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Abstract. The concept of quantiles is well-known in statistics, but its
benefits for the formal quantitative analysis of probabilistic systems have
been noticed only recently. To compute quantiles in Markov decision pro-
cesses where the objective is a probability constraint for an until (i.e.,
constrained reachability) property with an upper reward bound, an iter-
ative linear-programming (LP) approach has been proposed in a recent
paper. We consider here a more general class of quantiles with proba-
bility or expectation objectives, allowing to reason about the trade-off
between costs in terms of energy and some utility measure. We show how
the iterative LP approach can be adapted for these types of quantiles and
propose another iterative approach that decomposes the LP to be solved
into smaller ones. This algorithm has been implemented and evaluated in
case studies for quantiles where the objective is a probability constraint
for until properties with upper reward bounds.

1 Introduction

The concept of quantiles is well-known in statistics (see, e.g., [21]) and used there
to reason about the cumulative distribution function of a random variable R.
Quantiles are defined as maximal values r such that the probability for the event
R > r is beyond a given threshold. Although quantiles can provide very useful
insights in the interplay of various cost functions and other system properties,
they have barely obtained attention in the context of formal algorithmic system
analysis. Quantiles for probabilistic operational models, such as Markov chains or
Markov decision processes, can be defined using parameterized state properties
Φ[r] or Ψ [r], where r is a parameter for some cost or reward function and Φ[r] is
increasing in r, whereas Ψ [r] is decreasing in r. The notion “increasing” means
that s |= Φ[r] implies s |= Φ[i] for all i > r (“decreasing” has an analogous
meaning). Quantiles for objectives Φ[r] and Ψ [r] in state s of the given model are
defined as min

{
r : s |= Φ[r]

}
resp. max

{
r : s |= Ψ [r]

}
. We formalize Φ[r] and

Ψ [r] by PRCTL-like constraints that assert lower or upper bounds either for the
probabilities for reward-bounded path formulas or for the expected accumulated
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rewards until reaching a certain target. Typical examples are formulas of the
form Φu[e] for fixed u and Ψe[u] for fixed e asserting that the probability for

λe,u = ♦
(
(energy 6 e) ∧ (utility > u)

)

is, e.g., at least 0.8. (We use LTL notations where the temporal operator ♦ stands
for “eventually”.) The quantile emin = min{e ∈ N : s |= Φu[e]} is the minimal
initial energy budget required to achieve the utility value u with probability at
least 0.8, while umax = max{u ∈ N : s |= Ψe[u]} is the maximal utility that can
be achieved with probability at least 0.8, when the energy budget is e. The curve
for λe,u on the left of the figure below illustrates how the probability increases
when the utility value u is fixed and the energy budget e tends to ∞. The curve
on the right shows how the probability for λe,u decreases when the energy budget
e is fixed and the demanded degree of utility tends to ∞.
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State properties Φ[r] or Ψ [r] can also impose a constraint on the expected value
of a random variable. For example, one might ask for the minimal initial energy
budget e that is needed to ensure that the expected degree of utility is at least
some predefined utility threshold u. Vice versa, an expectation quantile might
specify the maximal degree of utility that can be achieved when the expected
energy consumption is required to be less or equal some fixed value e.

In probabilistic models with nondeterminism (e.g., for modeling concurrency
by interleaving) such as Markov decision processes (MDPs), quantiles can be
defined either in an existential or in a universal version, depending on whether
the quantile is used in a worst-case analysis (where all possible resolutions of the
nondeterminism are taken into account) or whether the task is to synthesize a
control mechanism that schedules actions in an optimal way.

As the above examples suggest, quantiles can be seen as a concept to reason
about the trade-off between different quantitative aspects, such as energy and
utility. Thus, they yield an alternative to multi-objective reasoning for MDPs by
means of Pareto optimal schedulers for multiple objectives given as Boolean com-
binations of constraints on the probabilities for certain events and/or expected
accumulated costs [11,12]. The demand for algorithms to compute quantiles in
Markovian models occurred to us during case studies with resource management
protocols [3]. However, in various case studies with probabilistic model checkers
carried out by other researchers, quantiles have been used implicitly in diagrams
illustrating the evaluation results of the experimental studies.

Model-checking algorithms for various types of properties with fixed reward
bounds have been proposed for discrete Markovian models and implemented in
tools, see, e.g., [1,18,15]. The task to compute quantiles is, however, more chal-
lenging since it requires to compute an optimal reward bound for parameter-
ized objectives. Our recent paper [4] briefly considers quantiles for discrete and
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continuous-time Markov chains, as an example for nonstandard multi-objective
reasoning. To the best of our knowledge, [22] is the only paper where the
computation of quantiles has been addressed for MDPs. It considers quantiles
in MDPs with a nonnegative reward function for the states where the objec-
tive is a probability constraint for a reachability property with an upper re-
ward bound r, formalized using the temporal reward-bounded until operator
U6r. The above mentioned quantile min{e : s |= Φu[e]} appears as a special
case since Φu[e] can be seen as a probability constraint for the path property
λe,u = ♦6e(utility > u) = true U6e(utility > u). In [22], polynomial-time algo-
rithms for qualitative constraints where the probability bounds are 0 or 1 and
an iterative linear-programming (LP) approach for probability bounds p with
0 < p < 1 has been presented. The minimal or maximal probabilities for a path
property AU6r B for r = 0, 1, 2, . . . is calculated until the probability bound p
is reached, where the extrema are taken over all resolutions of nondeterminism.
This approach appears to be naïve, but the computation of quantiles is known
to be computationally hard (at least NP-hard already for Markov chains by the
results of [19]). This is reflected in the exponential upper bound in [22] for the
number of iterations and the size of the LPs to be solved.

Contribution. First, we generalize the approach of [22] by introducing general
notions of quantiles in MDPs where the objective can either be a probability con-
straint or a constraint on an expectation (Sec. 3). Second, we revisit the iterative
LP approach suggested by [22] and discuss refinements that make the approach
feasible in practice. The core idea is an iterative method that propagates interme-
diate results as much as possible and follows the dynamic-programming scheme
with embedded LPs to deal with zero-reward cycles (Sec. 4.2). We implemented
this approach into Prism [14] and study its performance by means of an energy-
aware job-scheduling system (Sec. 6). Third, we present new algorithms for the
computation of quantiles in MDPs where the objective is (a) either a probability
constraint for reachability conditions with lower reward bounds (Sec. 4.3), or
(b) a constraint on the expected accumulated reward (Sec. 5). These algorithms
also rely on an iterative LP approach and the propagation principle is applica-
ble as well (Sec. 4). Although we are not aware that expectation quantiles in
MDPs have been addressed before, the presented algorithm for (b) shares some
similarities with algorithms that have been proposed for stochastic shortest path
problems [6] and to maximize/minimize the expected cost to reach a target [10].

2 Preliminaries

We provide a brief summary of the relevant concepts of MDPs and specifications
given as formulas in probabilistic computation tree logic with reward-bounded
modalities (PRCTL). Further details can be found, e.g., in [20,9,5].

Markov decision processes (MDPs). An MDP is a tuple M = (S,Act , P ),
where S is a finite set of states, Act a finite set of actions, P : S×Act×S → [0, 1]
such that

∑
s′∈S P (s, α, s

′) ∈ {0, 1} for all states s ∈ S and actions α ∈ Act. The
tuples (s, α, s′) ∈ S×Act×S with P (s, α, s′) > 0 are called steps and we then say
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that state s′ is an α-successor of s. We write Act(s) for the set of actions α that
have an α-successor from state s ∈ S and require that Act(s) 6= ∅ for all states
s. Intuitively, if the current state of M is s, then first there is a nondeterministic
choice to select one of the enabled actions α. Then, M behaves probabilistically
and moves with probability P (s, α, s′) to some state s′. Markov chains are purely
probabilistic instances of MDPs, i.e., where the action set is a singleton.

Paths in an MDP M can be seen as sample runs with resolved nondetermin-
ism. Formally, paths are finite or infinite sequences π = s0 α0 s1 α1 s2 α2 . . . ∈
(S×Act)∗S ∪ (S×Act)ω that are built by consecutive steps, i.e., αi ∈ Act(si) and
P (si, αi, si+1) > 0 for all i. π[k] denotes the (k+1)-st state in π and pref (π, k)
the prefix of π consisting of the first k steps, ending in state π[k] = sk. We write
FPaths(s) for the set of finite paths and IPaths(s) for the set of infinite paths
starting in s.

Reward structure. A reward structure R for M consists of finitely many
reward functions rew : S × Act → N. If π = s0 α0 s1 α1 . . . αn−1 sn is a finite
path, then the accumulated reward rew(π) is the sum of the rewards for the
state-action pairs, i.e., rew(π) =

∑
06i<n rew(si, αi).

Schedulers and induced probability space. Reasoning about probabilities
for path properties in MDPs requires the selection of an initial state and the
resolution of the nondeterministic choices between the possible transitions. The
latter is formalized via schedulers, often also called policies or adversaries, which
take as input a finite path and select an action to be executed. A (deterministic)
scheduler is a function S : FPaths → Act such that S(π) ∈ Act

(
sn

)
for all

finite paths π = s0 α0 . . . αn−1 sn. An S-path is any path that arises when the
nondeterministic choices in M are resolved using S, i.e., S

(
pref (π, k)

)
= αk for

all 0 6 k < n. Infinite S-paths are defined accordingly. Given some scheduler S

and state s (viewed as the initial state), the behavior of M under S is purely
probabilistic and can be formalized by a tree-like (infinite-state) Markov chain
MS

s . One can think of the states in MS
s as finite S-paths π = s0α0 . . . αn−1sn

starting in state s, where the probability to move from π to π α s′ is simply
P (sn, α, s

′). Using standard concepts of measure and probability theory, a sigma-
algebra and a probability measure PrSs for measurable sets of the infinite paths
in the Markov chain MS

s , also called (path) events or path properties, is defined
and can be transferred to maximal S-paths in M starting in s. For further
details, we refer to standard text books such as [13,16,20].

For a worst-case analysis of a system modeled by an MDP M, one ranges
over all initial states and all schedulers (i.e., all possible resolutions of the non-
determinism) and considers the minimal or maximal probabilities for ϕ. If ϕ
represents a desired path property, then Prmin

s (ϕ) = infS PrSs (ϕ) is the proba-
bility for M satisfying ϕ that can be guaranteed even for worst-case scenarios,
i.e., when ranging over all schedulers. Similarly, if ϕ stands for a bad (undesired)
path property, then Prmax

s (ϕ) = supS PrSs (ϕ) is the least upper bound that can
be guaranteed for the bad behaviors.

State and path properties. Let s be a state, p ∈ [0, 1] a probability bound,
⊲⊳ ∈ {<,6,>, >} and ϕ a path property. We write s |= ∃P⊲⊳p(ϕ) if there exists
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a scheduler S with PrSs (ϕ) ⊲⊳ p. Similarly, s |= ∀P⊲⊳p(ϕ) if PrSs (ϕ) ⊲⊳ p for all
schedulers S. Given a reward structure R with reward function rew , sets A,
B ⊆ S, and r ∈ N, then AU((rew ⊲⊳ r)∧B ) stands for the set of infinite paths π̃
such that there is some k ∈ N with rew( pref (π̃, k) ) ⊲⊳ r and π̃[k] ∈ B, π̃[i] ∈ A
for 0 6 i < k. If rew is clear from the context (e.g., if the reward structure R is
a singleton), we briefly write AU⊲⊳r B rather than AU

(
(rew ⊲⊳ r)∧B

)
. We often

use the notation π |= AU⊲⊳r B instead of π ∈ AU⊲⊳r B. As usual, we derive
the release operator R by AR⊲⊳r B = ¬(¬AU⊲⊳r ¬B), where ¬B denotes the
complement of B. The temporal modalities ♦ (eventually) and � (always) with
or without reward-bounds are derived as usual, e.g., ♦⊲⊳rB = true U⊲⊳r B and
�⊲⊳rB = ¬♦⊲⊳r¬B, where true stands for the full state space.

Reward-bounded path properties such as ϕ[r] = AU6r B are called increas-
ing as π̃ |= ϕ[r] implies π̃ |= ϕ[r+1]. The dual path properties ψ[r] = ¬ϕ[r] are
called decreasing as π̃ |= ψ[r+1] implies π̃ |= ψ[r]. Analogously, a state property
Φ[r] is called increasing if s |= Φ[r] implies s |= Φ[r+1]. Examples for increas-
ing state properties are ∃P>p(ϕ[r]), ∀P>p(ϕ[r]), ∃P<p(ψ[r]) and ∀P<p(ψ[r]).
Decreasing state properties are defined accordingly.

Sub-MDPs, end components. We use the notion sub-MDP of M for any pair
(T,A) where T ⊆ S and A : T → 2Act such that for all t ∈ T : (1) A(t) ⊆ Act(t)
and (2) if α ∈ A(t) and P (t, α, t′) > 0 then t′ ∈ T . An end component of M is a
sub-MDP (T,A) of M where A(t) is nonempty for all t ∈ T and the underlying
directed graph with node set T and the edge relation t→ t′ iff P (t, α, t′) > 0 for
some α ∈ A(t) is strongly connected. An end component is said to be maximal
if it is not contained in any other end component.

3 Quantiles

As stated in the introduction, quantiles in MDPs can be defined for arbitrary
objectives given by increasing or decreasing parameterized state properties. We
now provide general definitions for quantiles in MDPs where the state proper-
ties impose either a probability or an expectation constraint, and identify the
instances for which we present algorithms in the next two sections.

Quantiles for probability objectives. Let M = (S,Act , P ) be an MDP as
in Sec. 2 and rew : S × Act → N a distinguished reward function in its reward
structure. Given an increasing path property ϕ[r] where parameter r ∈ N stands
for some bound on the accumulated reward, we define the following types of
existential quantiles, where ψ[r] = ¬ϕ[r], D ∈ {>, >} and p ∈ [0, 1] ∩Q:

Qus
(
∃PDp(ϕ[?])

)
= min

{
r ∈ N : s |= ∃PDp

(
ϕ[r]

) }

= min
{
r ∈ N : Prmax

s

(
ϕ[r]

)
D p

}

Qus
(
∃PDp(ψ[?])

)
= max

{
r ∈ N : s |= ∃PDp

(
ψ[r]

) }

= max
{
r ∈ N : Prmax

s

(
ψ[r]

)
D p

}
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Similarly, we can define the corresponding types of universal quantiles:

Qus
(
∀PDp(ϕ[?] )

)
= min

{
r ∈ N : Prmin

s

(
ϕ[r]

)
D p

}

Qus
(
∀PDp(ψ[?] )

)
= max

{
r ∈ N : Prmin

s

(
ψ[r]

)
D p

}

From each of these quantiles we can derive three more quantiles by applying
duality arguments, e.g., Prmax

s (ϕ[r]) = 1−Prmin
s (ψ[r]), and the fact that min{r ∈

N : s |= Φ[r]} equals max{r ∈ N : s 6|= Φ[r−1]} when Φ[r] is an increasing state
property. For example:

min
{
r ∈ N : Prmax

s

(
ϕ[r]

)
> p

}
= min

{
r ∈ N : Prmin

s

(
ψ[r]

)
< 1−p

}

= max
{
r ∈ N : Prmin

s

(
ψ[r−1]

)
> 1−p

}

= max
{
r ∈ N : Prmax

s

(
ϕ[r−1]

)
6 p

}

This observation yields groups of four quantiles that are derivable from each
other. See [2] for the list of quantile dualities. For the above example we have:

Qus
(
∃P>p(ϕ[?])

)
= Qus

(
∃P<1−p(ψ[?])

)

= Qus
(
∀P>1−p(ψ[?])

)
+ 1 = Qus

(
∀P6p(ϕ[?])

)
+ 1

The quantiles studied in [22] are obtained by considering ϕ[r] = AU6r B and
ψ[r] = (¬A)R6r(¬B). Additionally, we address until-properties with lower re-
ward bounds, i.e., ϕ[r] = AU>r B and ψ[r] = (¬A)R>r(¬B). To investigate the
interplay of two reward functions (such as one for energy and one for utility) we
also address path formulas where instead of the sets A and B, constraints for
some other reward function are imposed. For instance:

λe,u = ♦
(
(energy 6 e) ∧ (utility > u)

)
,

where e, u ∈ N and energy and utility stand for the accumulated reward along
finite paths of reward functions erew : S ×Act → N (for the energy) and urew :
S × Act → N (for the utility). For an infinite path π̃, we have π̃ |= λe,u iff π̃
has a finite prefix π with erew(π) 6 e and urew(π) > u. Likewise, λe,u can
be interpreted as an instance of an until-property with an upper or a lower
reward bound. For fixed utility threshold u, the path property ϕ[e] = λe,u =
♦6e(utility > u) is increasing, while ψ[u] = λe,u = ♦>u(energy 6 e) is decreasing
for fixed energy budget e. The task to compute the existential quantiles

Qus
(
∃P>p(λ?,u)

)
= min

{
e ∈ N : Prmax

s (λe,u) > p
}

Qus
(
∃P>p(λe,?)

)
= max

{
u ∈ N : Prmax

s (λe,u) > p
}

corresponds to the problem of constructing a scheduler that minimizes the en-
ergy ensuring that the achieved utility is at least u with probability > p or to
maximize the achieved degree of utility for a given energy budget e. Analogously,
universal quantiles provide the corresponding information on the energy-utility
characteristics in worst-case scenarios.

Quantiles for expectation objectives. We also consider quantiles where
the objective is the minimal or maximal expected value of a random variable
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f [r] : IPaths → N ∪ {∞}. For instance, if f [r] is increasing in r and θ some
rational threshold, then an expectation quantile can be defined as the least r ∈ N

such that the expected value of f [r] is larger than θ for all or some scheduler(s).
As an example for quantiles with expectation objectives, we consider a Boolean
condition cond for finite paths and the random variable f [e] = utility |cond :
IPaths → N ∪ {∞} that returns the utility value that is earned along finite
paths where cond holds. Formally:

utility |cond(π̃) = sup
{
urew

(
pref (π̃, k)

)
: k ∈ N, pref (π̃, k) |= cond

}

That is, if π̃ is an infinite path with π̃ |= ♦cond (i.e., pref (π̃, k) |= cond for
some k ∈ N) then utility |cond(π̃) = urew(π), where π is the longest prefix of
π̃ with π |= cond . If π̃ |= �cond (i.e., pref (π̃, k) |= cond for all k ∈ N) then
utility |cond(π̃) can be finite or infinite, depending on whether there are infinitely
many positions i with urew(si, αi) > 0. Given a scheduler S and a state s in
M, the expected utility for condition cond is the expected value of the random
variable utility |cond under the probability measure induced by S and s:

ExpUtilSs
(
cond

)
=

∑
r∈N

r · PrSs
{
π̃ ∈ IPaths : utility |cond(π̃) = r

}

Note that ExpUtilSs
(
cond

)
= ∞ is possible if PrSs

(
♦�(cond)

)
> 0. We define

ExpUtilmax
s

(
cond

)
= sup

S

ExpUtilSs
(
cond

)
.

ExpUtilmin
s (cond) is defined accordingly, taking the infimum over all schedulers

rather than the supremum. Expectation energy-utility quantiles can be formal-
ized by dealing with conditions cond [e] that are parameterized by some energy
value e ∈ N. Examples are the following quantiles that fix a lower bound u for
the extremal expected degree of utility and ask to minimize the required energy:

Qus
(
∃ExpU>u( energy 6? )

)
= min

{
e ∈ N : ExpUtilmax

s

(
energy 6 e

)
> u

}

Qus
(
∀ExpU>u( energy 6? )

)
= min

{
e ∈ N : ExpUtilmin

s

(
energy 6 e

)
> u

}

where π |= (energy 6 e) iff erew(π) 6 e. Analogous definitions can be provided
for quantiles that ask to maximize the achieved utility if an upper bound e for
the expected consumed energy is given.

4 Computing probability quantiles

We now present algorithms for the computation of the quantitative quantiles
introduced in Sec. 3. We start in this section with quantiles where the objective
is a constraint on the extremal probability for a reward-bounded until formula.
As stated before, quantiles that refer to reward-bounded release formulas are
dual and can be computed using the same techniques.

Recently, a linear-programming (LP) approach for computing quantiles for
(constrained) reachability properties with upper reward bounds (briefly called
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minimize
∑

(s,i)∈S[r]

xs,i where S[r] = S × {0, 1, . . . , r}, subject to

xs,i = 0 if s 6|= ∃(AUB) and 0 6 i 6 r

xs,i = 1 if s ∈ B and 0 6 i 6 r

xs,i >
∑
t∈S

P (s, α, t) · xt,i−rew(s,α) if s /∈ B, s |= ∃(AUB) and α ∈ Act(s)

such that rew(s, α) 6 i 6 r

Fig. 1. Linear program LPr with the unique solution ps,i = Pr
max
s

(
AU6i B

)

U6?-quantiles) in MDPs with state rewards has been suggested [22]. We first
recall this approach for quantitative U6?-quantiles (Sec. 4.1) and then provide
an efficient computation scheme that relies on an iterative back-propagation
procedure including several heuristics (Sec. 4.2). In Sec. 4.3, we briefly show how
to adapt these methods for reachability properties with lower reward bounds.

4.1 Iterative linear-programming based approach

We recall the approach of [22], focusing on existential U6?-quantiles with strict
probability bounds. Other U6?-quantiles can be treated similarly (see [22]).

The idea for computing Qus( ∃P>p(AU6?B) ) is to first apply standard
methods for computing the maximum probability ps = Prmax

s (AUB) for the
unbounded until formula AUB. If ps does not meet the probability bound p,
i.e., ps 6 p, the quantile is infinite for state s. For ps > p, the idea of [22] is to
compute the maximal probabilities ps,r = Prmax

s (AU6r B) for increasing reward
bound r, until ps,r > p. For this purpose, [22] provides an LP with variables
xs,i for (s, i) ∈ S[r] = S × {0, 1, . . . , r} and the unique solution (ps,i)(s,i)∈S[r],

where ps,i = Prmax
s (AU6iB ). Fig. 1 shows the LP of [22], adapted for the case

of state-action rewards (rather than state rewards). This LP-based computation
scheme can be solved in exponential time, as shown in [22] by establishing an
upper bound rmax for the smallest (finite) quantile. A naïve approach thus could
first compute rmax, generate the LP with variables xs,i for (s, i) ∈ S[rmax] and
then use general-purpose linear- or dynamic-programming techniques to solve
the constructed LP (e.g., the Simplex algorithm, ellipsoid methods or value or
policy iteration). However, since the upper bound rmax is exponential in the size
of M and depends on the number of states in M, the transition probabilities
and rewards in M and the probability bound p, this approach turns out to be
intractable when M or the reward values are large.

4.2 Back-propagation approach

The main bottleneck of the LP approach for computing quantitative quantiles
is the possibly exponential size of the LP. We propose an iterative approach
that computes the values ps,i = Prmax

s (AU6iB) successively for i = 0, 1, 2, . . .
by decomposing the LP in Fig. 1 into smaller ones and propagating already
computed values as much as possible. Due to the reuse of already computed
values, we call this approach back-propagation (BP) approach.
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Given that the solution (ps,j)06j<i for LPi−1 is known when considering
LPi, the constraints for variable xs,i in the third case of Fig. 1 (i.e., if s /∈ B,
s |= ∃(AUB) and α ∈ Act(s)) can be rewritten as follows:

xs,i > cs,i
def

= max
{ ∑

t∈S

P (s, α, t) · pt,i−rew(s,α) : α ∈ Act(s), rew(s, α) > 0
}

xs,i >
∑

t∈S P (s, α, t) · xt,i if rew(s, α) = 0

We can now use standard methods to solve LP
′
i with variables (xs,i)s∈S con-

sisting of the above linear constraints together with the terminal cases xs,i = 0
if s 6|= ∃(AUB) and xs,i = 1 if s ∈ B, where the objective is to “minimize∑

s∈S xs,i”. LP
′
i has indeed a unique solution which agrees with the (unique)

solution (ps,i)s∈S of LPi for the variables xs,i.

Suppose the task is to compute qs = Qus( ∃P>p(AU6?B) ) for all states s.
Let n = |S|, m =

∑
s∈S |Act(s)| and z be the number of state-action pairs (s, α)

for which s ∈ S, α ∈ Act(s) and rew(s, α) = 0. Then, with the proposed back-
propagation approach, (qs)s∈S is obtained by first computing Prmax

s (AUB) for
all states s (which can be done in time polynomial in the size of M [7,5] and
serves to identify the states s ∈ S where qs = ∞) and then solving the LPs
LP

′
0,LP

′
1, . . . ,LP

′
r (where r ∈ max{qs : Prmax

s (AUB) > p}) with n variables
and z + |S| linear constraints each.

Reward window. To reduce the memory requirements, we can use the obser-
vation that the constants cs,i in LP

′
i are obtained from the values pt,i−rew(s,α)

where α ∈ Act(s) and rew(s, α) > 0. As a consequence, the solution
(
pt,i

)
t∈S

for

LP
′
i can be discarded as soon as LP

′
i+w has been solved for the maximal reward

value w = max
{
rew(s, α) : s ∈ S, α ∈ Act(s)

}
in M. A further improvement

considers the maximum reward of all incoming transitions per state. That is, the
value of pt,i is not needed any more as soon as LP

′
i+w has been solved where w

equals the maximal reward of the state-action pairs (s, α) with P (s, α, t) > 0.

Linear programs for zero-reward sub-MDP. The back-propagation ap-
proach can yield a major speed-up compared to the naïve approach with a single
LP. However, if the number of state-action pairs with zero reward is large com-
pared to the full set of actions in S, LP′

i needs still to be solved for several i. The
idea then is to decompose LP

′
i and treat the sub-LPs in a specific order. Let G

be the directed graph with node set S and the edge relation →⊆ S×S given by
s→ t iff P (s, α, t) > 0 for some action α ∈ Act(s) with rew(s, α) = 0. Applying
standard graph algorithms, we compute the strongly connected components in G
and a topological sorting C1, . . . , Ck for them. Then the SCCs C1, . . . , Ck are the
finest partition of S such that: if s ∈ Ch, t ∈ Cj , P (s, α, t) > 0 and rew(s, α) = 0,
then h 6 j. Thus, we can decompose LP

′
i into LPs LP′

i,1, . . . ,LP
′
i,k, where LP

′
i,h

consists of the linear constraints xs,i > cs,i and

xs,i >
∑

t∈Ch

P (s, α, t) · xt,i +
∑

u∈C>h

P (s, α, u) · pu,i

for s ∈ Ch, α ∈ Act(s), rew(s, α) = 0. Here, C>h = Ch+1 ∪ . . . ∪ Ck and
(pu,i)u∈Cj

denotes the solutions of LP′
i,j . The objective of LP′

i,h is to minimize
the sum

∑
s∈Ch

xs,i.
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Assuming that the sub-MDP M|rew=0 of M resulting by removing all actions
α from Act(s) with rew(s, α) > 0 is acyclic, no LP has to be solved within our
approach. In this case, the sets C1, . . . , Ck are singletons, say Ch = {sh}, and
the solution

(
ps,i

)
s∈S

is obtained directly when processing the states in reversed
topological order sk, sk−1, . . . , s1.

Other improvements. Several other heuristics can be integrated to speed up
the computation time or to decrease the memory requirements. For instance,
zero-reward self-loops can be removed by a quantile-preserving transformation
M M′. The MDP M′ has the same state space S as M and the same rewards
for all state-action pairs. The transition probability function P ′ of M′ is given by
P ′(s, α, t) = P (s, α, t)/(1−P (s, α, s)) if rew(s, α) = 0, t 6= s and 0<P (s, α, s)<1
and P ′(s, α, t) = P (s, α, t) in all other cases (see [2]). Another heuristic, which
is however not yet realized in our implementation, is the aggregation method
proposed in [8]. This approach permits to collapse all states belonging to the
same maximal end components in the sub-MDP M|rew=0 into a single state.

4.3 Lower reward bounds

The approach for computing U6?-quantiles can be adapted to compute quantiles
for (constrained) reachability formulas with lower reward bounds, i.e., AU>?B.
For simplicity, we sketch only the treatment of reachability (♦>?B) with a lower
reward bound. More details and proofs can be found in [2]. We start with the
universal quantile:

Qus
(
∀P<p(♦

>?B)
)

= min
{
r ∈ N : Prmax

s

(
♦>rB

)
< p

}

Clearly, if Prmax
s (♦B) < p then the quantile for state s is 0. Furthermore:

Qus
(
∀P<p(♦

>?B)
)
= ∞ iff Prmax

s

(
♦(C ∧ ♦B)

)
> p,

where C consists of all states t that are contained in a maximal end component
(T,A) with rew(t′, α) > 0 for some state t′ ∈ T and an action α ∈ A(t′).
Intuitively, when entering C one can stay in C until the accumulated reward is
greater or equal than r, before entering B. Otherwise, we apply the same idea
as before and compute the values ps,r = Prmax

s (♦>rB) for increasing r until
ps,r < p. The values ps,r are obtained as the unique solution of the following LP
with variables xs,i for (s, i) ∈ S[r] and the following constraints for s ∈ S and
1 6 i 6 r:

xs,0 = Prmax
s

(
♦B

)

xs,i > 0

xs,i >
∑
t∈S

P (s, α, t) · xt,ℓ if α ∈ Act(s) and ℓ = max{0, i− rew(s, α)}

The objective is to minimize
∑

(s,i)∈S[r] xs,i. To speed up the computation, one

can add the following constraints: xs,i = 1 if Prmax
s

(
♦(C ∧ ♦B)

)
= 1 for s ∈ S.
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The existential quantile

Qus
(
∃P<p(♦

>?B)
)

= min
{
r ∈ N : Prmin

s

(
♦>rB

)
< p

}

can then be computed by an analogous approach, using the fact that the values
ps,r = Prmin

s

(
♦>rB

)
are the greatest solutions in [0, 1] of the linear constraints

xs,0 = Prmin
s

(
♦B

)

xs,i = 0 if i > 1, Prmin
s (♦B) = 0 or Prmin

s (♦posR) = 0

xs,i 6
∑
t∈S

P (s, α, t) · xt,ℓ if i > 1, Prmin
s (♦B) > 0 and Prmin

s (♦posR) > 0,

α ∈ Act(s) and ℓ = max{0, i− rew(s, α)}

where posR ⊆ S × Act is the set of state-action pairs (s, α) with rew(s, α) > 0.
Then, Qus

(
∃P<p(♦

>?B)
)
= ∞ iff Prmin

s

(
�♦B ∧ �♦posR

)
> p. Again, one

could add the following constraints: xs,i = 1 if Prmin
s (�♦B ∧ �♦posR) = 1 for

s ∈ S. Obviously, the back-propagation approach (cf. Sec. 4.2) is applicable for
the existential and universal quantiles with lower bounds as well.

4.4 Energy-utility quantiles

The energy-utility quantile Qus
(
∃P>p(λ?,u)

)
as introduced in Sec. 3 can be

computed using the same techniques as explained for quantiles of the form
Qus

(
∃P>p(♦

6?B)
)
. For this purpose, we might use an automaton Uu with states

q0, q1, . . . , qu−1, qu representing the accumulated utility value. The goal state qu
represents that the achieved utility is at least u. The transitions of Uu are given
by qi → qj for j > i. We put M and Uu in parallel to obtain an MDP M⊗Uu with
a single reward function for the energy and synchronous transitions that capture
the meaning of Uu’s states. Formally, M⊗Uu = (S×{q0, . . . , qu},Act , P

′) where

P ′(〈s, qi〉, α, 〈t, qj〉) = P (s, α, t) if j = min{u, i+ urew(s, α)}

and P ′(·) = 0 in all other cases. The reward structure of M ⊗ Uu consists of
the energy reward function erew lifted to the product. That is, we deal with the
reward function erew ′ for M⊗Uu given by erew ′(〈s, qi〉, α) = erew(s, α) for all
s ∈ S, 0 6 i 6 u and α ∈ Act . With B = S × {qu}, we then have

Prmax
M,s

(
♦( (energy 6 e) ∧ (utility > u) )

)
= Prmax

M⊗Uu,〈s,q0〉

(
♦6eB

)

and therefore QuMs ( ∃P>p(λ?,u) ) = QuM⊗Uu

〈s,q0〉
( ∃P>p(♦

6?B ) ).

The quantile Qus( ∃P>p(λe,?) ) is computable by an analogous automata-based
approach, but now using the LP approach suggested for lower reward bounds
(Sec. 4.3). Various other energy-utility quantiles can be computed using reduc-
tions to the case of reward-bounded until formulas or derived path properties. It
is obvious that an analogous automata-based approach is applicable for quantiles
where the objective is a probability constraint on path properties of the form
♦((rew ⊲⊳ r) ∧ κ), where κ is a Boolean combination of constraints of the form
rew i ⊲⊳i ri for multiple reward functions rew1, . . . , rewk (other than rew).
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5 Computing expectation quantiles

We now discuss how to compute the expectation quantiles in MDPs with two
reward functions erew and urew for modeling the energy requirements and the
achieved utility (see Sec. 3). Let us exemplify the approach computing

E∃
s = Qus

(
∃ExpU>u(energy 6?)

)
and E∀

s = Qus
(
∀ExpU>u(energy 6?)

)
.

Using known results for standard MDPs, we obtain that ExpUtilmax
s (energy 6 e)

is finite, provided that Prmin
s (♦(energy > e) ) = 1. If, however, M contains

end components where all the state-action pairs have zero energy reward then
Prmin

s (♦(energy > e) ) < 1 and ExpUtilmax
s (energy 6 e) = ∞ is possible.

Let us first make the simplifying assumption that all end components are both
energy- and utility-divergent, i.e., whenever (T,A) is an end component of M
then there exist state-action pairs (t, α) and (v, β) with t, v ∈ T and α ∈ A(t),
β ∈ A(v) such that erew(t, α) and urew(v, β) are positive. This assumption
yields that Prmin

s (♦(energy > e) ) = 1 and hence, ExpUtilmax
s ( energy 6 e ) and

ExpUtilmin
s ( energy 6 e ) are finite for all states s ∈ S and all energy bounds

e ∈ N. Moreover, lime→∞ ExpUtilSs (energy 6 e) = ∞ for each scheduler
S. This yields the finiteness of the expectation quantiles E∃

s and E∀
s . The

computation of E∃
s and E∀

s can be carried out using an iterative approach
as for probability quantiles. For E∃

s , we compute iteratively the values us,e =

ExpUtilmin
s (energy 6 e) until us,e > u, in which case E∃

s = e. It remains to
explain how to compute us,e. Again, we can use an LP-based approach and
characterize the vector (us,i)(s,i)∈S[e] as the unique solution of the LP with vari-
ables xs,i for (s, i) ∈ S[e] = S × {0, 1, . . . , e} and the objective to maximize the
sum of the xs,i’s subject to:

xs,i 6 urew(s, α) +
∑
t∈S

P (s, α, t) · xt,i−erew(s,α)

if α ∈ Act(s) and erew(s, α) 6 i 6 e. For computing E∀
s , the values vs,e =

ExpUtilmax
s (energy 6 e) can be computed by a similar schema, using the fact that

the vector (vs,i)(s,i)∈S[e] is the least solution in [0, 1]S[e] of the linear constraints

xs,i > urew(s, α) +
∑
t∈S

P (s, α, t) · xt,i−erew(s,α)

if α ∈ Act(s) and erew(s, α) 6 i 6 e. Obviously, the back-propagation approach
is applicable as well.

The computation of expectation quantiles for the general case, where no as-
sumptions on the end components are imposed, are detailed in [2]. Basically,
this computation relies on an analogous LP approach, but requires a preprocess-
ing step to identify the states where ExpUtilmax

s (energy 6 e) = ∞, respectively
ExpUtilmin

s (energy 6 e) = ∞ and computing those states where the quantile is
infinite. The main feature for this preprocessing is an analysis of end components,
similar as in [10,12].
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6 Implementation and case studies

In this section, we deal with our implementation of the algorithms for comput-
ing U6?-quantiles presented in Sec. 4.1 and 4.2 and demonstrate its usability
within case studies. Our implementation relies on the computation of extremal
probabilities for upper reward-bounded until properties on top of the explicit en-
gine of the prominent probabilistic model checker Prism version 4.1 [14], which
have not yet been supported within Prism so far. We compute quantiles either
by solving the LP of [22] (see Fig. 1) directly using the LP-solver lpsolve

1 or
with our back-propagation approach (BP). Our first case study is taken from
Prism’s benchmark suite [17], showing the applicability of our implementation
on relatively small models and compare the performance of the LP and BP ap-
proach. Then, we turn to computing energy-utility quantiles for an energy-aware
job-scheduling protocol. All calculations were carried out on a computer with
two Intel E5-2680 8-core CPUs at 2.70 GHz with 384GB of RAM. More detailed
information and further case studies can be found in [2].

Self-stabilization. The self-stabilizing protocol by Israeli and Jalfon is mod-
eled2 as an MDP for N equal processes organized in a ring, each having a token
at the beginning and aiming to randomly send and receive tokens until the ring
is in a stable state, i.e., only one process has a token. We used our quantile al-
gorithms to compute the minimal number of steps required for reaching a stable
state with probability of at least p for some schedulers (existential quantile) or
all schedulers (universal quantile). The latter problem also has been answered in

Table 1. Results for randomized self-stabilizing (existential and universal quantile)

model existential quantile universal quantile
N p states build result LP BP result LP BP

10 0.1 1,023 0.24s 18 118.38s 0.03s 26 403.36s 0.16s
0.5 " " 38 1,066.64s 0.05s 43 1,388.15s 0.09s

0.99 " " 117 11,552.55s 0.14s 130 19,794.61s 0.15s

15 0.1 32,767 1.56s 42 timeout 1.85s 61 timeout 3.78s
0.5 " " 89 timeout 3.85s 100 timeout 4.10s

0.99 " " 270 timeout 11.42s 305 timeout 12.18s

the referred Prism case study, but by iteratively increasing the step bound until
the probability bound p was met. Our approach is more elegant by implicitly
computing the probability values and answering only one (quantile) query. Table
1 shows our results for the LP and BP approach, with a timeout of 12 hours.
The time for BP covers the entire computation of the quantile value r. For LP,
we report the time for solving the linear program LPr. As it can be seen, the LP
approach turns out to be infeasible already for relatively small models, whereas
the BP implementation performs well. Table 1 also reveals that especially within

1 http://lpsolve.sourceforge.net, we used version 5.5.2, presolving deactivated
2 http://www.prismmodelchecker.org/casestudies/self-stabilisation.php#ij

http://lpsolve.sourceforge.net
http://www.prismmodelchecker.org/casestudies/self-stabilisation.php#ij
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Table 2. Results for energy-aware job scheduling (quantiles emin and umax)

model quantile emin

N p states build result time

4 0.1 368,521 14.67s 179 37.43s
0.5 " " 198 37.02s

0.99 " " 225 42.69s

5 0.1 6,079,533 377.95s 242 1,058.48s
0.5 " " 266 1,135.65s

0.99 " " 301 1,261.89s

model quantile umax

N p states build result time

4 0.1 872,410 14.47s 7 173.71s
0.5 " " 7 173.22s

0.99 " " 7 155.66s

5 0.1 3,049,471 65.69s 9 812.19s
0.5 " " 9 812.93s

0.99 " " 9 736.93s

the LP approach the time spent for evaluating the quantile increases significantly
when the probability bound p is high (and hence, also the quantile value is high).

Energy-aware job scheduling. We now turn to an energy-aware job-schedul-
ing protocol modeled as an MDP, for which we compute energy-utility quantiles.
Assume a system of N processes which need to enter a critical section in order
to perform tasks, each within a given deadline. Access to the critical section
is exclusively granted by a scheduler, which selects processes only if they have
requested to enter. When a process states such a request, a deadline counter is
set and decreased over time even if the process did not enter the critical section
yet. Since computing a task also requires a certain amount of time in the critical
section, deadlines can be exceeded. Utility is hence provided in terms of tasks
finished without exceeding their deadline. Each process consumes energy, espe-
cially if it is in the critical section, and the global energy consumption equals
the sum of energy consumed by all processes. Additional dependencies between
utility and energy arise as the scheduler can activate a turbo mode for the crit-
ical section, doubling the computation speed but tripling energy consumption.
As motivated in the introduction, we are now interested in the following energy-
utility quantiles, both illustrating the trade-off between energy and utility w.r.t.
several probability bounds p. We consider the quantile for the minimal energy
emin required to guarantee u successfully finished tasks, and the quantile for
the maximal number umax of tasks successfully finished by one process requir-
ing not more than e energy. Our experiments solving these quantiles used the
BP implementation with parameters u=N , e=50·N . The results shown in Table
2 illustrate that even for large model sizes with millions of states, our imple-
mentation of the BP algorithm is feasible. As expected, none of the quantile
computations for emin and umax finished within 12 hours when we used the LP
approach instead of our BP implementation.

7 Conclusion

We introduced a general notion of (energy-utility) quantiles for MDPs and ex-
tended the LP schema from [22] to compute quantitative quantiles with lower
and upper reward bounds, where the objective can be a probability constraint or
a constraint on an expectation. We implemented a BP approach for quantitative
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quantiles with upper reward bounds, which can significantly speed up quantile
computations, and demonstrated its performance by means of case studies.
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Appendix

In this appendix, we provide details and additional information that had to be
omitted from the main part of this paper due to lack of space. Sec. A provides
a list of the quantile dualities. Sec. B contains additional, technical details and
proofs for the computation of quantiles, i.e., for quantiles with lower reward
bounds (Sec. B.1), expectation quantiles (Sec. B.2), and soundness of the zero-
reward self-loop removal (Sec. B.3). Sec. C then provides further information on
our implementation and case studies.

A Quantile dualities

We list dualities for probability quantiles. However, similar dualities can also be
obtained for expectation quantiles. Here, we distinguish between quantiles with
respect to increasing and decreasing state properties.

Concerning increasing state properties:

Qus
(
∃P>p(A U6? B)

)
= Qus

(
∃P<1−p( (¬A) R

6? (¬B ) )
)

= Qus
(
∀P>1−p( (¬A) R

6? (¬B ) )
)
+ 1

= Qus
(
∀P6p(A U6? B)

)
+ 1

Qus
(
∃P>p(A R>? B)

)
= Qus

(
∃P<1−p( (¬A) U

>? (¬B ) )
)

= Qus
(
∀P>1−p( (¬A) U

>? (¬B ) )
)
+ 1

= Qus
(
∀P6p(A R>? B)

)
+ 1

Qus
(
∀P>p(A U6? B)

)
= Qus

(
∀P<1−p( (¬A) R

6? (¬B ) )
)

= Qus
(
∃P>1−p( (¬A) R

6? (¬B ) )
)
+ 1

= Qus
(
∃P6p(A U6? B)

)
+ 1

Qus
(
∀P>p(A R>? B)

)
= Qus

(
∀P<1−p( (¬A) U

>? (¬B ) )
)

= Qus
(
∃P>1−p( (¬A) U

>? (¬B ) )
)
+ 1

= Qus
(
∃P6p(A R>? B)

)
+ 1

Concerning decreasing state properties:

Qus
(
∃P>p(A U>? B)

)
= Qus

(
∃P<1−p( (¬A) R

>? (¬B ) )
)

= Qus
(
∀P>1−p( (¬A) R

>? (¬B ) )
)
− 1

= Qus
(
∀P6p(A U>? B)

)
− 1
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Qus
(
∃P>p(A R6? B)

)
= Qus

(
∃P<1−p( (¬A) U

6? (¬B ) )
)

= Qus
(
∀P>1−p( (¬A) U

6? (¬B ) )
)
− 1

= Qus
(
∀P6p(A R6? B)

)
− 1

Qus
(
∀P>p(A U>? B)

)
= Qus

(
∀P<1−p( (¬A) R

>? (¬B ) )
)

= Qus
(
∃P>1−p( (¬A) R

>? (¬B ) )
)
− 1

= Qus
(
∃P6p(A U>? B)

)
− 1

Qus
(
∀P>p(A R6? B)

)
= Qus

(
∀P<1−p( (¬A) U

6? (¬B ) )
)

= Qus
(
∃P>1−p( (¬A) U

6? (¬B ) )
)
− 1

= Qus
(
∃P6p(A R6? B)

)
− 1

B Technical details on the computation of quantiles

Before we state technical proofs for statements about computing lower-bound
and expectation quantiles, we first introduce some more notions for schedulers.

Finite-memory and memoryless schedulers. Let π = s0α0 . . . αn−1sn be
a finite path. Then last(π) denotes the state sn reached by π. A scheduler S is
called finite-memory scheduler if there exists a finite set M of modes, a decision
function dec : S × M → Act , an initial mode function init : S → M, and a
next-mode function next : M × S → M such that for each S-path π we have
S(π) = dec

(
last(π),m(π)

)
, where m(π) is defined inductively on the length of

finite paths by m(s0) = init(s0) and m(π α s) = next
(
m(π), s

)
. The size of a

finite-memory scheduler is the number of modes.
The notion of a memoryless scheduler is used for finite-memory schedulers

with a single mode.

Optimal and adversarial schedulers. Considering an existential quantile,
say R = Qus(∃P>p(ϕ[?])), scheduler S is said to be optimal if PrSs (ϕ[R]) > p.
Scheduler S is called adversarial for the universal quantile R = Qus(∀P>p(ϕ[?]))

if PrSs (ϕ[R−1]) 6 p. The definition of optimal and adversarial schedulers for
other quantiles is analogous.

A simple consequence of the representation of Prmax
s

(
AU6r B

)
as the unique

solution of the linear program in Fig. 1 is the existence of a finite-memory sched-
uler S with the modes 0, 1, . . . , r that maximizes the probability for AU6r B.
The same holds for Prmin

s

(
AU6r B

)
and maximal or minimal probabilities for

AU>r B by an adaption of the linear programs presented in Sec. 4.3 for the
♦>rB reachability formulas. In particular, we obtain:

Lemma 1 (Optimal schedulers for until-quantiles). For each of the exis-
tential until-quantiles there exists an optimal scheduler S such that for all finite
paths π1 and π2:
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if last(π1) = last(π2) and rew(π1) = rew(π2) then S(π1) = S(π2) (*)

For existential quantiles R = Qus(∃ . . .) there are optimal finite-memory sched-
ulers whose size is bounded by R+1.

Similarly, the universal until-quantiles have adversarial schedulers S satisfying
(*). Thus, an analogous statement holds for universal until-quantiles and adver-
sarial schedulers.

End components and limits of paths. It is well-known [9] that for any
scheduler S, the limit of almost all S-paths constitutes an end component.
Here, the limit of an infinite path π̃ = s0 α0 s1 α1 . . . is given by the set inf(π̃) of
states which appear infinitely often in π̃ and the function that assigns to each
state t ∈ inf(π̃) the set of actions α with (si, αi) = (t, α) for infinitely many i.

B.1 Quantiles for reachability with lower-reward bounds

Let C be the set of all states t ∈ S that are contained in some (maximal) end
component (T,A) with rew(t′, α) > 0 for some state t′ ∈ T and some action
α ∈ A(t′).

Lemma 2. For all states s in M, we have:

Qus
(
∀P<p(♦

>?B)
)

= ∞ iff Prmax
s

(
♦(C ∧ ♦B)

)
> p

Proof. We first observe:

min
{
r ∈ N : Prmax

s

(
♦>rB) < p

}
= ∞

iff there is no r ∈ N such that Prmax
s

(
♦>rB) < p

iff for all r ∈ N there exists a scheduler Sr with PrSr

s

(
♦>rB) > p

“⇐=”: Suppose Prmax
s

(
♦(C∧♦B)

)
> p. Let Sopt be a (finite-memory) scheduler

that maximizes the probability for ♦(C∧♦B) for all states. We pick some (finite-
memory) scheduler SC such that from each state t ∈ C with probability 1 all
states of the maximal end component (T,A) with t ∈ T will be visited infinitely
often and each of its actions will be taken infinitely often. Then, the accumulated
reward for almost all infinite SC-paths starting in a C-state is ∞. Furthermore,
let S♦B be a (memoryless) scheduler that maximizes the probability to reach
B for all states. Given r ∈ N, we now regard the scheduler Sr that operates in
three phases:

– Phase 1: As long as C has not been reached, Sr behaves as Sopt . As soon
as C has been reached, Sr switches from phase 1 to phase 2.

– Phase 2: Sr mimics SC , provided that the total accumulated reward is less
than r. If the current state belongs to C and the total accumulated reward
is larger or equal r then Sr switches from phase 2 to phase 3.

– Phase 3: Sr behaves as S♦B.
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When entering a C-state in the first phase and the total accumulated reward is
> r then Sr can move directly from phase 1 to the third phase.

We now use the fact that all states that belong to the same maximal end
component have the same maximal reachability probabilities [8]. This yields that
for each ρ ∈ {0, 1, . . . , r−1} and all states t of a maximal end component (T,A)
of M that contains at least one state-action pair with positive reward:

PrSr

t|rew=ρ

(
♦>rB

)

=
∑
t′∈T

PrSC

t|rew=ρ

(
C U>r t′

)
· Pr

S♦B

t′

(
♦B

)

=
∑
t′∈T

PrSC

t|rew=ρ

(
C U>r t′

)
· Prmax

t

(
♦B

)

= Prmax
t

(
♦B

)

Here, the notation PrSr

t|rew=ρ
indicates the probability under Sr under the con-

dition that state t has been just entered by switching from phase 1 to phase 2,
while the accumulated reward is ρ. We obtain:

PrSr

s

(
♦>rB

)

=
∑

06ρ<r

∑
(T,A)

∑
t∈T

PrSr

s

(
¬C U((rew = ρ) ∧ t)

)
· PrSr

t|rew=ρ

(
♦>rB

)

+
∑
t∈C

PrSr

s

(
¬C U((rew > r) ∧ t)

)
· Pr

S♦B

t

(
♦B

)

=
∑
t∈C

PrSopt

s

(
¬C U t

)
· Prmax

t

(
♦B

)

= Prmax
s

(
♦(C ∧ ♦B)

)

where (T,A) ranges over all maximal end components that contain a state-action
pair with positive reward.

“=⇒”: We now suppose that the quantile for the state s and the objective
∀P<p(♦

>?B) is ∞. Let
(
Sr

)
r∈N

be a family of schedulers such that:

PrSr

s

(
♦>rB

)
> p

The task is to show that Prmax
s (♦(C ∧♦B)) > p. For this we show that for each

ε > 0 there exists a scheduler S such that PrSs (♦(C ∧ ♦B)) > p− ε.
In what follows, we fix some positive ε. There exists some r ∈ N such that

for each scheduler S:

PrSs
(
(¬C)U>r B

)
< ε

This is due to the fact that the limit of almost all S-paths constitutes an end
component and that the reward earned in end components not contained in C
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is zero. For scheduler S = Sr we obtain:

p 6 PrSs
(
♦>rB

)

= PrSs
(
(¬C)U>r B

)
+ PrSs

(
♦(C ∧ ♦((rew > r) ∧B))

)

6 ε + PrSs
(
♦(C ∧ ♦B)

)

Hence, PrSs
(
♦(C ∧ ♦B)

)
is at least p− ε. �

Let M̃ be the MDP that results from M by adding two new states goal and fail

and a fresh action symbol τ with transition probabilities:

P (t, τ, goal) = Prmax
M,t

(
♦B

)

P (t, τ, fail) = 1− Prmax
M,t

(
♦B

)

if t ∈ C and P (s, τ, s′) = 0 for all states s ∈ S \ C, s′ ∈ S. The outgoing
transitions of the new states goal and fail are irrelevant for our purposes. We
then have:

Prmax
M,s

(
♦(C ∧ ♦B)

)
= Prmax

M̃,s

(
♦goal

)

The generation of M̃ mainly requires the computation of the values Prmax
M,s(♦B)

and the computation of the maximal end components of M. The former can be
done using graph algorithms and linear-programming techniques in time poly-
nomial in the size of M, while the latter is possible using standard algorithms
in time quadratic in the size of the underlying graph of M.

We now consider the existential quantile for until-properties with lower reward
bounds. We have:

min
{
r ∈ N : Prmin

s

(
♦>rB) < p

}
= ∞

iff there is no r ∈ N such that Prmin
s

(
♦>rB) < p

iff Prmin
s

(
♦>rB) > p for all r ∈ N

Obviously, this is the case if under each scheduler, with probability at least p, the
set B will be visited infinitely often and the accumulated reward tends to infinity.
Let posR ⊆ S × Act be the set of state-action pairs (s, α) with rew(s, α) > 0.

Lemma 3. For all states s in M, we have:

Qus
(
∃P<p(♦

>?B)
)

= ∞ iff Prmin
s

(
�♦B ∧ �♦posR

)
> p

To compute the minimal probability for the generalized Büchi condition �♦B ∧
�♦posR we can rely on standard techniques. We compute the set D consisting
of states that are contained in some end component (T,A) with T ∩ B = ∅ or
with rew(t′, α) = 0 for all actions α ∈ A(t′) and states t′ ∈ T . Then:

Prmin
s

(
�♦B ∧ �♦posR

)
= 1− Prmax

s

(
♦D

)
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Corollary 1. The following two problems are in P:

(a) decide whether Qus
(
∀P<p(♦

>?B)
)
= ∞

(b) decide whether Qus
(
∃P<p(♦

>?B)
)
= ∞

B.2 Expectation quantiles

We now explain how to compute expectation quantiles when no assumptions on
the end components are imposed. That is, there might exist end components that
contain no state-action pair with positive energy or utility reward. Essentially,
we can use the same linear program as sketched in Section 5, restricted to those
variables xs,e where ExpUtilmax

s (energy 6 e) <∞ resp. ExpUtilmin
s (energy 6 e) <

∞. Furthermore, we have to identify those states s where the quantile is infinite.

Zero-reward and reward-divergent end components

An end component (T,A) of M with erew(t, α) = 0 for all states t ∈ T and
actions α ∈ A(t) is called a zero-energy end component. (T,A) is called energy-
divergent if there is some state-action pair (t, α) with t ∈ T , α ∈ A(t) and
erew(t, α) > 0.

We write ZE for the set of all states t ∈ S that are contained in some zero-
energy end component, and ED for the set of all states t that belong to some
energy-divergent end component.

Similar notations are used for the utility reward function. End components
(T,A) with urew(t, α) > 0 for some state-action pair (t, α) where t ∈ T and
α ∈ A(t) are said to be utility-divergent. End components that are not utility-
divergent are called zero-utility end components. UD denotes the set of states
that are contained in some utility-divergent end component, while ZU stands
for the set of states that are contained in some zero-utility end component.

The sets UD and ED are obtained using standard algorithms for computing
maximal end components, see, e.g., [CY95] and [9,5]. Note that t ∈ UD if and
only if there exists a maximal end component of M that contains t and that
is utility-divergent. The analogous statement holds for ED . This, however, does
not hold for ZE and ZU since zero-energy end components might be contained
in energy-divergent maximal end components. Nevertheless, the computation of
ZE and ZU can also be carried out using algorithms to determine maximal
end components of the sub-MDPs M|erew=0 and M|urew=0, respectively. For
instance, M|erew=0 results from M by successively removing actions and states.
We start dropping all actions α with erew(s, α) > 0 from Act(s). We then remove
all states s where Act(s) is empty and all actions β with P (s′, β, s) > 0 from
Act(s′), and so on.

Lemma 4. The sets ZE , ED , ZU and UD can be computed in time quadratic
in the size of the underlying graph of M.
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Expected accumulated utility for fixed energy budget

For each infinite path π̃ = s0 α0 s1 α1 s2 α2 . . . and fixed energy budget e ∈ N,
utility |energy6e(π̃) = ∞ if and only if for each u ∈ N there exists a finite prefix
π of π̃ such that energy(π) 6 e and utility(π) > u. As the energy budget e is
fixed, this is only possible if there exists some k ∈ N such that erew(si, αi) = 0
for all i > k and urew(si, αi) > 0 for infinitely many indices i. Hence, if π̃ =
s0 α0 s1 α1 s2 α2 . . . then utility |energy6e(π̃) = ∞ if and only if there exists k ∈ N

such that

(1) energy( pref (π̃, k) ) 6 e

(2) ∀j > k. erew(sj , αj) = 0

(3)
∞

∃ j ∈ N. urew(sj , αj) > 0

Let ZEUD denote the set of all states t ∈ S that are contained in some zero-
energy utility-divergent end component.

Lemma 5. For all states s in M and all e ∈ N:

(a) ExpUtilmax
s (energy 6 e) <∞ iff s 6|= ∃♦((energy 6 e) ∧ ZEUD))

(b) ExpUtilmin
s (energy 6 e) <∞ iff Prmin

s (ϕ) = 0

where ϕ denotes the path property given by π̃ |= ϕ iff there exists some k ∈ N

such that conditions (1), (2) and (3) hold.

Proof. To prove part (a), we first suppose s |= ∃♦((energy 6 e) ∧ ZEUD)) and
show that there is a scheduler S with ExpUtilSM,s(energy 6 e) = ∞. Let T be

any finite-memory scheduler with PrTt (�ZEUD) = 1 for all states t ∈ ZEUD

and such that the limit of almost all T-paths that start in some state t ∈ ZEUD

is a zero-energy utility-divergent end component. We may pick any scheduler
S that generates a finite path π with energy(π) 6 e and last(π) ∈ ZEUD

and that behaves as T as soon as a state in ZEUD has been reached. Then,
utility |energy6e(π̃) = ∞ for almost all infinite S-paths π̃ in the cylinder set of π.
This yields:

ExpUtilSM,s(energy 6 e) = ∞

To prove the second part of statement (a), we suppose s 6|= ∃♦((energy 6
e) ∧ ZEUD)). The task is to show that ExpUtilmax

M,s(energy 6 e) is finite. We
regard the MDP Me that arises from M by mimicking the energy function
erew of M by a counter with values in {0, 1, . . . , e}. The enabled actions of
state 〈t, f〉 ∈ S × {0, 1, . . . , e} in Me are the actions α ∈ ActM(t) where
erew(t, α) 6 e−f . Furthermore, Me collapses all zero-energy zero-utility end
components of M into a single state and discards M’s actions inside zero-
energy zero-utility end components.3 Then, Prmin

Me,〈s,0〉(♦final) = 1 where final

3 We drop here the precise definition of Me. A similar construction of the MDP M̃
that arises from M by identifying all states that belong to some zero-utility end
component is presented in the proof of Lemma 6.
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is an atomic proposition characterizing all states of Me that do not have any
enabled action. Thus, ExpUtilmax

Me,〈s,0〉(♦final) is finite, and we have:

ExpUtilmax
M,s(energy 6 e) = ExpUtilmax

Me,〈s,0〉(♦final)

We now turn to the proof of part (b). Let us first consider the case where
ExpUtilmin

s (energy 6 e) is finite, i.e., ExpUtilSs (energy 6 e) <∞ for some sched-
uler S. Then:

PrSs
{
π̃ ∈ IPaths : utility |energy6e(π̃) = ∞

}
= 0

But then, PrSs (ϕ) = 0.
Vice versa, suppose Prmin

s (ϕ) = 0. We pick some finite-memory scheduler
S with PrSs (ϕ) = 0. Then, the limit of almost all S-paths from s is either an
energy-divergent end component or a zero-energy zero-utility end component.
Let Me be the MDP as above. When regarding S as a scheduler for Me (as
done in the proof of Lemma 6), PrSMe,〈s,0〉(♦final) = 1 as Me has no zero-energy
zero-utility end components (by construction). Moreover:

ExpUtilSM,s(energy 6 e) = ExpUtilSMe,〈s,0〉(♦final) < ∞

Hence, ExpUtilmin
M,s(energy 6 e) is finite. �

Existential utility-expectation quantiles

The procedure to compute the expectation quantiles Qus( ∃ExpU>u(energy 6?) )
and Qus( ∀ExpU>u(energy 6?) ) by an iterative search e = 0, 1, 2, . . . as ex-
plained in Section 5 requires a preprocessing that identifies all states where the
quantile has value ∞. We start with explanations for the case of existential
expectation quantiles. Obviously, for each utility bound u ∈ Q:

Qus
(
∃ExpU>u(energy 6?)

)
= ∞

iff
{
e ∈ N : ExpUtilmax

s (energy 6 e) > u
}
= ∅

iff sup
e∈N

ExpUtilmax
s (energy 6 e) 6 u

iff ExpUtilSs (energy 6 e) 6 u for all e ∈ N and all schedulers S

Let Lim(UD) denote the event consisting of all infinite paths π̃ such that the
limit of π̃ is a utility-divergent end component. Likewise, we write Lim(ZU ) to
denote the event given by π̃ |= Lim(ZU) iff the limit of π̃ is a zero-utility end
component. Hence, Prmin

s (Lim(UD) ∨ Lim(ZU )) = 1.

Lemma 6. For each state s:

s |= ∃♦UD iff sup
e∈N

ExpUtilmax
s (energy 6 e) = ∞
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Proof. To prove “=⇒”, we suppose s |= ∃♦UD and pick some utility bound
u ∈ Q. The task is to show that there exists an energy bound e ∈ N with
ExpUtilmax

s (energy 6 e) > u. The latter amounts proving the existence of some
scheduler U with ExpUtilUs (energy 6 e) > u.

As s |= ∃♦UD , we may choose a shortest finite path π starting in s and
ending in some state in UD . Let S be a (memoryless) scheduler such that π is
a S-path. With e1 = energy(π) and p the probability of π we get:

PrSs
(
♦((energy 6 e1) ∧ UD)

)
> p > 0

Let k ∈ N be a positive natural number with p > 1/k. We now consider any
finite-memory scheduler T that “realizes” the utility-divergent end components,
i.e., the limit of almost all infinite T-paths starting in some state t ∈ UD is
a utility-divergent end component. Clearly, along all these infinite T-paths, the
accumulated utility tends to ∞. Hence, there exists some e2 ∈ N such that for
all states t ∈ UD :

PrTt
(
♦((energy 6 e2) ∧ (utility > 2k · u))

)
>

1

2

Let U = S ◦ T be the scheduler that behaves like S as long as no state in UD

has been visited. As soon as a state in UD is visited, then U mimics T. We get:

PrUs
{
π̃ : π̃ |= ϕ

}
>

1

2k

where ϕ is the following LTL-like formula:

ϕ = ♦
(
(energy 6 e1) ∧ UD

)
∧ ♦

(
(energy 6 e) ∧ (utility > 2k · u)

)

and e = e1 + e2. Hence:

ExpUtilUt
(
energy 6 e

)
>

1

2k
· 2k · u = u

This yields the claim.
We now turn to the proof of the implication “⇐=”. The task is to show that

s 6|= ∃♦UD implies the existence of some u ∈ Q such that

ExpUtilmax
s (energy 6 e) 6 u

for all energy bounds e ∈ N. The assumption that no utility-divergent end com-
ponent is reachable from s yields that all end components that are reachable
from s enjoy the zero-utility property. Since under each scheduler the limit of
almost all infinite paths is an end component we get:

Prmin
s (Lim(ZU )) = 1

In what follows, we define a new MDP M̃ with a reward function rew and a goal
state that will be reached almost surely under each scheduler for M̃ such that,
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for each e ∈ N, the value ExpUtilmax
M,s(energy 6 e) is bounded by the maximal

expected reward until reaching the goal state in M̃.
The idea for the definition of M̃ is to collapse the effect of all transitions inside

zero-utility end components. Intuitively, this is justified as for the accumulated
utility in M, the behavior inside zero-utility end components is irrelevant. The
accumulated energy might increase inside zero-utility end components. However,
we are interested only in an upper bound for the expected total accumulated
utility in the new MDP M̃.

We first define an equivalence relation ∼ZU on ZU . Let t1, t2 ∈ ZU . Then,
t1 ∼ZU t2 iff there exists some zero-utility end component that contains t1 and
t2. For t ∈ ZU , let [t]ZU denote the ∼ZU -equivalence class of t and let

ActZU (t) =
{
β ∈ Act(t) : urew(s, β) = 0, {t′ ∈ S : P (t, β, t′) > 0} ⊆ [t]ZU

}

denote the set of actions of t inside some zero-utility end component. We write
∼ to denote the following equivalence relation on the state space S of M:

s1 ∼ s2 iff (s1 = s2) ∨ (s1, s2 ∈ ZU ∧ s1 ∼ZU s2)

Let [s] denote the equivalence class of s with respect to ∼. Thus, [s] = {s} if

s ∈ S \ZU , while [t] = [t]ZU for t ∈ ZU . The state space of the new MDP M̃ is:

S̃ =
{
[s] : s ∈ S

}
∪

{
goal

}

For simplicity, let us suppose that the actions in M have been renamed such
that Act(s1) ∩ Act(s2) = ∅ if s1 6= s2. Then, the action set of M̃ is

Ãct = Act ∪ {τ}

The transition probability function P̃ of M̃ is defined as follows.

– If s ∈ S \ ZU and α ∈ Act(s), then P̃ ([s], α, [s′]) = P (s, α, [s′]) for s′ ∈ S,

P̃ ([s], α, goal) = 0 and rew(s, α) = urew(s, α).4 Action τ is not enabled in

the states [s] where s ∈ S \ ZU . Thus, the set Ãct([s]) of actions that are
enabled in [s] equals Act(s).

– Let Z ⊆ ZU be a ∼ZU -equivalence class. The set of actions that are enabled
in Z is:

Ãct(Z) = {τ} ∪
⋃

t∈Z

Act(t) \ActZU (t)

If t ∈ Z and α ∈ Act(t)\ActZU (t) then P̃ (Z,α, [s′]) = P (t, α, [s′]) for s′ ∈ S,

P̃ (Z,α, goal) = 0 and rew(Z,α) = urew(t, α). Furthermore, P̃ (Z, τ, goal) = 1
and rew(Z, τ) = 0.

– The fresh state goal is a trap with a single τ -labeled zero-reward self-loop,
i.e., P̃ (goal, τ, goal) = 1 and and rew(goal, τ) = 0.

4 Here and in what follows, for s ∈ S, α ∈ Act and R ⊆ S, we write P (s, α,R) for∑
s′∈R

P (s, α, s′).
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As Prmin
M,s(Lim(ZU )) = 1, the only end component that is accessible from state

s in M̃ consists of the goal state. In particular:

Prmin
M̃,[s]

(♦goal) = 1

Moreover, for each scheduler S for M there exists a corresponding (random-

ized) scheduler S̃ for M̃ that mimicks S’s behavior inside zero-utility end
components by a probabilistic choice. Speaking roughly, if the current state
is neither the goal state nor a ∼ZU -equivalence class, then S̃ behaves as S.
When entering a ∼ZU -equivalence class Z, then S̃ selects an action in Ãct(Z)
probabilistically according to the probabilities for S to generate a finite path
π = t0 β0 t1 β1 . . . βn−1 tn α v where t0, . . . , tn and their actions β0, . . . , βn−1 be-

long to Z and α /∈ ActZU (tn) or to stay forever in ZU (in which case S̃ moves
to the goal state by scheduling τ). Then, the expected total accumulated utility

for S from state s in M equals the expected total utility for S̃ from state [s]

in M̃, which again agrees with the expected accumulated utility until reaching
goal from [s] under scheduler S̃. That is:

ExpUtilSM,s(true) = ExpRewS̃

M̃,[s]
(♦goal)

Recall that the limit of almost all S-paths is a zero-utility end component in M.
Thus, the expected total accumulated utility exists in M. Hence, for all e ∈ N

we have:

ExpUtilmax
M,s(energy 6 e) 6 ExpRewmax

M̃,[s]
(♦goal)

and therefore:

sup
e∈N

ExpUtilmax
M,s(energy 6 e) 6 ExpRewmax

M̃,[s]
(♦goal)

The latter is finite as ♦goal holds almost surely under each scheduler for M̃. �

Corollary 2 (Infinite existential expectation quantiles). For each u ∈ Q,
the following statements are equivalent:

(a) Qus
(
∃ExpU>u(energy 6?)

)
= ∞

(b) sup
e∈N

ExpUtilmax
s (energy 6 e) 6 u

(c) s 6|= ∃♦UD and ExpRewmax
M̃,[s]

(♦goal) 6 u

where M̃ is defined as in the proof of Lemma 6.

Proof. The equivalence of (a) and (b) is obvious. The implication “(c) =⇒ (b)”
has been shown in the proof of Lemma 6.

It remains to prove the implication “(b) =⇒ (c)”. The fact that (b) implies s 6|=
∃♦UD is a consequence of Lemma 6. To see why (b) implies ExpRewmax

M̃,[s]
(♦goal) 6
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u we pick some scheduler S̃ for M̃. It suffices to show that there exists a sched-
uler S for M such that the expected total accumulated utility under S agrees
with the expected accumulated reward until reaching the goal state in M̃ under
the scheduler S̃. That is:

ExpUtilSM,s(true) = ExpRewS̃

M̃,[s]
(♦goal)

To prove the existence of such a scheduler S, we pick a finite-memory scheduler T
for M realizing the zero-utility end components in the sense that PrTM,t′(ZU U t) =
1 for all states t, t′ ∈ ZU with t ∼ZU t′, where ZU U t is used as a short form
notation for all infinite paths that have a finite prefix s0 α0 s1 α1 . . . αk−1 sk with
sk = t and urew(si, αi) = 0 for 0 6 i < k.

Let S be the scheduler that behaves as S̃ for the states s ∈ S \ ZU (where

we identify s and the singleton [s] = {s}) and mimicks S̃’s decisions for the
∼ZU -equivalence classes by simulating the actions α ∈ Act(t) \ ActZU (t) for
t ∈ ZU by first following T’s decisions until state t has been reached, and then
selecting action α. If S̃ moves to the goal state via the action τ from some ∼ZU -
equivalence class Z ∈ S̃, then S changes mode and behaves as T from then on.
We obtain:

ExpRewS̃

M̃,[s]
(♦goal) = ExpUtilSM,s(true)

= sup
e∈N

ExpUtilSM,s(energy 6 e)

As sup
e∈N

ExpUtilSM,s(energy 6 e) 6 u by assumption (b), this yields the claim. �

Universal utility-expectation quantiles

Let us now consider universal expectation quantiles. Obviously, for each utility
bound u ∈ Q:

Qus
(
∀ExpU>u(energy 6?)

)
= ∞

iff
{
e ∈ N : ExpUtilmin

s (energy 6 e) > u
}
= ∅

iff sup
e∈N

ExpUtilmin
s (energy 6 e) 6 u

iff for each e ∈ N there is some scheduler Se

such that ExpUtilSe

s (energy 6 e) 6 u

We first observe that for reasoning about ExpUtilmin
s (energy 6 e) it suffices

to consider schedulers that stay forever in ZU as soon as they have reached some
state in ZU ; see Lemma 7 below.

With abuse of notations, we interpret ZU as a set of states or as a set of
states and actions. Thus, if π̃ = s0 α0 s1 α1 s2 α2 . . . is an infinite path then:
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π̃ |= ♦ZU iff sk ∈ ZU for some k ∈ N

π̃ |= �ZU iff sk ∈ ZU and urew(sk, αk) = 0 for all k ∈ N.

Moreover, π̃ |= �(ZU → �ZU ) if and only if either ZU ∩ {sj : j ∈ N} = ∅

or there is some k ∈ N with ZU ∩ {s0, . . . , sk−1} = ∅ and suff (π̃, k) |= �ZU ,
where suff (π̃, k) = sk αk sk+1 αk+1 sk+2 αk+2 . . . denotes the suffix of π̃ starting
at position k.

Lemma 7. Let S be a scheduler for M. Then, there exists a scheduler S′ for
M such that for each state s and each energy bound e ∈ N:

ExpUtilS
′

s (energy 6 e) 6 ExpUtilSs (energy 6 e)

and
PrS

′

s

(
�(ZU → �ZU )

)
= 1

Proof. Again, let T be a finite-memory scheduler realizing the zero-utility end
components, i.e., PrTt (�ZU ) = 1 for each state t ∈ ZU . Given an arbitrary
scheduler S, we define S′ to be a scheduler S′ that behaves as S until some
ZU -state has been reached, in which case S′ switches mode and behaves as T

from then one. �

Lemma 8. If S is a scheduler for M such that PrSs (Lim(UD)) > 0, then

sup
e∈N

ExpUtilSs (energy 6 e) = ∞

Proof. We first observe that

ExpUtilSs (true) = sup
e∈N

ExpUtilSs (energy 6 e)

is the expected total utility under scheduler S from state s. The claim then
follows from the fact that the accumulated utility value of the prefixes along
paths whose limit is a utility-diverengent end component converges to ∞. The
assumption PrSs (Lim(UD)) > 0 yields that these paths have positive measure.
�

Corollary 3. If Prmin
s (Lim(UD)) > 0 then sup

e∈N

ExpUtilmin
s (energy 6 e) = ∞.

The remainder of this section addresses the case Prmin
s (Lim(UD)) = 0, in which

case Prmax
s (Lim(ZU )) = 1. We will rely on the following assumptions that can

be ensured by some adequate preprocessing. Lemma 7 allows to suppose that
M satisfies the following property (A1):

(A1) Whenever t ∈ ZU and P (t, α, t′) > 0 then t′ ∈ ZU and urew(t, α) = 0.

Furthermore, we suppose that t |= ∃♦ZU for all states t in M. Hence, there is
a scheduler S such that from all states t, the limit of almost all S-paths is a
zero-utility end component. In particular:
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(A2) Prmax
M,t(♦ZU ) = 1 for all states t

Let V be a deterministic memoryless scheduler for M such that PrVM,t(♦ZU ) = 1
for all states t and

(A3) ExpUtilVM,t(♦ZU ) = ExpUtilmin
M,t(♦ZU ) for all states t

The existence of such a (deterministic and memoryless) scheduler V has been
shown by de Alfaro [10]. Note that ExpUtilVM,t(♦ZU ) is the expected total utility
from t under scheduler V.

Lemma 9. Suppose assumptions (A1) and (A2) hold. Then, for all u ∈ Q and
all states s of M:

sup
e∈N

ExpUtilmin
M,s(energy 6 e) = ExpUtilmin

M,s(♦ZU )

Proof. To prove “>” we consider a deterministic memoryless scheduler V mini-
mizing the expected total utility (see (A3)). Then:

ExpUtilmin
M,s(♦ZU ) = ExpUtilVM,s(♦ZU )

= ExpUtilVM,s(true)

= sup
e∈N

ExpUtilVM,s(energy 6 e)

> sup
e∈N

ExpUtilmin
M,s(energy 6 e)

The remaining task is to prove “6”. Let

umin = sup
e∈N

ExpUtilmin
M,s(energy 6 e)

For each e ∈ N there is a (deterministic) scheduler Se such that

ExpUtilSe

s (energy 6 e) 6 umin

The sequence (Se)e∈N can be used to generate a scheduler S such that for each
k ∈ N there are infinitely many e ∈ N with S(π) = Se(π) for all finite paths π
of length at most k. For this scheduler S and each e ∈ N, we have:

ExpUtilSs (energy 6 e) = sup
k∈N

ExpUtilSs
(
(energy 6 e) ∧ (steps 6 k)

)

6 umin

where steps serves as a step counter. Thus:

sup
e∈N

ExpUtilSs (energy 6 e) 6 umin
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In particular, PrSs (Lim(UD)) = 0 by Lemma 8. Therefore, PrSs (Lim(ZU )) = 1
and:

ExpUtilSs (♦ZU ) = ExpUtilSs (true)

= sup
e∈N

ExpUtilSs (energy 6 e)

Putting things together, we obtain:

ExpUtilmin
s (♦ZU ) 6 ExpUtilSs (♦ZU ) 6 umin

This yields the claim. �

Corollary 4 (Infinite universal expectation quantiles). Under assump-
tions (A1) and (A2), for each u ∈ Q, the following statements are equivalent:

(a) Qus
(
∀ExpU>u(energy 6?)

)
= ∞

(b) sup
e∈N

ExpUtilmin
s (energy 6 e) 6 u

(c) Prmax
s (♦ZU ) = 1 and ExpUtilmin

s (♦ZU ) 6 u

Statements (c) in Corollary 2 and Corollary 4 provide criteria to check whether
an expectation quantiles is infinite in polynomial time. Hence, we get:

Corollary 5. The following two problems are in P:

(a) decide whether Qus
(
∃ExpU>u(energy 6?)

)
= ∞

(b) decide whether Qus
(
∀ExpU>u(energy 6?)

)
= ∞

B.3 Treatment of self-loops

We now provide a formal justification for the removal of self-loops with zero
reward as mentioned in Sec. 4.2. In this context we are given subsets A and
B of the state space S of the MDP M and we deal with path properties of
the form AU6r B. Let M′ = (S,Act , P ′) be the MDP where the transition
probability function P ′ is defined as follows. For all state-action pairs (t, α) with
rew(t, α) = 0 and 0 < P (t, α, t) < 1, let P ′(t, α, t) = 0 and

P ′(t, α, t′) =
P (t, α, t′)

1− P (t, α, t)
for t′ 6= t

with P ′(·) = P (·) in all other cases. The reward function on M can also be
used for M′. The transformation M M′ is indeed quantile-preserving as the
following lemma shows:

Lemma 10 (Soundness of the transformation). For all states s we have:
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(a) QuMs (∃PDp(AU6?B)) = QuM
′

s (∃PDp(AU6?B))

(b) QuMs (∀PDp(AU6?B)) = QuM
′

s (∀PDp(AU6?B))

Proof. We only prove statement (a). Suppose that S is a scheduler for the orig-
inal MDP M that is optimal for the existential quantile QuMs (∃PDp(AU6?B))
and enjoys condition (*) in Lemma 1. As all paths in M′ are paths in M and
the enabled actions in M and M′ agree, ActM(s) = ActM′(s) for all s ∈ S,
the scheduler S can also be viewed as a scheduler for M′. We consider the case
where M and M′ differ for a single state-action pair (t, α), the general case with
multiple state-action pairs then follows from repeated application of the same
arguments.

Let (t, α) be the state-action pair where M and M′ differ, i.e, with 0 <
P (t, α, t) < 1 and rew(t, α) = 0. If S never schedules action α for paths ending
in t then the probabilities for AU6r B under S viewed as scheduler in M and
in M′ are the same for all states s. Suppose now that S(π) = α for some finite
S-path π with last(π) = t. Then, all finite paths of the form π α tα t α . . . α t
have the same accumulated reward as π. By (*), they are S-paths too. Almost all

infinite S-paths in M that start with π will eventually take a step t
α

−→ t′ with
t 6= t′, after having taken the self-loop at t finitely often. In M, the probability
of the set consisting of all infinite paths of the form

π α tα t α . . . α t α t′

under S is prob(π) · P ′(t, α, t′), which is the probability of the finite path π α t′

in M′. Since no other paths are affected by the switch from M to M′, this yields
that for each state s, the value PrSs (AU6r B) does not depend on whether we
consider S as a scheduler for M or M′. This yields that the existential quantile
in M is less or equal than in M′:

QuMs
(
∃PDp(AU6?B)

)
6 QuM

′

s

(
∃PDp(AU6?B)

)

Vice versa, let us suppose that S′ is a scheduler for M′. We then consider the
scheduler S for M where S(π) is S′(π′) when π arises from π by erasing all

steps t
α

−→ t. Since rew(t, α) = 0, the probability PrSs (AU6r B) in M agrees

with PrS
′

s (AU6r B) in M′ for all states s. Hence:

QuMs
(
∃PDp(AU6?B)

)
> QuM

′

s

(
∃PDp(AU6?B)

)

The argument for universal quantiles (statement (b)) is analogous, except that
we consider adversarial schedulers. �

The switch from M to M′ indeed can simplify the computation of quantiles by
our algorithm. This is in particular of interest in combination with the SCC-
based decomposition techniques of the LPs LP

′
r. If Prmax(AU6r B) for all α-

successors t′ with t′ 6= t has already been computed the inequality for state t
and α in the LP reduces to xt 6 c for some constant c. There is even no need to
consider state t in LP

′
r when the quantiles for all successors different from s are

already known.
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C Details on our implementation and case studies

In this section, we provide some more details on the case studies carried out
to evaluate the performance of our implementation in practice. We start with
further details on the self-stabilizing protocol already briefly presented in Sec. 6.
Furthermore, we detail two additional case studies from the Prism benchmark
suite [17] and provide details for the energy-aware job-scheduling protocol pre-
sented in the main part. Besides addressing the general case of computing quan-
tiles, our implementation also supports the specialized algorithms for qualitative
quantiles, i.e., with probability bounds 0 or 1, proposed in [22]. These algorithms
only rely on an analysis of the underlying graph-structure of the model.

C.1 Self-stabilization

As detailed in the main part of this paper, we considered the randomized self-
stabilizing protocol by Israeli and Jalfon [IJ90]. The Prism MDP model can
be obtained at the URL http://www.prismmodelchecker.org/casestudies/

self-stabilisation.php#ij. Our main purpose is to show the applicability of
our implementation using the BP approach as stated in Sec. 4.2 and compare it
to the iterative LP approach of [22] recalled in Sec. 4.1.

The self-stabilizing protocol works as follows: At the beginning, the N pro-
cesses all are active, i.e., have one token assigned to each of them. Then, the
protocol is reassigning tokens step-wise to the processes, where at each step, one
active process is selected through a scheduler to randomly pass its token either
to its right or left neighbor. If a process has two tokens, the tokens are merged
into one. The ring is in a stable state if exactly one process owns the last re-
maining token. Given N and a probability threshold p, we now considered the
following quantiles: “The minimal number of steps required for reaching a stable
state with probability of at least p for some schedulers (existential quantile) or
all schedulers (universal quantile).” Formally, these quantiles can be stated as

Qus
(
∃P>p(♦

6?Stable)
)

and Qus
(
∀P>p(♦

6?Stable)
)
,

where s is the initial state in which all processes own a token and where Stable is
the set of all configurations of the ring with exactly one process owning a token.
Using the BP approach, we computed the existential and universal quantiles for
N ∈ {3, 6, 10, 15, 20} with probability bounds p ∈ {0.1, 0.2, . . . , 0.9, 0.95, 0.99}.
The results of the computations are presented in Fig. 2. Note that the plot almost
agrees with the plot for the minimal probability of reaching a stable configuration
presented in Prism’s model description5, where, however, the parameterization
is over the number of steps, which is in contrast to our parameterization over
the probability bound p.

Comparison to the LP approach. After computing the quantiles, we focused
on the comparison to the naïve implementation of the LP approach. In [22], a

5 see http://www.prismmodelchecker.org/casestudies/self-stabilisation.php#

ij

http://www.prismmodelchecker.org/casestudies/self-stabilisation.php#ij
http://www.prismmodelchecker.org/casestudies/self-stabilisation.php#ij
http://www.prismmodelchecker.org/casestudies/self-stabilisation.php#ij
http://www.prismmodelchecker.org/casestudies/self-stabilisation.php#ij
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Fig. 2. Results for the self-stabilization algorithm

theoretical upper bound rmax for the reward was established that is exponential
in the size of the model. For the given bound it is guaranteed that solving
LPrmax

yields the desired quantile. However, in our case studies we observed that
this theoretical upper bound rmax is hardly reached and usually much greater
than the quantile values r. For the evaluation of the naïve LP approach we
considered LPr rather than LPrmax

for the precomputed actual quantile value r,
as we know that solving LPr is sufficient for computing the desired quantile. We
also ignored the computational effort for solving LPr−1, LPr−2, . . . that would
normally occur in the iterative scheme. For solving the linear program LPr we
used the LP solver lpsolve, version 5.5.2. Although lpsolve provides methods
for reducing the size of the LP before applying the solver, we turned off these
presolving methods, since they turned out to have only marginal impact on the
timings. Table 3 shows our results for the BP implementation and compares
the time for computing the quantiles with the LP approach. It can easily be
seen that the BP approach performs significantly better than the LP approach.
Already within N = 15 processes, the LP approach exceeded the timeout bound
of 12 hours, whereas the BP approach is still applicable with computation times
of a few seconds.

C.2 Leader election

Besides reasoning over quantiles with step-bounded until properties, our im-
plementation also allows for quantiles with reward-bounded until properties, re-
quired, e.g., for computing energy-utility quantiles. In this section, we investigate
quantiles with reward-bounded until properties in two case studies concerning
randomized leader-election protocols. Such protocols aim to elect a leader, i.e.,
a uniquely designated process of N equal processes organized in a ring structure
by sending messages to the other processes. We considered a synchronous and
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Table 3. Results for randomized self-stabilizing (existential and universal quantile)

model existential quantile universal quantile
N p states build result LP BP result LP BP

6 0.1 63 0.05s 6 0.06s <0.01s 9 0.11s 0.03s
0.5 " " 12 0.16s <0.01s 14 0.22s <0.01s

0.99 " " 40 1.44s <0.01s 43 1.34s <0.01s

8 0.1 255 0.09s 11 1.44s <0.01s 16 4.58s 0.09s
0.5 " " 24 9.58s 0.01s 26 12.8s 0.01s

0.99 " " 74 107.38s 0.03s 81 135.09s 0.04s

10 0.1 1,023 0.24s 18 118.38s 0.03s 26 403.36s 0.16s
0.5 " " 38 1,066.64s 0.05s 43 1,388.15s 0.09s

0.99 " " 117 11,552.55s 0.14s 130 19,794.61s 0.15s

15 0.1 32,767 1.56s 42 timeout 1.85s 61 timeout 3.78s
0.5 " " 89 timeout 3.85s 100 timeout 4.10s

0.99 " " 270 timeout 11.42s 305 timeout 12.18s

20 0.1 1,048,575 53.99s 76 timeout 176.77s 111 timeout 264.08s
0.5 " " 162 timeout 354.24s 183 timeout 417.28s

0.99 " " 484 timeout 1,028.11s 552 timeout 1,219.48s

an asynchronous variant of such a protocol, both developed by Itai and Rodeh
[IR90] and also described in the context of probabilistic model checking within
the benchmark suite of Prism [17].

Synchronous leader election. The synchronous variant fixes a number K
of probabilistic choices, where in each round every process selects an ID from
{1, ...,K} and passes it synchronously over the ring. If there is a unique maximal
ID, the processor which chose this ID is the elected leader – otherwise, a new
round starts, where the processes again chose randomly an ID from {1, ...,K}.

We use the Markov chain model of the synchronous leader-election pro-
tocol from http://www.prismmodelchecker.org/casestudies/synchronous_

leader.php.

Asynchronous leader election. In the asynchronous setting the processes are
located in a ring. Initially all processes are active. Inactive processes still pass
along messages to their neighbors. The protocol operates in rounds consisting
of three phases. In the first phase each active process probabilistically selects its
preference, i.e., whether to remain active or to become inactive. Then, a process
communicates its preference to the next process along the ring. A process is
then allowed to become inactive only if the active process preceding it in the
ring prefers to remain active. In a third phase, the processes send a counter
around the ring to determine if only one active process remains, which then
becomes the leader. Otherwise the protocol proceeds with a further round.

We use the MDP model of the asynchronous leader-election protocol ob-
tained from Prism’s benchmark suite, see http://www.prismmodelchecker.

org/casestudies/asynchronous_leader.php.

Quantile experiments. One of the most significant quantitative measures for
both, the synchronous and the asynchronous variant, is the minimal number
of rounds r required to elect a leader with a certain probability p for some/all

http://www.prismmodelchecker.org/casestudies/synchronous_leader.php
http://www.prismmodelchecker.org/casestudies/synchronous_leader.php
http://www.prismmodelchecker.org/casestudies/asynchronous_leader.php
http://www.prismmodelchecker.org/casestudies/asynchronous_leader.php
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schedulers. Note that in a Markov chain, the probabilities to elect a leader agree
for all schedulers, i.e., the minimal number of rounds r is the same for all sched-
ulers in the synchronous protocol variant. As noticed in the Prism case study,
this is also the case for the asynchronous variant, although that model is an
MDP. Hence, we only considered the following existential quantile, whose value,
however, agrees with the value of the universal quantile:

Qus
(
∃P>p(♦

6?LeaderElected)
)
,

interpreted over step-bounded reachability and round-bounded reachability. The
figures below show the results of our experiments for N ∈ {3, 4, . . . , 11} processes
and probability bounds p ∈ {0.1, 0.2, . . . , 0.9, 0.95, 0.99} for the synchronous vari-
ant (Fig. 3) assuming K = 3 and for the asynchronous variant (Fig. 4). Our
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Fig. 3. Results for the synchronous leader election

results were all obtained employing the BP approach. As all cycles have a positive
reward in terms of rounds, no additional LP had to be solved. We also consid-
ered round-bounded reachability using the LP approach. Table 4 documents our
results in terms of rounds required to elect a leader and the times needed to com-
pute the quantile. We fixed a timeout bound of 12 hours and restricted memory
consumption to 32GB. As detailed already in the last section, it is not surprising
that the LP approach leads to timeouts. In the synchronous case, this was the
case for N ≥ 10 processes. For N = 9 processes, the cases where p = 0.5 and
p = 0.1 could be computed, whereas for p = 0.99 the computation exceeded the
time bound. As the asynchronous model is much larger than the synchronous
one, timeouts already arise for N = 6 processes. In the asynchronous case with
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Fig. 4. Results for the asynchronous leader election

Table 4. Results for synchronous and asynchronous leader election

synchronous asynchronous
N p states build rounds LP BP states build rounds LP BP

3 0.1 61 0.04s 1 0.02s 0.01s 364 0.09s 2 0.11s 0.06s
0.5 " " 1 0.02s 0.01s " " 3 0.18s 0.01s

0.99 " " 3 0.02s 0.01s " " 9 1.04s 0.01s

4 0.1 256 0.08s 1 0.05s 0.03s 3,172 0.33s 3 7.24s 0.25s
0.5 " " 1 0.05s 0.02s " " 4 14.34s 0.08s

0.99 " " 4 0.15s 0.01s " " 10 117.46s 0.06s

5 0.1 990 0.16s 1 0.30s 0.08s 27,299 1.01s 3 728.77s 1.09s
0.5 " " 1 0.30s 0.01s " " 5 3,259.03s 0.80s

0.99 " " 4 1.69s 0.01s " " 11 28,389.70s 0.85s

6 0.1 3,669 0.31s 1 3.14s 0.21s 237,656 5.92s 4 timeout 11.35s
0.5 " " 1 3.13s 0.04s " " 5 timeout 10.04s

0.99 " " 5 32.47s 0.05s " " 11 timeout 11.34s

7 0.1 13,153 0.70s 1 37.84s 0.44s 2,095,783 68.28s 4 timeout 122.52s
0.5 " " 1 37.52s 0.13s " " 6 timeout 117.71s

0.99 " " 6 767.73s 0.15s " " 12 timeout 129.66s

8 0.1 45,966 1.40s 1 578.26s 0.90s
0.5 " " 2 1,565.29s 0.55s memout

0.99 " " 8 18,188.80s 0.88s

N ≥ 8, the memory limit was reached during the construction of the explicit
model representation.

Note on the implementation of step-bounded until. For quantiles using
a step-bounded until, we reuse our implementation for reward-bounded untils
by assigning a reward of 1 to each state of the model. As a positive reward is
assigned to all states, our BP approach can then be applied without having to
solve linear programs for zero-reward cycles.
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C.3 Energy-aware job scheduling

The energy-aware job-scheduling protocol sketched in the main part of this pa-
per describes rules for processes to access a shared resource. We provide the
operational behavior of the model by means of control-flow graphs representing
MDPs: one for the processes (see Fig. 5) and one for the resource (see Fig. 6). We
assume a setting of N processes. Similar to the input language of Prism, such
graphs define MDP modules which we denote by Pi for each process i = 1, ..., N
and R for the resource. Using standard parallel composition [Seg95], these MDP
modules yield the MDP semantics M = P1‖ · · · ‖PN‖R of the whole protocol,
which is subject of our algorithms applied in this case study.

Operational behavior of the model. Each control-flow graph Pi of the ith
process is described by four different locations start i, ncrit i, wait i and crit i
(see Fig. 5). Starting in the initial location start i, the process moves to the
noncritical location ncrit i, indicating that process i has not requested access
to the resource yet. At this transition, the timer ti is randomly set according
to a distribution τ , representing the time where the process stays in ncrit i.
Afterwards, it requests access to the shared resource by entering its waiting
location wait i and randomly choosing a deadline counter di and a computation
timer ci according to distributions δ and γ, respectively. Intuitively, the timer ci
represents the time required to finish the desired task while process i uses the
shared resource, and the deadline counter di formalizes the time until the task
needs to be finished. Clearly, ci is required to be smaller than di but greater
than 0. Waiting for the access to the shared resource, di is decreased if it is
greater than zero (this is expressed by the operation di := di

. 1 in Fig. 5, where
. stands for the positive difference, i.e., m . n = max(0,m − n) for natural
numbers m,n ∈ N). Since the access to the shared resource is exclusive, the
decision which process can access the resource is performed by a scheduler, which
we will detail later on. The scheduler decides to grant access to process i by
setting user = i, allowing the process to move to its critical location crit i. The
process then performs the task which requires access to the shared resource. In
order to meet the deadline, the scheduler may decide to activate a turbo mode
(turbo = ⊤), doubling the computation speed of the task. This is modeled by
subtracting 2 instead of the standard 1 from the computation timer ci at every
time step in the critical section. After the computation of the task has finished,
the process leaves the critical location, enters its noncritical location and the
procedure starts over again. All N processes are synchronously composed, i.e.,
at each step of the protocol, all processes perform exactly one transition in their
control-flow graph.

The resource module R settles the rules to access the shared resource. The
control-flow graph of R is depicted in Fig. 6, where k and i range over all
processes, i.e., one transition in the graph involving k or i stands for multiple
transitions replacing k and i by 1, . . . , N . Synchronously composed with the
processes’ behavior P1‖ · · · ‖PN , the resource behavior depends on the processes
(guards ci = 0 indicating that process i leaves the critical section and waitk
standing for process k’s request to enter the critical section) and the processes
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start i ncriti

waiticriti

ti := random(τ)

if ti > 0:
ti := ti − 1

if ti = 0:
di := random(δ)
ci := random(γ)

if user 6= i:
di := di

. 1

if user = i:
di := di

. 1

if turbo = ⊤ and ci > 0:
ci := ci

. 2
di := di

. 1

if turbo = ⊥ and ci > 0:
ci := ci − 1
di := di

. 1

if ci = 0:
ti := random(τ)

Fig. 5. Control flow for a process (energy-aware job scheduling)

depend on the resource (the guards user = i if the process i has the right to be
in the critical section and turbo standing for the case whether the turbo mode is
activated (formally, ⊤) or deactivated (⊥)). Whereas the processes’ behavior is
deterministic, the model of the resource involves nondeterminism, e.g., if multiple
processes are in its waiting location or for switching on the turbo mode.

At the beginning, the resource is not in use, meaning that user is undefined
and the turbo mode is deactivated (both are set to ⊥). Whenever there is a
process k waiting (i.e., k is in location waitk) and no process has access to the
resource (user = ⊥), the resource can be assigned to the waiting process by
setting user := k. In this turn, it is also decided whether to activate the turbo
mode or not. As long as the computation counter ci of the process i in the
critical section is set, i.e., the task of process i is still computed, the resource
does not change its parameters. Only if the computation is finished (ci = 0 and
user = i), then either the resource is directly handed to another waiting process
k, also activating or deactivating the turbo mode, or the user of the resource is
set undefined if no process is in its waiting location.

Energy, utility and model parameters. For our case study, we fixed certain
parameters while parameterizing over the number of processes N . We provide
the probability distributions for each process in the form (p:n, 1−p:m), where
p ∈ [0, 1] is the probability of value n and 1 − p the probability that value m
occurs. In our setting, we fixed a deadline distribution δ = ( 13 :7,

2
3 :9), a com-

putation distribution γ = ( 13 :2,
2
3 :3) and a timer distribution τ = ( 13 :5,

2
3 :4).
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resource

user := ⊥
turbo := ⊥ if ci = 0 ∧ waitk ∧ user = i:

user := k
turbo := ⊤

if ci = 0 ∧ user = i ∧
∧

j 6=i
¬waitj :

user := ⊥

if user = ⊥ ∧
∧

j
¬waitj

if ¬(ci = 0 ∧ crit i) ∧ user = i

if waitk ∧ user = ⊥:
user := k
turbo := ⊥

if waitk ∧ user = ⊥:
user := k
turbo := ⊤

if ci = 0 ∧ waitk ∧ user = i:
user := k
turbo := ⊥

Fig. 6. Control flow for the resource (energy-aware job scheduling)

The energy consumption and the achieved degree of utility are represented us-
ing reward structures over the MDP M, which arises from synchronous parallel
composition of the models for processes and the resource model. Utility is given
as the number of successfully finished tasks, i.e., a transition reward of 1 is
granted if some process i takes a transition from crit i to ncrit i and the dead-
line counter di is greater than 0. Energy is modeled by state rewards, where the
global energy consumption in a state of M is the sum of the energy consumption
of all processes in the respective local states. Depending on the local state of a
process, the consumed energy differs as detailed in Table 5. In order to model

Table 5. Rewards modeling the energy consumption of a process

location energy consumption
process i i mod 3 6= 0 i mod 3 = 0

turbo = ⊥ turbo = ⊤ turbo = ⊥ turbo = ⊤

ncriti 2 2 4 4
waiti 1 1 2 2
criti 3 9 6 18

a heterogeneous architecture, we decided to double the energy consumption of
every third process. The scheduler has to take this into account, e.g., by deciding
whether to allow jobs for the process that has more energy consumption to run
immediately or to postpone them as long as possible. For the turbo mode, the
energy consumption is tripled while the computation speed is doubled. Overall,
the energy consumption accumulated in the critical section with active turbo
mode is thus 50% higher than in the case without turbo mode, as the critical
section is left faster than usual as well.

Reasoning about the energy-utility trade-off. We analyzed the trade-off
between energy and utility by means of the following two values:

– The minimal amount of energy emin required to exceed a given utility bound
u with at least a probability of p.
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– The maximal utility umax obtained by one process such that it consumes less
than e energy within a probability greater than p.

Formally, these values can be expressed as the following existential energy-utility
upper-bound quantiles:

emin = Qus
(
∃P>p(♦

6?(utility > u))
)

= min
{
ê ∈ N : Prmax

s ( ♦(energy 6 ê ∧ utility > u) ) > p
}

umax = Qus
(
∃P>p(�

6?(energy1 < e))
)

= max
{
û ∈ N : Prmax

s ( �(utility1 6 û =⇒ energy1 < e) ) > p
}

In these formulas, utility and energy are the accumulated utility and energy
rewards of all processes, whereas utility1 and energy1 stand for the accumulated
utility and energy of process 1 only. Hence, emin describes a “global” quantile,
whereas umax stands for a “local” one. Considering the local accumulated rewards
only w.r.t. process 1 and not w.r.t. another process is w.l.o.g., since process 1
always consumes minimal energy compared to the processes i with i mod 3 = 0
(see Table 5). Note that umax differs from the lower-bound quantile motivated
in the main part of the paper, but provides a reasonable measurement for the
energy-utility trade-off (in fact, concerning our model the values differ only in
corner cases).

Empirical results. We modeled our energy-aware job-scheduling protocol in
Prism, encoding the program graphs detailed in Fig. 5 and Fig. 6 in the guarded-
command input language of Prism. Since both energy and utility are provided as
reward structures in M, we employed the automata-based approach detailed in
Sec. 4.4, e.g., to encode the utility threshold u into the states. This yields a model
Mu on which the quantile emin can be computed using our implementation for
upper-bound quantiles. The same approach is used for computing the quantile
umax in a model Me, which arises from encoding the energy threshold e into the
states of M.

The figures below document the results of the upper-bound quantiles detailed
above and computed for the energy-aware job scheduling protocol, parameter-
izing over the number N of processes. In Fig. 7, emin for Mu with N = 2, ..., 5
processes is shown with a fixed utility threshold of u = N . The gap between the
curves for N = 2 and N = 3 is greater than the one between the curves for N = 3
and N = 4, which can be explained through the higher energy consumption of
the third process (see Table 5).
Fig. 8 depicts umax for N = 2, ..., 7 processes and an energy threshold of e =
50 ·N . It can easily be seen that the plots in both figures have the same shape
as the figures contained in the introduction of the main paper: Fig. 7 clearly
shows increasing quantiles for the energy budget and Fig. 8 represents decreasing
quantiles for the gained utility.

In Table 6, we show the statistical data of our case study. As in the main
part of this paper, all calculations were carried out on a computer equipped
with two Intel E5-2680 8-core CPUs at 2.70 GHz with 384GB of RAM. We
furthermore fixed a timeout within 12 hours and a memory bound of 32GB for
each computation.
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Fig. 7. Results for the energy consumption until N utility is generated

The results for quantitative quantiles (i.e., for probability bound 0 < p < 1) were
obtained using our implementation of the BP algorithms presented in this paper,
whereas for qualitative ones (i.e., p = 0 or p = 1) we used our implementation
of the graph-based algorithms presented in [22]. We could not get further than
N = 5 processes for computing emin and not more than N = 7 processes for
computing umax, due to exceeding the memory bound. Notably, Me and Mu

scale similar depending on N , although the modeling of energy is more fine-
grained than the modeling of utility. However, we only considered local energy
rewards encoded into Me. We also checked for a global variant of umax, requiring
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Fig. 8. Results for the gained utility until 50 ·N energy units are consumed
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Table 6. Results for energy-aware job scheduling (quantiles emin and umax)

model Mu quantile emin

N p states build result time

2 0 917 0.21s 38 0.08s
0.1 " " 42 0.12s
0.5 " " 45 0.02s

0.99 " " 74 0.04s
1 " " 74 0.03s

3 0 16,341 0.91s 120 0.47s
0.1 " " 133 1.09s
0.5 " " 152 1.08s

0.99 " " 176 1.14s
1 " " ∞ 0.16s

4 0 368,521 14.67s 148 8.89s
0.1 " " 179 37.43s
0.5 " " 198 37.02s

0.99 " " 225 42.69s
1 " " ∞ 4.57s

5 0 6,079,533 377.95s 199 189.19s
0.1 " " 242 1,058.48s
0.5 " " 266 1,135.65s

0.99 " " 301 1,261.89s
1 " " ∞ 101.09s

model Me quantile umax

N p states build result time

4 0 872,410 14.47s 9 255.99s
0.1 " " 7 173.71s
0.5 " " 7 173.22s

0.99 " " 7 155.66s
1 " " 6 212.45s

5 0 3,049,471 65.69s 11 1,433.91s
0.1 " " 9 812.19s
0.5 " " 9 812.93s

0.99 " " 9 736.93s
1 " " 8 1,048.28s

6 0 7,901,694 196.68s 13 5,235.94s
0.1 " " 11 2,769.04s
0.5 " " 11 2,782.04s

0.99 " " 11 2,525.76s
1 " " 10 4,109.23s

7 0 17,037,097 637.19s 16 16,392.71s
0.1 " " 13 6,936.23s
0.5 " " 13 6,900.29s

0.99 " " 13 6,247.79s
1 " " 12 12,456.47s

global energy rewards to be encoded into M, which yield a model exceeding our
memory constraints already within N = 4. Hence, we decided to go for the local
variant as presented above and dropped the global version.
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