better than generic handling.
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Results of Implementations Comparison
Default Solvers

Prism Gauss-Seidel for MCs and
value iteration with Gauss-Seidel for MDPs

Storm GMRES+ILU for MCs and
value iteration with power method for MDPs

Prism Storm
model explicit explicit’14 explicit

M
C
s brp 45 s 3515 s 4 s
crowds 148 s 1933 s 55 s
egl 242 s 2117 s 74 s

M
D

P
s consensus 41 s 116 s 120 s

wlan 45 s 241 s 26 s
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Results of Implementations Comparison
Same Solvers

Both Gauss-Seidel for MCs and
value iteration with power method for MDPs

Storm GMRES+ILU for DTMCs and
value iteration with power method for MDPs

Prism Storm
model explicit explicit’14 explicit

M
C
s brp 45 s 3515 s 228 s
crowds 148 s 1933 s 192 s
egl 242 s 2117 s 89 s

M
D

P
s consensus 79 s 177 s 120 s

wlan 48 s 229 s 26 s

18



Outline

Introduction
Motivation
Markovian Models

Dimensions
Methods
Patterns
Implementations

Comparsion
of Methods
of Patterns
of Implementations

Conclusion and Outlook
Conclusion
Ongoing Work

19



Conclusion

Implementation

I first full support for LTL objectives and conditions
I support for explicit and (semi-)symbolic engines

Evaluation
I scale method outperforms quotient method (MCs)
I reset method performs in the same order as computing

conjunctions of events in many cases (MDPs)
I application of special patterns pays off
I competitive overall performance
I reset method may face convergence problems
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Ongoing Work

Next Steps

I integration in official Prism release
I add support for interval iteration
I and support for Hanoi-framework to specify ω-regular events
I add algorithms for computing conditional expectations in MDPs
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Fin
Merci encore.

https://wwwtcs.inf.tu-dresden.de/ALGI/PUB/SEFM17
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Example: CSMA/CA, IEEE 802.11 Wireless LAN

Example: WLAN protocol
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Pitfall: Conditions vs Scheduler Restrictions

Conditional probabilities do not prevent schedulers from violating
the condition if this maximizes/minimizes the probability.

Example: Optimal But Defective Scheduler

F

G

0.2

0.8

β

α

Prmin(♦F | ♦G )

=
0
0.8

= 0 for σ(F ) = α
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