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Abstract

In this thesis we investigate the analysis of energy-aware systems modeled by finite-
state Markov chains. We deal with Markov chains augmented with transition weights
and consider objectives referring to the accumulated weight along finite paths or to
the quotient of the accumulated weight of two non-negative weight functions. Beside
objectives asking for linear-time properties to be fulfilled while always exceeding a
threshold on the accumulated weight or ratio, we allow for properties where the
threshold has not to be exceeded globally, but at least once, infinitely often or
globally after a finite initialization phase. For these objectives, we aim to exactly
compute optimal thresholds such that the corresponding objective is either fulfilled
almost-surely or with positive probability (quantiles). To this end, we first state a
polynomial-time procedure to decide, whether a weight objective is fulfilled almost-
surely or with positive probability. Employing a simple transformation, decision
problems referring to ratio objectives are known to be reducible in polynomial time to
decision problems related to weight objectives. It turns out that this transformation
cannot be applied for quantiles. However, using two different approaches we state
polynomial-time computation schemes for both, ratio and weight quantiles. Weight
quantiles can be computed by solving the corresponding decision problem within a
simple binary search. The algorithm for ratio quantiles relies on establishing a finite
set of rational-valued candidates and solving a best-approximation problem using
the so-called continued-fraction method.
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1 Introduction

Verification of systems with randomized behaviour or containing uncertainties is
gaining more and more interest in terms of quantitative analysis for e.g., energy-
aware systems [19, 5, 4, 3]. Uncertainties might arise from only partial knowledge
about components and the environment, such as the work load or failure rates (bit
flips, . . . ). One common aim for such systems is computing the probability of a
given failure event.

Markovian models and probabilistic model checking are widely used in this con-
text. If amended by rewards, probabilistic model checking for Markovian models
additionally allows to reason for example over the consumed energy or gained util-
ity. If one allows for multiple cost functions one could analyze, e.g. the gained
utility per consumed energy, short energy-utility ratio, for such a system [5, 4, 3].
Interesting questions in this context are for example:

• What is the probability that the system’s energy-utility ratio never drops below
a given limit?

• What is the probability that the system reaches a configuration where the
energy-utility never drops below a given limit?

• What is the probability that eventually the system’s energy-utility ratio is
higher than a given limit?

Further, if we allow for positive and negative rewards, one could model a system
charging and draining a (possibly unbounded) battery. Given an initial battery
level, we could ask for the probability that the system runs out of battery. Another
interesting question would be:

• What is the lowest initial battery level to ensure that system does not run out
of battery?

This question is closely related to the concept of quantiles, which is well-known from
statistics (see e.g. [24]), statistical analysis and performance prediction. Given a
random variable R and a probability threshold p, a p-quantile asks for the maximal
value r such that Pr(R > r) > p or Pr(R > r) ≥ p. Qualitative quantiles are a
special case of p-quantiles, where we only ask for the maximal value r such that
the constraint R > r is satisfied almost-surely or with positive probability, i.e.,
Pr(R > r) = 1 or Pr(R > r) > 0. Almost-sure quantiles enable to analyze the
worst-case performance of a system, whereas positive quantiles consider the best-
case. The above question is in fact (indirectly) asking for a positive quantile: What
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1 Introduction

is the highest initial battery level such that the probability of running out of battery
is greater than 0?

Let us consider another application of qualitative quantiles. Assume we can choose
between two system variants applicable for a certain task, which differ in both, their
price and performance. If the performane can be modeled by an energy-utility ratio,
one way to compute the trade-off of using the more expensive system would be to
compute and compare the qualitative energy-utility quantiles

sup {q ∈ Q : Pr(E) > 0} and sup {q ∈ Q : Pr(E) = 1} ,

where E contains executions satisfying a certain energy-utility related objective,
e.g.,

E =

(
all executions, where

utility

energy
eventually stays greater than q

)
or

E =

(
all executions, where

utility

energy
is always than q

)
.

Beside being interesting themself, these quantiles yield other indicators such as
the absolute deviations δa or the relative deviation δr which can be used as a measure
of dispersion. Let Qu=1 be an almost-sure quantile for some event E and Qu>0 the
corresponding positive quantile for E, then

δa =
1

2

∣∣Qu=1 − Qu>0
∣∣ and δr =

∣∣∣∣Qu=1 − Qu>0

Qu=1 + Qu>0

∣∣∣∣ .
High dispersion might indicate great adaptivity of a system, whereas low disper-

sion may imply stability and robustness.

Scope and Contribution. In this thesis we consider Markov chains extended with
one or two reward functions. We investigate decision problems and quantiles for
objectives related to these reward functions and their ratios. The main contribution
of this thesis is to that the following quantles are computable in polynomial time:

weight quantiles: sup{z ∈ Z : Pr(♥(weight > z) ∧ φ) > 0},
sup{z ∈ Z : Pr(♥(weight > z) ∧ φ) = 1},

ratio quantiles: sup{q ∈ Q : Pr(♥(ratio > q) ∧ φ) > 0},
sup{q ∈ Q : Pr(♥(ratio > q) ∧ φ) = 1},

where ♥ ∈ {�,♦,♦�,�♦}, ratio denotes the quotient utility/energy and φ is an
omega-regular property encoded by a deterministic Rabin automaton. The event
(�(weight > z) ∧ φ) contains all paths satisfying φ and where the accumulated
weight is always greater than z. For ♦ (eventually), ♦� (from some point onwards),
�♦ (infinitely often) and energy-utility ratios, the corresponding events are defined
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analogously. Whereas energy and utility range over N, we allow weight to contain
both negative and positive integers.

The presented methods rely on a polynomial decision procedure for

Pr(♥(weight > z) ∧ φ) > 0, P r(♥(weight > z) ∧ φ) = 1,

P r(♥(
utility

energy
> q) ∧ φ) > 0, P r(♥(

utility

energy
> q) ∧ φ) = 1.

Whereas the proof that the above decision problems are solvable in polynomial
time shares some ideas with existing results for unary cost functions, i.e., cost func-
tions ranging over {−1, 0,+1} instead of N [10, 9], the investigated weight and ratio
quantiles have not yet been considered. The results of this thesis have been submit-
ted to the 40th International Symposium on Mathematical Foundations of Computer
Science 2015 [22].

Related Work. A variety of state-based models using a single weight function has
been studied in the literature. However, most of them require the weights to be
contained in {+1, 0,−1}.

An example of such a model are probabilistic pushdown machines (pPDA) with
exactly one stack symbol, also referred to as one-counter automata. It is known that
one can decide using a polynomial-space algorithm whether for a given pPDA and
a given probability threshold p a specific configuration is reachable with probability
greater than p. See [8] for a survey on pPDA. If restricted to one-counter automata,
one can decide in polynomial time whether almost-surely the counter stays positive
[10]. In [13] Etessami, Wojtczak, and Yannakakis show that the probability of the
following event can be approximated up to a precision ε in polynomial time with
respect to the size of the counter automaton and log(1/ε): all executions, where
the counter equals zero when reaching a given state and was never zero before.
Additionally the probability of all runs satisfying a given ω-regular property encoded
by a deterministic Rabin automaton can be approximated in time polynomial in the
sizes of both automata and log(1/ε) [7].

One-counter Markov decision processes are another well-studied example for mod-
els using a single unary weight function, i.e., ranging over {+1, 0,−1}. Markov de-
cision processes (MDP) are a state-based model, where the outgoing transition can
be chosen either non-deterministically or probabilistically. For one-counter MDPs
it is decidable in polynomial time whether given a state and an initial credit there
exists a strategy to resolve the non-deterministic choices and ensure that the counter
eventually reaches zero almost-surely [9].

Observe, although the above results are closely related to our contribution, unary
weight functions are a serious restriction, as transforming a weight function over Z
to a weight function over {+1, 0,−1} imposes an exponential blow-up.

In [2] Baier et al. show that if we allow weight functions over Z, it is still decidable
in polynomial time, whether all strategies almost-surely ensure the counter to be
always positive.

11



1 Introduction

Energy parity games are turn-based two player games on weighted graphs played
for infinitely many rounds. In contrast to one-counter MDPs they allow for weight
functions over Z. The goal of player 1 is to ensure that both the accumulated weight
stays positive throughout the game and the play satisfies a given ω-regular property,
where as player 0 tries to sabotage. The minimal initial credit problem, which asks
for the least credit such that there exists a winning strategy for player 1, is solvable
in pseudo-polynomial time [12]. Notice that the minimal initial credit problem is
closely related to qualitative weight quantiles.

To the best of our knowledge, the polynomial computation of qualitative weight
and ratio quantiles has not been considered. The concept of quantiles within Marko-
vian models has been first introduced in [27, 5]. The authors consider the computa-
tion of optimal schedulers for quantiles with reachability constraints using iterative
linear-programming approaches. Upper complexity bounds for these quantiles are
discussed in [18].

Organization. After introducing basic concepts and our notations for Markov chains,
linear-time properties and random walks in Chapter 2, we formally define the above
mentioned quantiles and decision problems in Chapter 3. In Chapter 4 and Chap-
ter 5 we show that under the assumption of the side-constraint φ being negligible, the
decision problems and quantiles are solvable in polynomial time. We then generalize
these results for arbitrary omega-regular properties φ in Chapter 6. In Chapter 7
we introduce the modality strong release and show that the techniques presented in
the previous sections can be amended to the related qualitative decision problems
and quantiles. A brief summary of the thesis and future research directions can be
found in Chapter 8.
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2 Preliminaries

In this chapter we introduce our notations for Markov chains, omega-regular prop-
erties and random walks. Further, we will recall some known results. In Section 2.1
we briefly introduce the concept of finite Markov chains and extend it by reward
functions in order to define weighted and energy-utility Markov chains. A short in-
troduction to omega-regular properties with respect to Markov chains can be found
in Section 2.2, where we also define LTL-style notations for the analysis of weighted
and energy-utility Markov chains. Section 2.3 contains a definition of random walks
and some basic results which will be of great help in Chapter 4.

We assume that the reader is familiar with basic concepts of probability theory,
automata and model checking (see, e.g., [21], [20], [1]).

2.1 Markov chains

Markov chains are widely used to model systems which involve randomized behaviour
or contain uncertainties. In this section, we briefly introduce the concept of Markov
chains including their induced probability space and bottom strongly connected
components. Additionally we extend the standard Markov chain notion by reward
functions to define weighted Markov chains and energy-utility Markov chains.

Definition 2.1. A Markov chainM is a tuple (S, P, ι, AP,L) where S is a nonempty
finite set of states, ι ∈ S the initial state and P : S × S → [0, 1] is a transition
probability matrix, i.e., P satisfies

∑
s′∈S P (s, s′) = 1 for all s ∈ S. Further, AP is

a finite set of atomic propositions and L a labelling function L : S → 2AP .
The size |M| of a Markov chain M is defined as the binary encoding length of

P plus the number of states and transitions, where a transition is a pair of states
(s, s′) with P (s, s′) > 0 , i.e.,

|M| = |S|+ |{(s, s′) : P (s, s′) > 0}|+ elen (P ).

Basic path notations

Let us fix a Markov chain M = (S, P, ι, AP,L). An infinite sequence s0s1s2 . . . of
states is called an infinite path ofM if each pair of consecutive states is a transition
of M. The set of all infinite paths of M is denoted by InfPathsM. Given a state
s ∈ S, InfPathsMs denotes the corresponding set of all infinite paths starting in s.

Analogously, finite paths are nonempty finite sequences of states comprising of
consecutive transitions. The corresponding sets FinPathsM and FinPathsMs are de-
fined as for infinite paths. In general we denote (infinite) paths with π and finite
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2 Preliminaries

ι t1
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Figure 2.1: Plain Markov chain

paths with π̂. The length |π̂| of a finite path π̂ stands for the number of its transi-
tions, e.g., |s0s1s2| = 2. The first and last state of a path π̂ are denoted by first(π̂)
and last(π̂), respectively.

Notice that given two finite paths π̂1 and π̂2 the sequence π̂1π̂2 constitutes a finite
path if and only if last(π̂1)π̂2 is a finite path. This motivates the definition of the
following concatenation operator.

Definition 2.2. Let π̂ ∈ FinPathsM be a finite path and π = last(π̂)π′ be a not
necessarily finite path contained in (FinPathsMlast(π̂) ∪ InfPathsMlast(π̂)). We define the

extension of π̂ by π as π̂ � π := π̂π′.

For an infinite path π = s0s1s2 . . . and n ∈ N we will use the following notions:

π[n] = sn π[n . . .] = snsn+1 . . . π[. . . n] = s0s1 . . . sn

Observe that for any infinite path π ∈ InfPathsM and n ∈ N we have π = π[. . . n] �
π[n . . .].

Let us now consider some important subclasses of finite paths. A simple path is
a finite path which contains each state at most once. A cycle is a finite path ϑ
of length at least one starting and ending in the same state, i.e., first(ϑ) = last(ϑ)
and |ϑ| ≥ 1. We call a cycle ϑ simple, if there exists a simple path π̂ such that
ϑ = π̂ first(π̂).

Example 2.3. Consider the Markov chain M = (S, P, ι, AP,L) depicted in Fig-
ure 2.1, where AP = ∅. M contains exactly four simple cycles, namely t1t2t1,
s1s2s3s1, s1s3s1 and s3s3. The sequence π = ιt1t1(s3)

ω is an infinite path contained
in InfPathsMι with

π[4] = s3, π[4 . . .] = (s3)
ω and π[. . . 4] = ιt1s1s3s3.

Notice that in Example 2.3 every state of the Markov chain is reachable from ι,
which means for every state s that there exists a finite path π̂ with first(π̂) = ι and
last(π̂) = s. Further, the Markov chain does not contain states with no outgoing
transition. Whereas the latter is a consequence of our definition of Markov chains,
we in the following assume w.l.o.g. that all states of a Markov chain are reachable
from ι.

14



2.1 Markov chains

Probability space

Up to now, we have just considered notions related to the underlying graph of a
Markov chain. Let us not turn to the probabilistic choice.

Consider again the Markov chain depicted in Figure 2.1. Intuitively, the probabil-
ity of the finite path π̂ = ιt1t2s1 is P (ι, t1) · P (t1, t2) · P (t2, t1) · P (t1, s1) = 0.6 · 0.4.

However, as we not only want to consider paths up to a fixed length, we need to
define the probability space over the infinite paths of a Markov chain. We formalize
the intuitive notion of probabilities as in [1] using the cylinder sets spanned by finite
paths of M. The cylinder set Cyl (π̂) for a given finite path π̂ contains all infinite
paths π which start with π̂, i.e., such that π = π̂ � π′ for some π′ ∈ InfPathsM.

These cylinder sets constitute a basis of a σ-algebra S which we use to define the
probability measure PrMs forM and a given state s ofM. Let PrMs be the unique
probability measure on S such that for every finite path π̂ = s0 . . . sn ∈ FinPathsMs .

PrMs (Cyl (s0 . . . sn)) =
n∏
i=1

P (si−1, si)

and PrMs (Cyl (π̂)) = 0, otherwise. Existence and uniqueness of PrMs are ensured
by Caratheodory’s measure-extension theorem see e.g., [21, Theorem A1.1].

Bottom strongly connected components (BSCC)

A bottom strongly connected component (BSCC) can be seen as a “trap” set of
states, where if the system once enters a state of this set, it cannot visit any state
outside this trap set anymore. Consider the Markov chain depicted in Figure 2.1.
Once the sytem has entered state in {s1, s2, s3} it can only reach states within this
set. To ensure the minimality of the considered sets, we additionally require that
the set is strongly connected, i.e., every state in the set is reachable from every other
state in the set.

Definition 2.4. Let M = (S, P, ι, AP,L) be a Markov chain. A nonempty subset
C of S is referred to as bottom strongly connected component (BSCC) of M if the
following two statements hold:

• last(π̂) ∈ C, for all s ∈ C and π̂ ∈ FinPathsMs

• for all s, s′ ∈ C, there exists π̂ ∈ FinPathsMs such that last(π̂) = s′

Example 2.5. Consider the Markov chain depicted in Figure 2.1. It contains exactly
one BSCC, namely C = {s1, s2, s3}.

The BSCCs ofM are computable in time polynomial in the size ofM using e.g.,
Tarjan’s algorithm [25]. The analysis of BSCCs is crucial for the analysis of a given
Markov chain, as almost all paths eventually enter a BSCC C and visit all states of
this BSCC C infinitely often (cf. [1], Theorem 10.27).
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2 Preliminaries

Additionally, for almost all paths reaching a BSCC C, the following limit is con-
stant

SC(s) = lim
n→∞

1

n+ 1
|{k ∈ {0, . . . , n} : π[k] = s}|

for a given state s ∈ C (cf. Chapter 7 of [21]). In the following we will refer to SC
as the steady-state probability of C. The steady state probability is the solution to
the following linear equation system

for all s ∈ C :
∑
s′∈C

P (s′, s) · SC(s′) = SC(s) and
∑
s′∈C

SC(s′) = 1

and thus can be computed in polynomial time.

Example 2.6. Reconsider the Markov chain depicted in Figure 2.1. Let the event
E1 ⊆ InfPathsMι be the set of all paths infinitely often visiting t1 and E2 ⊆ InfPathsMι
the set of all paths infinitely often visiting s1. Even though both sets are nonempty,
C = {s1, s2, s3} being the only BSCCs implies

PrMι (E1) = 0 and PrMι (E2) = 1.

Further, the steady-state of C evaluates to:

SC(s1) =
2

7
SC(s2) =

1

7
SC(s3) =

4

7

Weighted Markov chains

Weighted Markov Chains amend Markov chains by a weight function which asso-
ciates an integer to every transition.

Definition 2.7. Let M = (S, P, ι, AP,L) be a Markov chain. A weight function
for M is a function weight : S × S → Z where weight(s, s′) = 0 if P (s, s′) = 0. A
reward function for M is a weight function for M which maps to N only.

Definition 2.8. Let M = (S, P, ι, AP,L) be a Markov chain and let weight be a
weight function for M. We refer to (S, P, ι, AP,L,weight) as a weighted Markov
chain.

The size of a weighted Markov chain M = (S, P, ι, AP,L,weight) is defined as the
size of the Markov chain M′ = (S, P, ι, AP,L) plus the binary encoding length of
weight, i.e.,

|M| = |M′|+ elen (weight).

We now lift the notion of weight to paths. To this end, let us fix a weighted
Markov chain M = (S, P, ι, AP,L,weight). The accumulated weight weight(π̂) of a
finite path π̂ = s0 s1 s2 . . . sn is the sum of all its transition weights, i.e.,

weight(π̂) =

n∑
i=1

weight(si−1, si).
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2.1 Markov chains

ι t1
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Figure 2.2: Weighted Markov chain (choices are assumed to be uniformly
distributed)

Thus, weight(π̂) = 0 for every finite path with |π̂| = 0. If the accumulated weight
of a finite path π̂ is positive, i.e., weight(π̂) > 0, π̂ is said to be weight-positive or
simply positive. Analogously, if weight(π̂) < 0 the finite path is weight-negative or
simply negative.

In this thesis will frequently refer to the minimal weight minwgt[weight](π̂) on a
finite path π̂. If |π̂| > 0, it is defined as

minwgt[weight](π̂) = min
ρ

(weight(ρ)),

where ρ ranges over all nonempty prefixes of π̂. Otherwise, minwgt[weight](π̂) =∞.
Another important notion for weighted Markov chains is the expected weight for

a BSCC C defined as

EC(weight) =
∑
s,s′∈C

weight(s, s′) · SC(s) · P (s, s′).

The expected weight is computable in polynomial time, as both, the BSCCs of M
and their steady-state probabilities are computable in polynomial time.

Example 2.9. Consider the weighted Markov chain depicted in Figure 2.2, which is
essentially a weighted version of the Markov chain depicted in Figure 2.1, but for the
distribution in state t1. With respect to weight, the simple cycle ϑ1 = t1t2t1 consti-
tutes a positive cycle, whereas ϑ2 = s1s2s3s1 is a negative cycle, as weight(ϑ2) = −3.
Further minwgt(ϑ2) = −4. As discussed in Example 2.6, the Markov chain con-
tains exactly one BSCC C = {s1, s2, s3} with SC(s1) = 2/7, SC(s2) = 1/7 and
SC(s3) = 4/7. Thus, the expected weight of this BSCC is EC(weight) = −2/7.

Energy-utility Markov chains

Energy-utility Markov chains amend Markov chains by two reward functions energy
and utility.

17



2 Preliminaries

Definition 2.10. Let M = (S, P, ι, AP,L) be a Markov chain and let energy, utility
be two reward functions forM such that energy is strictly positive, i.e., maps only to
N>0. We refer to (S, P, ι, AP,L, utility, energy) as an energy-utility Markov chain.
The energy-utility ratio, briefly ratio, is defined as ratio : FinPathsM → Q≥0 given
by ratio(π̂) = utility(π̂)/energy(π̂), where |π̂| > 0 and ratio(π̂) = 0 otherwise.

The size of an energy-utility Markov M = (S, P, ι, AP,L, utility, energy) chain is
defined as the size of the Markov chain M′ = (S, P, ι, AP,L) plus the encoding
lengths of energy and utility, i.e.,

|M| = |M′|+ elen (energy) + elen (utility).

It is well-known that for almost all paths π eventually reaching a given C of M
the ratio of all its prefixes converges towards EC(utility)/EC(energy) [2]. Formally,

lim
n→∞

ratio(π[. . . n]) =
EC(utility)

EC(energy)
.

In the following we refer to LC(ratio) = limn→∞ ratio(π[. . . n]) as the long-run ratio of
C. Observe that LC(ratio) is rational as SC being rational implies that both EC(utility)
and EC(energy) rational. Further, LC(ratio) is computable in polynomial time.

2.2 Linear-time properties

Linear-time properties are used to specify desirable behaviour of a given system
- in our case Markov chains. We will here just give a brief introduction to the
field of linear-time properties, limited to the extent required by this thesis. For a
comprehensive introduction, see [1].

Let us first consider how to formalize behaviour of a Markov chain. To this end, let
us fix M = (S, P, ι, AP,L). Assume that the current state of a Markov chain is not
observable, but only the atomic propositions assigned to this state. Each execution,
represented by an infinite path π = s0s1s2 . . . induces an observable behaviour which
we refer to as trace of π,

trace(π) = L(s0)L(s1)L(s2) . . . .

A linear-time property φ is a set of traces, i.e., a subset of (2AP )ω. Model checking
the linear-time property φ for a given Markov chainM = (S, P, ι, AP,L) boils down
to computing the following probability

PrMs
{
π ∈ InfPathsMs : trace(π) ∈ φ

}
.

One way to specify a linear-time property φ is to construct an automaton over the
alphabet 2AP which accepts exactly all the traces contained in φ. Suitable automata
for this purpose are for example deterministic Rabin or Streett automata, which are
both special types of deterministic ω-automata.
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2.2 Linear-time properties

Definition 2.11. A deterministic ω-automaton is a tuple A = (Q,Σ, δ, q0, Acc),
where Q is finite set of states, Σ is a finite alphabet, δ : Q×Σ→ Q is a deterministic
transition relation, q0 ∈ Q is the initial state and Acc an acceptance condition.

Let A = (Q,Σ, δ, q0, Acc) be an ω-automaton. An infinite sequence of states
q0 q1 q2 . . . is called a run of A for a1a2a3 . . . ∈ Σω, if for every i ∈ N>0: qi ∈
δ(qi−1, ai). A run is called accepting if it satisfies the acceptance condition Acc. The
accepted language of A contains exactly those words w ∈ Σω for which there exists
an accepting run.

Definition 2.12. A deterministic Rabin automaton (DRA) is an ω-automaton,
where Acc is given as a set of tuples (L,K) ∈ 2Q × 2Q and a run is accepting, if
there exists a pair (L,K) for which all states of L are visited only finitely often and
at least one state of K is visited infinitely often. This condition is also referred to
as Rabin condition.

Definition 2.13. A Streett automaton is an ω-automaton, where Acc is given as
a set of tuples (E,F ) ∈ 2Q × 2Q and a run is accepting if for every tuple (E,F ) the
following holds. If any state of F is visited infinitely often, then also a state of E is
visited infinitely often. This condition is also referred to as Streett condition.

In fact deterministic Rabin automata and Streett automata are equivalent with
respect to their accepted languages, i.e., if a language is accepted by a deterministic
Rabin automaton, there exists a Streett automaton accepting this language and
vice-versa [26].

Further, the class of linear-time properties encodable using a deterministic Rabin
or Streett automaton coincides with the well-studied class of omega-regular prop-
erties. One nice property of omega-regular properties is the following: Given an
omega-regular property φ encoded by a deterministic Rabin automaton A and a
Markov chain M, model-checking φ for M can be done in time polynomial in both
the size of A and M. The main idea is to construct the product Markov chain
M⊗A and then compute the probability of reaching any BSCC of M⊗A which
satisfies the Rabin condition of A [1, Chapter 10.3].

Definition 2.14. For a Markov chain M = (S, P, ι, AP,L) and a deterministic
Rabin automaton A = (Q, 2AP , δ, q0, Acc) , where δ is a total transition function
and Acc = {(L1,K1), . . . , (Lk,Kk)}, the product Markov chain M⊗A is defined as

M⊗A = (S ×Q,P ′, ι′, {L1, . . . , Lk,K1, . . . ,Kk}, L′),

where ι′ = 〈ι, δ(q0, L(ι))〉, L′(〈s, q〉) = {Li : q ∈ Li} ∪ {Ki : q ∈ Ki} and

P ′(〈s, q〉, 〈s′, q′〉) =

{
P (s, s′) if q′ = δ(q, L(s′))

0 otherwise
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2 Preliminaries

LTL-style notations

In the previous section we introduced weighted and energy-utility Markov chains,
which extend Markov chains by a weight function or two reward functions, respec-
tively. For these special Markov chains another interesting aspect of their behaviour
is the accumulated weight or ratio. However, linear-time properties are restricted
to the behaviour of Markov chains with respect to their labelling functions. To
specify this kind of behaviour we will use notation inspired by linear temporal logic
(LTL). LTL can be used to specify linear-time properties. However, we forego an
introduction of LTL, as full LTL is beyond the scope of this thesis.

Instead, for a weighted Markov chainM = (S, P, ι, AP,L,weight) we only consider
the following events. Given z ∈ Z, ./ ∈ {<,≤,=,≥, >} and a linear-time property
φ, the events �(weight ./ z) ∧ φ and ♦(weight ./ z) ∧ φ are given by

π |= �(weight ./ z) ∧ φ iff weight(π[. . . n]) ./ z for all n ∈ N>0

and trace(π) ∈ φ,
π |= ♦(weight ./ z) ∧ φ iff weight(π[. . . n]) ./ z for some n ∈ N>0

and trace(π) ∈ φ,

where π ∈ InfPathsM. Intuitively, π models �(weight ./ z)∧φ if π satisfies φ and its
accumulated weight always satisfies ./ z. To model ♦(weight ./ z) the accumulated
weight must eventually satisfy ./ z. Analogously for the modalities ♦� and �♦,

π |= ♦�(weight ./ z) ∧ φ iff there exists k ∈ N>0 s.t. for all n ∈ N≥k
weight(π[. . . n]) ./ z and trace(π) ∈ φ,

π |= �♦(weight ./ z) ∧ φ iff there exist infinitely many n ∈ N>0 with

weight(π[. . . n]) ./ z and trace(π) ∈ φ.

Example 2.15. Consider the weighted Markov chainM = (S, P, ι, AP,L,weight) de-
picted in Figure 2.2 where AP = S and L(s) = {s} for all states s ∈ S. Further,
let φ1 be the set of all traces over 2AP which satisfy the following Rabin condi-
tion ({s2}, {s3}) and φ2 be the set of all traces which satisfy the Streett condition
{({s1}, {s3}), ({s2}, {s3})}.

Let us now consider the path π = ι t1 s1 (s3)
ω. We have:

π |= �(weight > 3) ∧ φ1 π |= ♦(weight > 100) ∧ φ1
π 6|= �(weight > 3) ∧ φ2 π 6|= ♦�(weight < 5)

Given an energy-utility Markov chainM = (S, P, ι, AP,L, energy, utility), a q ∈ Q,
./ ∈ {<,≤,=,≥, >} and a linear-time property φ, the events ♥(ratio ./ q) for
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2.3 Random walks

♥ ∈ {�,♦,♦�,�♦} are defined as in the weighted case, i.e., for π ∈ InfPathsM

π |= �(ratio ./ q) ∧ φ iff ratio(π[. . . n]) ./ q for all n ∈ N>0

and trace(π) ∈ φ,
π |= ♦(ratio ./ q) ∧ φ iff ratio(π[. . . n]) ./ q for some n ∈ N>0

and trace(π) ∈ φ,
π |= ♦�(ratio ./ q) ∧ φ iff there exists k ∈ N>0 s.t. for all n ∈ N≥k

ratio(π[. . . n]) ./ q and trace(π) ∈ φ,
π |= �♦(ratio ./ q) ∧ φ iff there exist infinitely many n ∈ N>0 with

ratio(π[. . . n]) ./ q and trace(π) ∈ φ.

2.3 Random walks

Definition 2.16. Let (Ω,F ,P) be a probability space. A sequence (Xn)n∈N of ran-
dom variables Xn : Ω→ Z, n ∈ N is called Ω-random walk or simply random walk,
if the sequence (∆Xn)n∈N is independent and identically distributed (i.i.d.), where
for every n ∈ N the random variable ∆Xn : Ω→ Z is defined by

∆Xn = Xn+1 −Xn.

A random walk is said to be finite if the random variables Xn have a finite image.

One prominent example for random walks is the Gambler’s ruin:

Example 2.17. Consider a gambler with finite wealth of w dollars, who continuously
bets on a coin toss. If the coin shows heads, the gambler gets one dollar, otherwise
he has to pay one dollar. For the sake of simplicity let us assume that the coin is
fair.

This situation can be modeled with the following random walk. For every n ∈ N
the random variable Xn describes the gambler’s fortune at time n, i.e., after the
n-th toss. As the coin is fair, we have for every n ∈ N

P (∆Xn = +1) = 0.5 P (∆Xn = −1) = 0.5.

This random walk can also be modeled by the weighted Markov chain depicted in
Figure 2.3.

ι ht

00

+1-1

Figure 2.3: Weighted Markov chain modelling the Gambler’s ruin

The strong law of large numbers is a fundamental theorem in probability theory.
Applied to random walks it reads as follows.
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2 Preliminaries

Theorem 2.18. Let (Ω,F ,P) be a probability space and (Yn)n∈N be a independent
identically distributed sequence of random variables Yn : Ω → Z, n ∈ N, such that
EP(|Y0|) <∞. Then for P-almost all ω ∈ Ω, the sequence (1/n+1) ·∑n

k=0 Yk(ω)n∈N
converges, and

lim
n→∞

1

n+ 1
·
n∑
k=0

Yk(ω) = EP(Y0).

One interesting property of random walks is whether it almost-surely returns to
its initial value.

Definition 2.19. Let (Ω,F ,P) be a probability space. An Ω-random walk (Xn)n∈N
is called recurrent, if for every z ∈ Z, the following implication holds: If there exists
n ∈ N, such that P (Xn = z) > 0, then for P -almost all ω ∈ Ω there exist infinitely
many i ∈ N such that Xi(ω) = z.

Example 2.20. Reconsider the random walk introduced in Example 2.17. This ran-
dom walk is known to be recurrent. Let us discuss what recurrence means for
the gambler’s fortune. Notice that for every n ∈ N the probability that the coin
shows tail n-times in a row is greater than zero. Thus, for every z ∈ Z<0 we have
P (X|z|+w = z) > 0, where w denotes the gambler’s initial fortune. Thus, recurrence
implies that the gambler goes bankrupt almost-surely, no matter how high his initial
fortune was.

In this thesis, we will exploit the following two results for recurrent random-walks.

Theorem 2.21 ([21], Lemma 3.2, Theorem 8.1). Let (Ω,F ,P) be a probability
space. An Ω-random walk (Xn)n∈N is recurrent if for P-almost all ω ∈ Ω, the
sequence (Xm(ω)/n)n∈N converges and

lim
n→N

Xn(ω)

n
= 0.

Theorem 2.22 ([21], Theorem 3.23). Let (Ω,F ,P) be a probability space. Let
X = (Xn)n∈N be a recurrent Ω-random walk. The set

{z ∈ Z : there exists n ∈ N such that P(Xn = z) > 0}

constitutes a subgroup of the group (Z,+, 0). In particular, there exists n ∈ N such
that P(Xn = 0) > 0.

Notice that the authors in [21] study random walks with range R. As we only
consider random walks with range Z, our definition of recurrence is less complex
than the one given in [21] but the results are transferable.
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3 Motivation and problem definition

In this chapter we will formally introduce the problems considered in this thesis.
In order to motivate the presented problems, let us first consider an example which
will serve as running example in the following chapters.

Example 3.1. Consider the pointed weighted Markov chain depicted in Figure 3.1.
It models a system charging and draining a battery. During a transition with pos-
itive weight, the battery is charged, whereas negative weight implies that battery
is discharged. The states ι, t1, t2, t3 capture the behaviour in the system’s initial-
ization phase. The BSCCs C1 = {s1, s2, s3}, C2 = {s4, s5, s6} and C3 = {s7, s8, s9}
model different operation modes, which are reached dependent on the initializa-
tion phase. For the sake of simplicity this dependency is modeled by an uniformly
distributed probability for the outgoing transitions of state t3. Notice that the op-
eration modes differ only in their charging efficiency. If the system reaches s1, the
probability that the system returns to s1 with the same or a higher battery level is
0.75 = 1− P (s1, s2) · P (s2, s3) · P (s3, s1). In contrast, for state s7 the probability is
only 0.3125.

When analyzing and evaluating the system introduced in Example 3.1, it might
be interesting to know the probability that the system eventually runs out of battery
when started with a given initial battery level l. Formally,

1− PrMι (�(weight > −l)).

However, maybe there are additional requirements to be met. Assume for exam-
ple that the only states, where the system actually gets work done, are s2, s5 and
s8. We thus additionally require that at least one productive state is visited in-
finitely often. This condition can be encoded using the following Rabin-condition
{({}, {s2, s5, s8})} and thus can be represented by an omega-regular property φ.
Further we might not be interested in the exact probability that the system does
not run out of battery while satisfying φ, but only whether the probability is greater
than a given threshold p, i.e.

PrMι (�(weight > −l) ∧ φ) > p.

This quantitative weight problem is known to be decidable in EXPSPACE [4].
Qualitative weight problems are a special case of quantitative problems, where we
only ask if the probability is greater than 0 or equal to 1.
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Figure 3.1: Markov Chain (choices are assumed to be uniformly distributed)

Definition 3.2. LetM = (S, ι, P,AP,L,weight) be a weighted Markov chain, z ∈ Z,
♥ one of the four temporal modalities �, ♦, �♦, ♦�, and φ an omega-regular
property over AP . We define the following qualitative ♥-weight problems:

positive ♥-weight problem : does PrMι (♥(weight > z) ∧ φ) > 0 hold?

almost-sure ♥-weight problem : does PrMι (♥(weight > z) ∧ φ) = 1 hold?

Analogously, let us define qualitative ratio problems for energy-utility Markov
chains.

Definition 3.3. Let M = (S, ι, P,AP,L, energy, utility) be an energy-utility Markov
chain, q ∈ Q, ♥, φ as in Definition 3.2 and ratio = energy/utility as usual. We
define the following qualitative ♥-ratio problems:

positive ♥-ratio problem : does PrMι (♥(ratio > q) ∧ φ) > 0 hold?

almost-sure ♥-ratio problem : does PrMι (♥(ratio > q) ∧ φ) = 1 hold?

By solving the decision problems defined above, we can now decide whether or
not the system may run out of battery. However, assume that we want to know
the lowest initial battery level which ensures that the system does not run out of
battery. Then the above problems are just of limited use to answer our questions,
as they require that we guess an initial battery level of interest. Instead, what we
are looking for are quantiles.
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Definition 3.4. LetM = (S, ι, P,AP,L,weight) be a weighted Markov chain, φ and
♥ as in Definition 3.2. We define the following qualitative ♥-weight quantiles:

positive ♥-weight quantile :

Qu>0
φ [♥weight] = sup{z ∈ Z : PrMι (♥(weight > z) ∧ φ) > 0}

almost-sure ♥-weight quantile :

Qu=1
φ [♥weight] = sup{z ∈ Z : PrMι (♥(weight > z) ∧ φ) = 1}

Definition 3.5. Let M = (S, ι, P,AP,L, energy, utility) be an energy-utility Markov
chain, ♥, φ, as in Definition 3.2 and ratio = energy/utility as before. We define the
following qualitative ♥-ratio quantiles:

positive ♥-ratio quantile :

Qu>0
φ [♥ratio] = sup{q ∈ Q : PrMι (♥(ratio > z) ∧ φ) > 0}

almost-sure ♥-ratio quantile :

Qu=1
φ [♥ratio] = sup{q ∈ Q : PrMι (♥(ratio > z) ∧ φ) = 1}

If φ = (2AP )ω we write Qu∗[♥weight] and Qu∗[♥ratio] instead of Qu∗φ[♥weight] and
Qu∗φ[♥ratio] respectively, where ∗ ∈ {>0, =1}.

Beside best- and worst-case analysis, these quantiles could also be used to compare
two systems.

Example 3.6. Reconsider Example 3.1. Beside the battery level, we might be inter-
ested in the systems energy efficiency. To this end, let us consider the energy-utility
Markov chain depicted in Figure 3.2, where each transition is assigned two natural
numbers, the first stands for the gained utility and the second for the consumed
energy of this transition. Notice, the model implies that the system’s efficiency does
not depend on the operation mode reached. However, let us assume that there exist
three variants v1, v2 and v3 of our system, which differ both in their price and the
energy consumption for the transition from t1 to c1 ie.

energyv1(t1, c1) = 2 energyv2(t1, c1) = 4 energyc3(t1, c1) = 8.

It is now left to the engineer to decide which variant to buy.

As mentioned in Chapter 1, one way to evaluate the trade-off of using a more
expensive variant would be to compute and compare qualitative ratio quantiles for
the alternatives.

In this thesis we will show that all qualitative problems and qualitative quantiles
stated above are solvable in polynomial time. Chapter 4 is dedicated to prove de-
cidability in polynomial time under the assumption that the side constraint φ is
omitted, i.e., φ = (2AP )ω. In Chapter 5 we show that under this assumption quali-
tative quantiles are computable in polynomial time In Chapter 6 we then generalize
the results for omega-regular properties encoded by a deterministic Rabin or Street
automaton A and show that both, qualitative decision problems and qualitative
quantiles, are solvable in time polynomial in the size of M and A.
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Figure 3.2: Finite energy-utility Markov chain (transitions are labeled with tuples
(utility,energy) and choices are assumed to be uniformly distributed)
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4 Towards a polynomial decision
procedure

In this chapter, we show that both, qualitative weight problems and qualitative ratio
problems, are decidable in polynomial time. As mentioned before, we first assume
that the linear-time side constraint appearing in the qualitative decision problems is
simply φ = (2AP )ω and generalize the results for omega-regular properties in Chap-
ter 6. As under this assumption AP and L can be omitted, we will abuse notation
and denote weighted Markov chains by the tuple (S, P, ι,weight) and energy-utility
Markov chains by (S, P, ι, energy, utility).

It is well-known that qualitative ratio problems can be reduced to qualitative
weight problems in polynomial time [6, 4]. Using the following lemma, obtained
results for qualitative weight problems can be directly transferred to qualitative
ratio problems, and hence, for the remainder of this chapter, we restrict ourselves
to weighted decision problems.

Lemma 4.1. Let M = (S, P, ι, energy, utility) be an energy-utility Markov chain,
♥ ∈ {�,♦,�♦,♦�} and n1, n2 ∈ N>0. Let weight(n1/n2) = n2 · utility − n1 · energy.

For every path π ∈ InfPathsM

π |= ♥
(

utility

energy
>
n1
n2

)
iff π |= ♥(weightn1/n2

> 0).

Using similar techniques as Brázdil et al. in [10], we will show that in order to de-
cide qualitative ♥-weight problems, it suffices to analyze both the BSCCs regarding
to their expected weight and the possibilities to reach these BSCCs.

The BSCC analysis is based on a transformation to random walks, which is in-
troduced in Section 4.1 and exploited in Section 4.2 to characterize BSCCs with
respect to qualitative ♥-weight objectives. In Section 4.3 we define some basic func-
tions on the underlying graph of a Markov chain, which in Section 4.4 allows us to
lift the results for BSCCs to arbitrary Markov chains and provide characterizations
for qualitative ♥-weight problems. In Section 4.5 we show that all ingredients of
these characterizations can be computed in polynomial time and thus the qualitative
♥-weight problems are decidable in polynomial time.

For an intuition of the role of expected weights for BSCCs consider Example 3.1.
The system’s behaviour heavily depends on the chosen operation mode, i.e., the
reached BSCC. Intuitively, given an initial battery level, the probability of running
out of battery is greater in any state of BSCC C3 = {s7, s8, s9} than in a state of
C1 = {s1, s2, s3}. Notice that C1 and C3 differ only in their weights. Thus, their
steady-state distribution is identical but they have a different expected weight.
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4 Towards a polynomial decision procedure

In the following we will show that when ever the system enters a BSCC with
negative expected weight, it will run out of battery, no matter how high the initial
battery level was. The same applies for BSCCs with zero expected weight which
contain negative cycles. For all other BSCCs there exists an initial battery level,
such that with positive probability the system will not run out of battery. Thus, the
system will almost surely run out of battery if enters operation mode C2 = {s4, s5, s6}
or C3, as EC2 = 0 and EC3 < 0. In contrast, we will show that with positive
probability the system will not run out of battery, if it enters operation mode C1
with a battery level of at least 2.

Before we dive into the transformation of a BSCC into a random walk which we
will use to show that qualitative ♥-weight problems are decidable in polynomial
time, let us see why it suffices to restrict ourselves to the modalities � and ♦�. In
the remainder of this chapter let M = (S, ι, P,weight) be a weighted Markov chain
and z ∈ Z an integer.

Lemma 4.2.

PrMι (♦(weight > z)) = 1− PrMι (�(−weight > −(z + 1)))

PrMι (�♦(weight > z)) = 1− PrMι (♦�(−weight > −(z + 1)))

Proof. We here give the formal arguments for ♦, the case �♦ is analogous. Using
P (A) = 1− P (¬A) and a < b⇔ −a > −b we have

PrMι (♦(weight > z)) = 1− PrMι (¬(♦(weight > z)))

= 1− PrMι (�(weight ≤ z))
= 1− PrMι (�(weight < z + 1))

= 1− PrMι (�(−weight > −(z + 1)))

4.1 From BSCCs to random walks

The aim of this section is to state and analyze a transformation of a BSCC C into a
random walk. This random walk will then be used in Section 4.2 to classify BSCCs
with respect to their expected weight.

The transformation is based on the fact that within a BSCCs almost-surely every
state is visited infinitely often. For the remainder of this section, let us fix a BSCC
C of M and a state s ∈ C. Hence, almost all paths contained in InfPathsMs can be
seen as a concatenation of infinitely many cycles starting in s. This motivates the
next definition.

Definition 4.3. For every π ∈ InfPathsMs and n ∈ N, we introduce the path π[. . . ↑ n]
of M as follows: π[. . . ↑ n] is defined to be the minimal prefix of π, that visits s at
least n+ 1 times. If such prefix does not exists, let π[. . . ↑ n] = π.
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Figure 4.1: weighted BSCC (isomorphic to BSCC {s1, s2, s3} of Figure 3.1)

Example 4.4. Consider the BSCC C depicted in Figure 4.1. Notice that it constitutes
a single BSCC. Let π ∈ InfPathsC such that π ∈ Cyl (s1s2s3s3s1s3s1s2s3s1s3). Then,

π[. . . ↑ 0] = s1

π[. . . ↑ 1] = s1s2s3s3s1

π[. . . ↑ 2] = s1s2s3s3s1s3s1.

We now use Definition 4.3 to define two random walks, which both are based on
the idea to consider every cycle ϑ from s to s as one “step” of the random walk.
Whereas the first assigns the step the length of ϑ the second uses the accumulated
weight of ϑ.

Definition 4.5. We define the InfPathsMs -random walks (Lenn)n∈N and (Wgtn)n∈N
as follows: for every n ∈ N and π ∈ InfPathsMs let

Lenn(π) = |π[. . . ↑ n]|,
Wgtn(π) = weight(π[. . . ↑ n]),

if |π[. . . ↑ n]| <∞, and Wgtn(π) = Lenn(π) = 0 otherwise.

Notice, since Len0 = 0 and Wgt0 = 0, for every n ∈ N

Lenn+1 =
n∑
k=0

∆Lenk and Wgtn+1 =
n∑
k=0

∆Wgtk.

Example 4.6. Consider the Markov chain C in Figure 4.1, which constitutes a BSCC
and let s = s3. Assume π ∈ InfPathsCs and π̂ ∈ FinPathsCs such that for some n ∈ N,
π[. . . ↑ n+1] = π[. . . ↑ n]� π̂. Thus π̂ ∈ {s3s1s3, s3s1s2s3, s3s3} and both (Lenn)n∈N
and (Wgtn)n∈N are finite random walks where for every i ∈ N with:

P (∆Leni = 1) = 0.5 P (∆Wgti = −2) = 0.25

P (∆Leni = 2) = 0.25 P (∆Wgti = 0) = 0.25

P (∆Leni = 3) = 0.25 P (∆Wgti = +2) = 0.5

However (Lenn)n∈N and (Wgtn)n∈N do not have to be finite. Assume s = s1 and
π̂ ∈ FinPathsCs . Then π[. . . ↑ n + 1] = π[. . . ↑ n] � π̂ for some π ∈ InfPathsCs
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4 Towards a polynomial decision procedure

implies π̂ ∈ {s1s2s3(s3)∗s1, s1s3(s3)∗s1}. Then (Lenn)n∈N and (Wgtn)n∈N are infinite
random walks where for every i ∈ N

P (∆Leni = 2) = 0.25 P (∆Leni = m1) = 0.25 · 0.5m1−3 + 0.25 · 0.5m1−2

P (∆Wgti = −2) = 0.25 P (∆Wgti = 2m2) = 0.25 · 0.5m2+1 + 0.25 · 0.5m2

where m1 ∈ N≥3 and m2 ∈ N.

Notice that Definition 4.5 implicitly assumes that both (Lenn)n∈N and (Wgtn)n∈N
indeed constitute random walks, which has to be proven first.

Lemma 4.7. Both (Lenn)n∈N and (Wgtn)n∈N constitute random walks.

Proof. It suffices to show that (Wgtn)n∈N constitutes a random walk, as (Lenn)n∈N
is a corner case of (Wgtn)n∈N where weight(s, s′) = 1 for all s, s′ ∈ S.

We first prove that (∆Wgtn)n∈N is identically distributed, by calculating the prob-
ability PrMs (∆Wgtn = w) for a given w ∈ Z and showing that this value does not
depend on n. Let n ∈ N, w ∈ Z, and A,B ⊆ S∗ be given as follows,

A = ({s} · (S \ {s})∗)n · {s},
B = {π̂ ∈ {s} · (S \ {s})∗ · {s} : weight(π̂) = w}.

It holds (∆Wgtn = w)−1 = A � B � ({s} · Sω) ∩ InfPathsMs . For a finite path

π̂ ∈ FinPaths, let P (π̂) =
∏|π̂|
i=1 P (si−1, si). Since s is a state of a BSCC, PrMs -

almost all paths visit s infinitely often, which implies
∑

π̂A∈A P (π̂A) = 1. Hence,

PrMs (∆Wgtn = w) =
∑
π̂B∈B

P (π̂B)
∑
π̂A∈A

P (π̂A)

 =
∑
π̂B∈B

P (π̂B)

which, as the right-hand side does not depend on n, yields that (∆Wgtn)n∈N is
identically distributed.

It remains to show that (∆Wgtn)n∈N is independent. Let k ∈ N, {z0, . . . , zk} ⊂ Z,
and {i0, . . . , ik} ⊂ N be such that i0 < . . . < ik. We define F ∈ InfPathsMs by

F = {π ∈ InfPathsMs : ∆Wgtij (π) = zj ∀0 ≤ j ≤ k}.

In the following we will show PrMs (F ) =
∏k
j=0 Pr

M
s (∆Wgtij = zj) which implies

the independence of (∆Wgtn)n∈N.
To do so, for every path π ∈ InfPathsMs visiting s infinitely often, let the sequence

(π̂n)n∈N be given by sπ̂0sπ̂1sπ̂2s . . . = π, where π̂n ∈ (S \ {s})∗, n ∈ N. Further we
define F ′ ⊆ FinPathsMs as the set containing all finite paths π̂ of M such that there
exists π ∈ InfPathsMs with π̂ = π[. . . ↑ ik] and for all 0 ≤ j ≤ k, weight(sπ̂ijs) = zj .
The set F is PrMs -almost surely equivalent to

⋃
π̂∈F ′ Cyl(π̂). Thus,

PrMs (F ) =
∑
π̂∈F ′

P (π̂) =
∑
π̂∈F ′

P (sπ̂i0s) · . . . · P (sπ̂iks)

=

 ∑
π̂′
0∈M0

P (sπ̂′0s)

 · . . . ·
 ∑
π̂′
k∈Mk

P (sπ̂′ks)
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where for all 0 ≤ j ≤ k the set Mk contains all π̂′j ∈ (S\s)∗ satisfying weight(sπ̂′js) =

zij . As
(∑

π̂′
j∈Mj

P (sπ̂′js)
)

= PrMs (∆Wgtij = zij ) this completes the proof.

Let us now analyze the random walks (Lenn)n∈N and (Wgtn)n∈N. One common
prerequisite for stochastic lemmata is a bounded expected value. Using the finiteness
of C we achieve this bound for EMs (∆Len).

Lemma 4.8. We have

0 < EMs (∆Len0) = EMs (|∆Len0|) < +∞.

Proof. Clearly, 0 < EMs (∆Len0) = EMs (|∆Len0|) as ∆Len0 : InfPathsMs → N and

PrMs (∆Len0 = 0) = PrMs (Len1 = 0) = 0.

The second inequality directly follows from basic results of Markov chain theory.
Define the random variable τ : InfPathsMs → N ∪ {∞} for every π ∈ InfPathsMs by
τ(π) = inf{n ∈ N>0 : π[n] = s}. Notice that EMs (τ) denotes the expected return
time to state s. As s is contained in a finite BSCC C, the expected return time
to state s is finite, i.e., EMs (τ) < +∞ [16, Proposition 78 in Chapter 1]. As for
PrMs -almost all infinite paths π ∈ InfPathsMs we have ∆Len0(π) = Len1(π) = τ(π),
this yields the claim.

Lemma 4.9. For PrMs -almost all π ∈ InfPathsM, the sequence (Wgtn(π)/n)n∈N
converges, and

lim
n→∞

Wgtn(π)

n
= EMs (∆Len0) · EC(weight)

Proof. Lemma 4.8 and the fact that (∆Lenn)n∈N is independent and identically
distributed allow the application of Theorem 2.18, which yields for PrMs -almost all
paths π ∈ InfPathsM

EMs (∆Len0) = lim
n→∞

1

n+ 1

n∑
k=0

∆Lenk(π) = lim
n→∞

Lenn+1(π)

n+ 1
. (4.1)

Let us argue for PrMs -almost all infinite path π ∈ InfPathsM. Remember that for
every t, t′ ∈ C, we have

SC(t) · P (t, t′) = lim
n→∞

1

n
· |{k ∈ {0, . . . , n} : π[k] = t, π[k + 1] = t′}|.

Furthermore, (Wgtn(π)/Lenn(π))n∈N is a subsequence of (weight(π[. . . n])/n)n∈N.
Hence,

EC(weight) =
∑
t,t′∈C

weight(t) · SC(t) · P (t, t′)

= lim
n→∞

weight(π[. . . n])

n
= lim

n→∞

Wgtn(π)

Lenn(π)
(4.2)
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4 Towards a polynomial decision procedure

Equation (4.1) and Equation (4.2) yield the claim as

EMs (∆Len0) · EC(weight) = lim
n→∞

Lenn+1(π)

n+ 1
· lim
n→∞

Wgtn(π)

Lenn(π)

= lim
n→∞

Lenn(π)

n
· lim
n→∞

Wgtn(π)

Lenn(π)
= lim

n→∞

Wgtn(π)

n
.

4.2 Classifying BSCCs

Given a BSCC C, exactly one of the following statements holds:

(a) EC(weight) > 0.

(b) EC(weight) = 0 and C contains no negative cycle.

(c) EC(weight) = 0 and C does contain a negative cycle.

(d) EC(weight) < 0.

In this section we investigate these four classes of BSCCs separately. To this end, let
us fix a BSCC C and a state s ∈ C. Using the random walk defined in the previous
section we state and prove a characterization for z ∈ Z and ♥ ∈ {�,♦�} such that

PrMs (♥(weight > z)) > 0.

Further we show that if C satisfies either (c) and (d), we have for every z ∈ Z

PrMs (♦�(weight > z)) = PrMs (�(weight > z)) = 0.

Thus, if the system introduced in Example 3.1 enters operation mode C2 = {s4, s5, s6}
or C3 = {s7, s8, s9} the system will almost-surely run out of battery, no matter how
high the intial battery level.

Let us first treat case (d). Notice that all paths of the following event Ez, z ∈ Z,
neither satisfy �(weight > z) nor ♦�(weight > z):

Ez = {π ∈ InfPathsMs : weight(π[. . . n]) ≤ z for infinitely many n ∈ N}.

In the following we show that EC(weight) < 0 implies that there does not exist a
lower bound for the accumulated weight, i.e., for every z ∈ Z the event Ez has
probability 1.

Lemma 4.10. Assuming EC(weight) < 0 for PrMs -almost all infinite paths π of M

inf
n∈N

weight(π[. . . n]) = inf
n∈N

Wgtn(π) = −∞.
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4.2 Classifying BSCCs

Proof. The claim is a direct consequence of Lemma 4.9. We argue for PrMs -almost
all paths π of M. As EC(weight) < 0 and EMs (∆Len0) > 0 we have

lim
n→∞

Wgtn(π)

n
< 0. (4.3)

Hence infn∈N Wgtn(π) is negative. Furthermore, infn∈N Wgtn(π) ∈ Z would imply
that the sequence (Wgtn(π)/n) tends to zero, which contradicts Equation (4.3).
Thus, infn∈N Wgtn(π) = −∞. Clearly, this implies infn→∞ weight(π[. . . n]) = −∞,
which yields the claim.

Corollary 4.11. Let EC(weight) < 0 and ♥ ∈ {�,♦�}. For every integer z ∈ Z
holds

PrMs (♥(weight > z)) = 0.

Example 4.12. Consider again the Markov chain of Example 3.1 depicted in Fig-
ure 3.1. Corollary 4.11 yields that, no matter how high the system’s battery level is
at the time reaching s7, the system will almost-surely eventually run out of battery.

Let us now consider the case EC(weight) = 0. Intuitively, the expected weight
describes the average weight per transition. Thus, it seems natural to assume that
almost all paths π in such BSCC infinitely often “hit” 0, i.e., there exist infinitely
many n ∈ N such that weight(π[. . . n]) = 0. Formally, this claim follows directly
from the results of the previous section.

Lemma 4.13. If EC(weight) = 0, then for PrMs -almost all paths π ∈ InfPathsMs ,
the sequence (Wgtn(π)/n)n∈N converges, and

lim
n→∞

Wgtn(π)

n
= 0.

In particular, the random walk (Wgtn)n∈N is recurrent.

Proof. The claim is a direct consequence of Theorem 2.21 and Lemma 4.9.

As already mentioned at the beginning of this section, if EC(weight) = 0, we
consider the cases where C does not contain negative cycles (case (b)) and where
C contains negative cycles (case (c)) separately. Similar to EC(weight) < 0, for
the latter we show that almost-all paths infinitely often accumulate arbitrary low
weights. The proof is based on the following fact: If C contains a negative cycle, for
every z ∈ Z there exists a cycle ϑ starting in s such that weight(ϑ) < z. Note that ϑ
does not necessarily has to be a simple cycle. By Lemma 4.13 for almost-all paths
π ∈ InfPathsMs there exist infinitely many n ∈ N such that weight(π[. . . n]) = 0 and
last(π[. . . n]) = s. Hence, by basic laws of probability theory there exist infinitely
many n ∈ N such that π = π[. . . n] � ϑ � π′ for some π′ ∈ InfPathsMs .

We prove the more general statement that almost-all paths infinitely often accu-
mulate arbitrary high and low weights. To be able to apply the above idea, let us
first prove the following statement.
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4 Towards a polynomial decision procedure

Lemma 4.14. Assume EC(weight) = 0. Then, C contains a positive cycle, if and
only if C contains a negative cycle.

Proof. As by Lemma 4.13 (Wgtn)n∈N is recurrent, we can exploit Theorem 2.22.

Assume C contains a weight-positive cycle. This implies that there exists a (not
necessarily simple) weight-positive cycle ϑ with first(ϑ) = s. For every π ∈ Cyl(ϑ)
we have Wgt1(π) = weight(π[. . . ↑ 1]) = weight(ϑ) > 0. Thus,

PrMs (Wgt1 = weight(ϑ)) ≥ PrMs (Cyl(ϑ)) > 0.

As (Wgtn)n∈N is recurrent, Theorem 2.22 implies that there exists an n ∈ N such
that PrMs (Wgtn = −weight(ϑ)) > 0. Thus, there exists a path π′ ∈ InfPathsMs such
that Wgtn(π′) = weight(π′[. . . ↑ n]) = −weight(ϑ). Hence π′[. . . ↑ n] is a negative
cycle. This proves that the existence of a positive cycle implies the existence of a
negative cycle. The reverse implication can be proven analogously.

Lemma 4.15. Assume that EC(weight) = 0 and that C contains a negative cycle.
For every integer z ∈ Z holds

PrMs (�♦(weight > z)) = PrMs (�♦(weight < z)) = 1

Proof. Let z ∈ Z. By Lemma 4.14, C contains both a positive and negative cycle.
Thus, we find (not necessarily simple) cycles ϑ> and ϑ< of M both starting in s,
such that weight(ϑ>) > z and weight(ϑ<) < z.

In the following let us argue for PrMs (�♦(weight > z)) = 1, the argument for
PrMs (�♦(weight < z)) = 1, is analogous. Let F> be the set of all π ∈ InfPathsMs ,
where Wgtn(π) = weight(ϑ>) for infinitely many n ∈ N. Clearly

PrMs (�♦(weight > z)) ≥ PrMs (F>).

The existence of ϑ> implies that we find an n> ∈ N such that for every path
π ∈ Cyl(ϑ>) we have π[. . . ↑ n>] = ϑ>. Therefore,

PrMs (Wgtn> = weight(ϑ>)) ≥ PrMs (Cyl(ϑ>)) > 0.

Thus, by definition of recurrence

1 = PrMs (F>) ≤ PrMs (�♦(weight > z)).

As by assumption weight(ϑ>) > z this completes the proof.

Corollary 4.16. Assume that EC(weight) = 0 and C contains a negative cycle. For
every integer z ∈ Z

PrMs (�(weight > z)) = PrMs (♦�(weight > z)) = 0,

P rMs (♦(weight > z)) = PrMs (�♦(weight > z)) = 1.
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s1

s2

s3

−1

−2

−1
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Figure 4.2: BSCC with expected weight zero and no negative cycles

Example 4.17. Consider again the Markov chain of Example 3.1 depicted in Fig-
ure 3.1. Corollary 4.16 yields that also for states s4, s5 and s6 the initial battery
level is irrelevant and the system almost-surely will eventually run out of battery.

Let us now assume case (b), i.e., EC(weight) = 0 and C does not contain nega-
tive cycles. By Lemma 4.14 this BSCC then contains only cycles with accumulated
weight zero. As a consequence, for every path π there exists a finite path π̂ such
that weight(π) = weight(π̂), as every cycle of π can be omitted. Thus, the accumu-
lated weight for such BSCC is bounded by both the minimal and maximal weight
accumulated along a finite path. Let us now formalize this intuition.

Definition 4.18. The function µ : S → N ∪ ±∞ is defined by

µ(s) = sup{−minwgt(π̂) : π̂ ∈ FinPathsMs }

Intuitively µ(s) denotes the lowest initial battery level which ensures that under
no event the system will run out of battery.

Example 4.19. Even though in the following we will use the notion µ only for BSCCs
with EC(weight) = 0 and do not contain negative cycles, let us consider the BSCC C
depicted in Figure 4.1. As C does contain a negative cycle we have µ(s) = −∞ for
every s ∈ C. In fact µ(s) 6= −∞ if and only if C does not contain negative cycles.

Consider now the BSCC C′ depicted in Figure 4.2. The expected weight of C′ is
zero and C′ does not contain negative cycles. We have

µ(s1) = 2 µ(s2) = 1 µ(s3) = 0.

Thus, there exists no path starting in s1 which violates �(weight > −3). However,
almost all paths starting in s1 violate �(weight > −2). Hence,

PrMs1 (�(weight > −3)) = 1 and PrMs1 (�(weight > −2)) = 0.

Lemma 4.20. Let C be a BSCC of M such that EC(weight) = 0 and such that C
contains no negative cycles. Let s ∈ C and z ∈ Z.

(1) If z < −µ(s), then PrMs (�(weight > z)) = PrMs (♦�(weight > z)) = 1.
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4 Towards a polynomial decision procedure

(2) If z ≥ −µ(s), then PrMs (�(weight > z)) = PrMs (♦�(weight > z)) = 0.

Proof. We first consider the modality �. Assume z < −µ(s). By definition of µ
every finite path π̂ starting from s satisfies weight(π̂) ≥ −µ(s) > z. This immediately
yields (1) for case �, i.e., PrMs (�(weight > z)) = 1.

We now prove (2) for the case �. Let z ≥ −µ(s). Towards a contradiction, assume
that PrMs (�(weight > z)) > 0. By definition of µ there exists finite path π̂ starting
at s such that weight(π̂) = −µ(s). As PrMs -almost all infinite paths of M contain
π̂, there exists an infinite path π ∈ InfPathsMs such that π |= �(weight > z) and π
contains π̂. Let π̂1 ∈ FinPathsMs...s and π2 ∈ InfPathsMs such that π = π̂1 � π̂ � π2.
Since C does neither contain a positive nor negative cycle (cf. Lemma 4.14), we have
weight(π̂1) = 0. As π |= �(weight > z) we obtain the following contradiction which
implies (2) for case �.

−µ(s) ≤ z < minwgt(π̂1 � π̂)

≤ weight(π̂1 � π̂) = weight(π̂) = −µ(s).

In order to complete the proof, we show that for every z ∈ Z,

PrMs (�(weight > z)) = PrMs (♦�(weight > z)).

Clearly, PrMs (�(weight > z)) ≤ PrMs (♦�(weight > z)). The reverse inequality
follows from the definition of µ. Recall that minwgt(π̂) is defined as the minimal
accumulated weight of any nonempty prefix of π̂. Let π ∈ InfPathsMs such that
π |= ♦�(weight > z) and π visits s infinitely often (if there is no such path it
trivially holds PrMs (♦�(weight > z) = 0 ≤ PrMs (�(weight > z))). Since C contains
only cycles with weight zero, there exists n ∈ N such that π[n . . .] |= �(weight > z)
and first(π[n . . .]) = s. Reusing the arguments for (2) in the � case, this implies
z < −µ(s) as z ≥ −µ(s) would contradict π[n . . .] |= �(weight > z). Using (1) for
�, we obtain PrMs (�(weight > z)) = 1 and hence

PrMs (♦�(weight > z) ≤ 1 = PrMs (�(weight > z))

Up to now we have proven results for cases (b), (c) and (d) (cf. page 32). Let us
now consider the remaining case (a), i.e., EC(weight) > 0.

First of all, we can directly state an analogon to Lemma 4.10.

Lemma 4.21. Assuming EC(weight) > 0 for PrMs -almost all infinite paths π of M

sup
n∈N

weight(π[. . . n]) = sup
n∈N

Wgtn(π) = +∞.

Proof. Analogous to the proof of Lemma 4.10.
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4.2 Classifying BSCCs

However, in contrast to Lemma 4.10 this does not directly yield any results for
♥ ∈ {�,♦�}, as we additionally need to consider the corresponding infimum. Using
a transformation from weight to ratio functions, we can show that for almost all paths
infn∈N weight(π[. . . n]) = +∞, i.e., for every z ∈ Z there exists a point after which
the accumulated weight does not drop below z. The proof is based on the fact that
for every infinte path in a BSCC the ratio of it’s prefixes tends towards the BSCC’s
long-run ratio.

Lemma 4.22. Assuming EC(weight) > 0, for every integer z ∈ Z holds

PrMs (♦�(weight > z)) = 1.

Proof. We first show that PrMs (♦�(weight > 0)) = 1. Let

utility = 2 · max
(s,s′)∈S2

weight(s, s′) and energy = utility − weight.

Notice that EC(weight) > 0 implies max(s,s′)∈S2 weight(s, s′) > 0. Hence, utility and
energy are two reward functions forM, where energy is positive. Further, Lemma 4.1
implies PrMs (♦�(weight > 0)) = PrMs (♦�(ratio > 1)), where ratio = utility/energy
is defined as usual. Thus, it suffices to prove that PrMs (♦�(ratio > 1)) = 1. Since
utility = energy + weight and EC(weight) > 0 we obtain

LC(ratio) =
EC(utility)

EC(energy)
=

EC(weight)

EC(energy)
+ 1 > 1.

Since s is a state of a BSCC, for PrMs -almost all infinite paths π ∈ InfPathsMs
holds 1 < LC(ratio) = limn→∞ ratio(π[. . . n]). Therefore, for PrMs -almost all paths
π ∈ InfPathsMs , and all ε ∈ R>0 there exists n′ ∈ N, such that for every n ∈ N≥n′ ,
ratio(π[. . . n]) ≥ LC(ratio)−ε. As there exists an ε ∈ R>0 such that LC(ratio)−ε > 1,
this implies π |= ♦�(ratio > 1) for PrMs -almost all infinite paths of M.

Let z ∈ Z. We now show that PrMs (♦�(weight > z)) = 1, by arguing over
PrMs -almost all paths π ∈ InfPathsMs . As PrMs (♦�(weight > 0)) = 1, the following
minima exist,

W̃ (π) = min{weight(ρ) : ρ prefix of π},
W (π) = min{W̃ (π[n . . .]) : n ∈ N and first(π[n . . .]) = s}.

Applying Lemma 4.21, there exists n ∈ N such that weight(π[. . . n]) > z−W (π) and
first(π[n . . .]) = s . Hence, π |= ♦�(weight > z).

Even though Lemma 4.22 does not cover modality �, we will use the lemma
to prove by contradiction that there has to exist a natural number n such that
PrMs (�(weight > −n)) > 0.

Lemma 4.23. Assuming EC > 0, there exists n ∈ N such that

PrMs (�(weight > −n)) > 0.
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Proof. Towards a contradiction assume that PrMs (�(weight > −n)) = 0 for all
n ∈ N, which is equivalent to PrMs (♦(weight ≤ −n)) = 1. Notice that, for every
infinite path π of M and for every n ∈ N

π |= ♦(weight ≤ −(n+ 1)) implies π |= ♦(weight ≤ −n).

Hence as every measure is continuous from above, we have

PrMs (
∧
n∈N

♦(weight ≤ −n)) = inf
n∈N

PrMs (♦(weight ≤ −n)) = 1.

Thus, for PrMs -almost all paths π ∈ InfPathsMs , there exists a strictly monotonically
increasing sequence (nk)k∈N of natural numbers with supk∈N weight(π[. . . nk]) = −∞.
This, however, implies that PrMs -almost all infinite paths of M do not satisfy
♦�(weight > 0) and therefore contradicts Lemma 4.22.

However, to be able to decide the positive �-weight problem for C, the pure
existence of such an n as stated in Lemma 4.23 is not sufficient. Observe that
Lemma 4.23 implies

PrMs (�(weight > minwgt(ϑ)) > 0

for every weight-positive cycle ϑ starting in s. In fact, we can show that the existence
of a cycle ϑ with weight(ϑ) > 0 and minwgt(ϑ) > −n not only is a sufficient but
also a necessary criterion for PrMs (�(weight > −n)) > 0. To this end, the following
lemma will be useful.

Lemma 4.24. Assuming EC(weight) > 0, there exists a positive cycle ϑ of M
starting from s.

Proof. If EC(weight) > 0, then Lemma 4.21 yields the existence of π ∈ InfPathsMs
such that supn∈N Wgtn(π) = +∞. We thus find a k ∈ N where Wgtk(π) > 0 and
thus π[. . . ↑ k] is a positive cycle of C starting in s.

Lemma 4.25. Let n ∈ N. Assuming EC > 0, if PrMs (�(weight > −n)) > 0, there
exists a cycle ϑ of M, starting at s, such that

weight(ϑ) > 0 and minwgt(ϑ) > −n.

Proof. Assume that PrMs (�(weight > −n)) > 0. Furthermore, we assume that for
every cycle ϑ of M starting at s and satisfying weight(ϑ) > 0, the following holds,

minwgt(ϑ) ≤ −n. (4.4)

Lemma 4.24 states that there exists at least one positive cycle ϑ′ ofM starting at s.
Thus, if we derive a contradiction from assumption (4.4), the proof of the lemma is
achieved. Since PrMs (�(weight > −n)) > 0 and Lemma 4.22 we find π ∈ InfPathsMs ,
such that π visits s infinitely often and π |= �(weight > −n) ∧ ♦�(weight > 0).
Under those assumptions for every k ∈ N, ϑk = π[. . . ↑ k] denotes a cycle with
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weight(ϑk) ≤ 0 as otherwise we derive the following contradiction: weight(ϑk) > 0
implies minwgt(ϑk) ≤ −n which yields π |= ♦(weight ≤ −n).

However, weight(ϑk) ≤ 0 for all k ∈ N contradicts π |= ♦�(weight > 0)), and thus
assumption (4.4) yields a contradiction. This completes the proof.

Example 4.26. Consider again the Markov chain M of Example 3.1 depicted in
Figure 3.1. Lemma 4.25 yields that state s1 has to be reached with battery level
at least 2 to avoid that the system will eventually run out of battery almost-surely.
Notice that even though a battery level of 2 is sufficient to prevent that the system
breaks down almost-surely, there is no battery level to ensure that the system almost-
surely does not run out of battery. No matter how high the initial battery is, there
always is a non-zero probability to take the negative cycle s1s2s3s1 often enough to
completely discharge the battery.

4.3 Analyzing the underlying graph

In the previous section we investigated BSCCs and, dependent on their expected
weight, the minimal n such that the positive ♥-weight problem yields a positive
answer for ♥ ∈ {�,♦�} and z = −n. This n can be interpreted as the minimal
credit (minimal battery level, respectively) needed to ensure a positive probability
for ♥(weight > 0). Thus, the missing part to solve the positive ♥-weight problem
for ♥ ∈ {�,♦�} and z = 0 is the answer to the following question:

Given a state s and a minimal credit c ∈ N>0, is the probability of reaching state
s while accumulating at least c and not violating ♥(weight > 0) positive?

As we are only asking for positive probability, it suffices to show whether or not
there exists a finite path from ι to s accumulating at least c and not violating
♥(weight > 0). In this section we will introduce some basic notions for the un-
derlying graph of M, which we will use in the next section to prove the promised
characterizations for the qualitative ♥-weight problems.

Note, ♦�(weight > 0) does not impose any additional restrictions on the path
reaching a BSCC. This motivates the definition of distmin(s, s′) and distmax(s, s′)
as the minimal, respectively maximal, possible accumulated weight on a path from
state s to state s′.

Definition 4.27. The distance functions distmin, distmax: S × S → N ∪ {±∞} are
defined as

distmin(s, s′) = inf
π̂

weight(π̂)

distmax(s, s′) = sup
π̂

weight(π̂)

where π̂ ranges over all paths of FinPathsMs...s′.

Remark 4.28. Notice that distmin(s, s′) =∞ if and only if s′ is not reachable from s,
whereas distmin(s, s′) = −∞ if and only if there exists a path from s to s′ containing
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a negative cycle. Similarly distmax(s, s′) = −∞ iff s′ is not reachable from s and
distmax = +∞ iff there exists a path from s to s′ containing a positive cycle.

Example 4.29. Consider the Markov chainM of Example 3.1 depicted in Figure 3.1.
Let us list some values of distmin and distmax.

distmin(s1, s4) = +∞ distmax(s1, s4) = −∞
distmin(s1, s2) = −∞ distmax(s1, s2) = +∞

distmin(ι, t3) = 8 distmax(ι, t3) = +∞

In contrast to ♦�, the modality � does impose a restriction on the paths to
consider. Even though there might exist a path from s to s′ containing a positive
cycle and thus distmax(s, s′) = +∞, this path might violate �(weight > 0). This
motivates the definition the function cdist, which denotes the maximal accumulated
weight from ι to s while satisfying �(weight > z).

Definition 4.30.

cdist(s, z) = sup
π̂

weight(π̂),

where π̂ ranges over FinPathsMι...s[minwgt > z].

Example 4.31. Consider again the Markov chain M of Example 3.1 depicted in
Figure 3.1. Let us list some values for cdist.

cdist(t2, 6) = −∞ cdist(t2, 5) = −∞ cdist(t2, 4) = +∞
cdist(t3, 6) = 8 cdist(t3, 5) = 8 cdist(t3, 4) = +∞
cdist(s1, 6) = 8 cdist(s1, 5) = +∞ cdist(s1, 4) = +∞

4.4 A characterization for qualitative weight problems

We now have all we need to state characterizations for the qualitative ♥-weight
problems where ♥ ∈ {�,♦�}. Remember that we restricted ourselves to the modal-
ities � and ♦� as by Lemma 4.2 the remaining modalities are reducible to either of
these two.

As the characterizations are based on similar ideas and the proofs for modality �
are more involved, let us start with the qualitative ♦�-weight problem.

4.4.1 Qualitative ♦�-weight problems

Remind the classification of BSCC in Section 4.2. Let C be a BSCC, then C satisfies
exactly one of the following statements:

(a) EC(weight) > 0.

(b) EC(weight) = 0 and C contains no negative cycle.
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(c) EC(weight) = 0 and C does contain a negative cycle.

(d) EC(weight) < 0.

In Section 4.2 we showed that for every BSCC C of type (c) or (d) and any integer
z ∈ Z

PrMι (♦�(weight > z) ∧ ♦C) = 0.

Furthermore, for every state s of a BSCC of type (a) and (b) and every integer
z either almost all paths starting in s or almost no path starting in s satisfies
♦�(weight > z), ie

PrMs (♦�(weight > z)) ∈ {0, 1}.
The above observation implies the two key principles of the characterizations for

the qualitative ♦�-weight problems:

(I) The positive ♦�-weight problem yields a positive answer if and only if for at
least one state s of a type (a) or type (b) BSCC there exists a path π̂ from ι
to s accumulating enough weight.

(II) The almost-sure ♦�-weight problem yields a positive answer if and only if all
reachable BSCC are of type (a) or type (b) and all paths reaching a BSCC
accumulate enough weight.

The results of Section 4.2 also imply what enough means. Lemma 4.22 yields that
for a BSCC of type (a) the accumulated weight from ι to s is irrelevant, ie. every
weight is enough, whereas if s is contained in a BSCC of type (b) by Lemma 4.20
enough stands for µ(s) + z. In the following we will state formal proofs for both
qualitative ♦�-weight problems, which are based exactly on these principles.

Lemma 4.32. PrMι (♦�(weight > z)) > 0 iff there exists a BSCC C ofM for which
one of the following cases holds:

(1) EC(weight) > 0.

(2) EC(weight) = 0, C contains no negative cycles, and for some s ∈ C holds
µ(s) + z < distmax(ι, s).

Proof. We first show that the existence of a reachable BSCC C satisfying either
(1) or (2) implies PrMι (♦�(weight > z)) > 0. For case (1), Lemma 4.22 directly
implies the claim. Assume that C satisfies (2). As there exists s ∈ C and π̂ ∈
FinPathsMι such that last(π̂) = s and µ(s) + z < weight(π̂), using Lemma 4.20 we
have PrMs (♦�(weight > z − weight(π̂))) = 1 and thus

PrMι (♦�(weight > z)) ≥ P (π̂) · PrMs (♦�(weight > z − weight(π̂))) > 0.

Let us now show the reverse implication. To this end, assume that every reachable
BSCC of M neither satisfies (1) nor (2). Thus, for every BSCC C of M one of the
following holds (remember Lemma 4.14):
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(a) EC(weight) < 0

(b) EC(weight) = 0 and C contains a negative cycle

(c) EC(weight) = 0, C does not contain a negative cycle, and for every s ∈ C holds
µ(s) + z ≥ distmax(ι, s).

Given a BSCC C which satisfies (a) or (b), Lemma 4.10 and Lemma 4.13 directly
yield PrMι (♦�(weight > z) ∧ ♦C) = 0. Assume that C satisfies (c). Lemma 4.20
implies that for every π̂ ∈ InfPathsMι with last(π̂) ∈ C and µ(last(π̂))+z ≥ weight(π̂)
holds PrMlast(π̂)(♦�(weight > z − weight(π̂))) = 0. Since every finite path π̂ ∈
FinPathsMι reaching C satisfies µ(last(π̂)) + z ≥ weight(π̂), applying Lemma 4.20
we have PrMι (♦�(weight > z) ∧ ♦C)) = 0. Thus,

PrMι (♦�(weight > z)) =
∑
C
PrMι (♦�(weight > z) ∧ ♦C) = 0

where C ranges over all reachable BSCCs of M.

Lemma 4.33. PrMι (♦�(weight > z)) = 1 if and only if for each BSCC C of M
one of the following cases holds:

(1) EC(weight) > 0.

(2) EC(weight) = 0, C contains no negative cycles, and for every s ∈ C holds
µ(s) + z < distmin(ι, s).

Proof. The argument is analogous to the proof of Lemma 4.32. We have

PrMι (♦�(weight > z)) =
∑
C
PrMι (♦�(weight > z) ∧ ♦C)

where C ranges over all reachable BSCCs ofM. Using Lemma 4.22 and Lemma 4.20,
we can show that for all BSCCs satisfying either (1) or (2) holds

PrMι (♦�(weight > z) ∧ ♦C) = PrMι (♦C).

Let C be a reachable BSCC neither satisfying (1) nor (2). Using Corollary 4.11,
Corollary 4.16, Lemma 4.20 and similar arguments as presented in the proof of
Lemma 4.32 we have

PrMι (♦�(weight > z) ∧ ♦C) = 0.

The fact
∑
C Pr

M
ι (♦C) = 1, where C ranges over all reachable BSCCs of M, com-

pletes the proof.
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4.4.2 Qualitative �-weight problems

As mentioned before the argument for the �-weight problem is more involved. How-
ever, this only applies to the positive �-weight problem. The almost-sure �-quantile
can be easily computed using the following lemma stated in [4].

Lemma 4.34. PrMι (�(weight > z)) = 1 iff distmin(ι, s) > z for all states s.

Let us now consider the positive �-weight problem. The basic idea is similar
as for ♦�. As before we look for paths reaching a BSCC of type (a) or type (b)
while accumulating enough weight. However, we additionally have to consider the
restriction that these paths have to satisfy �(weight > z). Notice that this exactly
motivated the introduction of cdist in the previous section. In fact for BSCCs of
type (b) it suffices to consider cdist instead of distmax.

Let us now consider BSCCs of type (a), i.e., with positive expected weight. To
this end, let C be such a BSCC and s ∈ C. In contrast to ♦� there exists a maximal
z ∈ Z such that

PrMs (�(weight > z)) > 0. (4.5)

By Lemma 4.25 the maximal z satisfying (4.5) is the maximum value of minwgt(ϑ)
where ϑ ranges over all positive cycles starting in s. In the following we will denote
this value by zmax and the associated positive cycle by ϑmax. Thus, enough with
respect to the accumulated path from ι to s would be z − zmax + 1. Notice that
cdist(s, z) ≥ z − zmax + 1 implies cdist(s, z) = +∞. This trivially is the case if
zmax ≥ 0 as cdist(s, z) > z and thus there exists a path from ι to s containing a
positive cycle (namely ϑmax) and satisfying �(weight > z), i.e., cdist(s, z) = +∞.
Assume zmax < 0. Thus, there exists a path π̂ from ι to s satisfying �(weight > z)
and accumulating z + |zmax|+ 1 and π̂ � ϑ is a witness for cdist(s, z) = +∞.

Putting this together, this yields the following characterization for the positive
�-weight problem.

Lemma 4.35. PrMι (�(weight > z)) > 0 iff there exists a BSCC C with s ∈ C such
that one of the following two conditions holds:

(1) EC(weight) > 0 and cdist(s, z) = +∞, or

(2) EC(weight) = 0, C contains no negative cycles, and µ(s) + z < cdist(s, z).

We dedicate the remainder of this section to the formal proof of this lemma. It
follows directly from Lemma 4.10 and Lemma 4.13 that the BSCC C necessarily has
to be of either type (a) or type (b), as for any other BSCC C and arbitrary z ∈ Z
we have PrMι (�(weight > z) ∧ ♦C) = 0. Hence the following two lemmata directly
yield the correctness of the above characterization.

Lemma 4.36. Let C be a BSCC of the Markov chain M such that EC(weight) > 0.
PrMι (�(weight > z) ∧ ♦C) > 0 iff there exists s ∈ C such that cdist(s, z) = +∞.
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Lemma 4.37. Let C be a BSCC of M such that EC(weight) = 0 and C contains no
negative cycles. PrMι (�(weight > z)∧♦C) > 0 if and only if there exists s ∈ C such
that µ(s) + z < cdist(s, z).

Proof of Lemma 4.36. We show two implications. We first assume that s ∈ C satis-
fies cdist(s, z) = +∞, and argue that PrMι (�(weight > z) ∧ ♦C) is positive.

By Lemma 4.23 we know that there exists n ∈ N with PrMs (�(weight > −n)) > 0.
Since cdist(s, z) = +∞, there exists a finite path π̂ ∈ FinPathsMι...s[minwgt > z], such
that weight(π̂) ≥ z + n. Thus,

PrMι (�(weight > z) ∧ ♦C) ≥ P (π̂) · PrMs (�(weight > −n)) > 0,

which yields the first implication.
To show the remaining implication, assume PrMι (�(weight > z)∧♦C) > 0. Thus,

0 < PrMι (�(weight > z) ∧ ♦C) =
∑
π̂

P (π̂) · PrMlast(π̂)(�(weight > −weight(π̂) + z)),

where π̂ ranges over all finite paths ofM starting from ι such that last(π̂) is the only
state of π̂ contained in C and minwgt(π̂) > z. Hence, there exists π̂ ∈ FinPathsM,
where last(π̂) = s ∈ C, minwgt(π̂) > z, and PrMs (�(weight > −weight(π̂) + z)) > 0.
Lemma 4.25 yields the existence of a cycle ϑ of M, starting from s, such that
weight(ϑ) > −weight(π̂) + z. For every n ∈ N>0 define π̂n ∈ FinPathsM by
π̂n = π̂ � (ϑ)n, where ϑm = ϑ � ϑm−1. Clearly, for every n ∈ N, π̂n is a finite
path in FinPathsMι...s[minwgt > z]. Additionally for every natural number n holds
weight(π̂n) < weight(π̂n+1) as weight(ϑ) > 0. This yields cdist(s, z) = +∞.

Proof of Lemma 4.37. We show both directions separately.
(⇐). Assume that s is a state of C which satisfies µ(s) + z < cdist(s, z). Thus,

there exists π̂ ∈ FinPathsMι...s[minwgt > z], such that µ(s) + z < weight(π̂). Thus,
−weight + z < −µ(s). Lemma 4.20 yields PrMs (�(weight > −weight(π̂) + z)) = 1
which completes the argument, as

PrMι (�(weight > 0) ∧ ♦C) ≥ P (π̂) · PrMlast(π̂)(�(weight > −weight(π̂) + z)) > 0.

(⇒). We show the contraposition. To this end, assume that for every s ∈ C
holds cdist(s, z) ≤ µ(s) + z. Then we obtain for every state s ∈ C and finite path
π̂ ∈ FinPathsMι...s[minwgt > z]

weight(π̂) ≤ cdist(s, z) ≤ µ(s) + z.

However, by Lemma 4.20 this implies PrMs (�(weight > −weight(π̂) + z)) = 0 which
yields the claim as

PrMι (�(weight > 0) ∧ ♦C) ≤
∑
π̂

P (π̂) · PrMs (�(weight > −weight(π̂) + z)) = 0,

where the sum ranges over all finite paths π̂ ∈ ⋃s∈C FinPathsMι...s[minwgt > z].
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4.5 Deciding qualitative weight problems in polynomial time

Keeping the previous sections’ characterizations in mind, it seems natural to inves-
tigate the computational complexity of distmin, distmax, cdist(·, z) and µ. In this
section we will show that all these functions are computable in polynomial time.

Before we do so, let us first discuss why this yields a polynomial decision proce-
dure for the qualitative weight problems. Lemma 4.2 implies that any qualitative
♦-weight problem can be transformed into a qualitative �-weight problem in polyno-
mial time and analogously any �♦-weight problem can be reduced polynomially to
a qualitative ♦�-weight problem. As in the previous sections, we can hence restrict
ourselves to qualitative ♥-weight problems where ♥ ∈ {�,♦�}.

Without loss of generality, in the following we assume that M is a Markov chain
containing only states which are reachable from ι. Lemma 4.34 directly yields that
if distmin is computable in polynomial time, the almost-sure �-weight problem is
decidable in polynomial time. Let us now consider the positive �-weight problem.
The argument for qualitative ♦�-weight problems is analogous. Assuming that
distmin, distmax, cdist(·, z) and µ are computable in polynomial time, Lemma 4.35
yields the following polynomial-time decision procedure for the almost-sure �-weight
problem:

1. Compute the BSCCs of M and their expected weight, which can be done in
polynomial time using the results stated in Chapter 2

2. Compute µ for every state of a BSCC C with EC = 0.

3. Classify the BSCCs into the four types of Section 4.2 (cf. page 32). As
mentioned in Example 4.19, the values of µ can be used to decide whether a
BSCC contains a negative cycle.

4. Compute distmin and distmax for every state contained in a BSCC C of type
(a) or type (b), i.e., with either EC(weight) > 0 or EC(weight) = 0 and C does
not contain negative cycles.

5. Compute cdist for very state contained in a BSCC of type (a) or type (b).

6. Check if the conditions of Lemma 4.35 are satisfied. When considering quali-
tative ♦�-weight problems consider Lemma 4.32 or Lemma 4.33, respectively.

Notice that, motivated by the aim to give a similar decision procedure for � and ♦�,
the stated procedure contains some redundant computations. For modality � the
third step could be omitted, whereas for modality ♦� one does not need to compute
cdist.

In the remainder of this section we will show that distmin, distmax, cdist(·, z) and
µ are in fact computable in polynomial time.

Notice that, if we consider the Markov chainM as a weighted graph, distmin(s, s′)
for s, s′ ∈ S is equivalent to the length of the shortest path from s to s′. Hence,
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distmin is computable in polynomial time in the size of M using ordinary shortest
path algorithms for weighted graphs, e.g., Bellman-Ford. Further notice that distmax

for weight is equivalent to distmin for −weight. This yields the following lemma.

Lemma 4.38. The functions distmin and distmax are computable in time polynomial
in the size of M.

To compute µ(s) we can use the values of distmin. Remind that µ(s) is defined
as µ(s) = inf{k ∈ N : s |= ∀�(weight > −k)}. Thus µ(s) must be greater than
−weight(π̂) for every π̂ starting in s, i.e.,

µ(s)− 1 ≥ −min
s′∈C

distmin(s, s′).

Formally, the definition of µ yields µ(s) ≥ −mins′∈C distmin(s, s′) + 1. Furthermore,
µ(s) > k implies that there exists a state s̃ and a finite path π̂ ∈ FinPathsMs...s̃ such
that weight(π̂) ≤ −k. Therefore, by definition of distmin we have

weight(π̂) ≥ distmin(s, s̃) ≥ min
s′∈C

distmin(s, s′).

Thus, the assumption µ(s) > −mins∈C distmin(s, s′) + 1 yields a contradiction as
−mins′∈C distmin(s, s′) > −∞ contradicts

min
s′∈C

distmin(s, s′) ≤ min
s′∈C

distmin(s, s′)− 1.

Hence, we can conclude the following lemma.

Lemma 4.39. For every state s of a BSCC the function µ is computable in time
polynomial in the size of M.

Now the only missing part for a polynomial-time decision procedure for qualita-
tive weight problems is the computation of cdist. The remainder of this section is
dedicated to prove that for any s ∈ S and z ∈ Z the value cdist(s, z) can be com-
puted in polynomial time. To this end, we will present a modified Bellman-Ford
algorithm, which computes cdist(s, z) for every state s of M.

Lemma 4.40. The function cdist is computable in polynomial time in the size of
M.

Proof. As mentioned before, we prove the claim by presenting a modified Bellman-
Ford algorithm that, given a weighted Markov chainM = (S, ι, P,weight) and z ∈ Z
as input, returns a function ∆: S → Z∪ {±∞} and showing that ∆(s) = cdist(s, z)
for every s ∈ S.

This variant works as follows. Initially, we set ∆0(ι) = 0 and ∆0(s) = −∞ for all
remaining states s. For i = 1, 2, . . . , n+ 1 where n = |S| we consider all states s ∈ S
and compute

∆i(s) = max{∆i−1(s),max
s′
{∆i−1(s

′) + weight(s′, s)}}
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where s′ ranges over all predecessors of s with ∆i−1(s
′) + weight(s, s′) > z. In a

post-processing step we use ∆n and ∆n+1 to compute the values of ∆(s). We set
∆(s) = +∞ if s is reachable from some state t ∈ S such that ∆n(t) 6= ∆n+1(t) and
∆(s) = ∆n(s) otherwise.

The pseudo code of the algorithm is shown on page 48 and uses the following
notations: For every s ∈ S let succ(s) be the set of all direct successors of s and
reach(s) the set of all states reachable from s, i.e.,

succ(s) = {s′ ∈ S : P (s, s′) > 0},
reach(s) = {s′ ∈ S : s′ reachable from s in M}.

We now prove cdist(s, z) = ∆(s) for all s ∈ S and z ∈ Z. To this end, let us fix a
weighted Markov chainM = (S, ι, P,weight), and an integer z ∈ Z. In what follows,
n is defined to be the cardinality of S. Furthermore, for every k ∈ N and s ∈ S the
set F (s, k) is given as follows: F (s, k) contains all π̂ ∈ FinPathsMι...s[minwgt > z] such
that |π̂| ≤ k.

It suffices to show the following two claims:

(a) For all s ∈ S, and k ∈ N holds ∆k(s) = supπ̂∈F (s,k) weight(π̂).

(b) For all s ∈ S, cdist(s, z) = +∞ if and only if there exists s′ ∈ S such that
s ∈ reach(s′) and ∆n(s′) 6= ∆n+1(s

′).

Let us see why by fixing a state s ∈ S and considering two cases, cdist(s, z) < ∞
and cdist(s, z) = ∞. In the latter ∆(s) = ∞ follows directly from (b) and the
post-computation step of Algorithm 1. Assume cdist(s, z) < ∞. This implies that
there does not exist a path in FinPathsMι...s[minwgt > z] that contains a positive
cycle and therefore for every path π̂ ∈ FinPathsMι...s[minwgt > z] there exists a path
π̂′ ∈ F (s, n) such that weight(π̂) ≤ weight(π̂′), as one can omit the non-positive
cycles of π̂ to find π̂′. Furthermore, we have F (s, n) ⊆ FinPathsMι...s[minwgt > z].
Thus if cdist(s, z) < ∞ we have cdist(s, z) = supπ̂∈F (s,n) weight(π̂), which using
(a) implies cdist(s, z) = ∆n(s). Inspecting Algorithm 1 and due to (b) it holds
∆n(s) = ∆(s) and therefore cdist(s, z) = ∆(s).

Proof of (a). The proof can be obtained by a standard induction on k. For k = 0
the claim is trivial. Let k ∈ N and s ∈ S. As induction hypothesis assume that for
k

∆k(s) = sup
π̂∈F (s,k)

weight(π̂).

Using the induction hypothesis and the update condition of Algorithm 1 we obtain

∆k+1(s) ≤ sup
π̂∈F (s,k+1)

weight(π̂).

In order to prove the reverse inequality, let π̂ ∈ F (s, k + 1). We can safely assume
that F (s, k + 1) 6= ∅, as otherwise ∆k+1(s) = −∞ = supπ̂∈F (s,k+1) weight(π̂). It
suffices to show that weight(π̂) ≤ ∆k+1(s). If |π̂| ≤ k this is a direct consequence
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input : weighted Markov chain M = (S, ι, P,weight), z ∈ Z
output: ∆: S → N ∪ {−∞,∞}
set n = |S|+ 1;
set ∆0(s) = −∞ for all s ∈ S \ {ι};
set ∆0(ι) = 0;

for 1 ≤ i ≤ n+ 1 do
set ∆i(s) = ∆i−1(s) for all s ∈ S;
for s ∈ S where∆i−1(s) > −∞ do

for s′ ∈ succ(s) do
if ∆i−1(s) + weight(s, s′) > z then

set∆i(s
′) = max{∆i(s

′),∆i−1(s) + weight(s, s′)};
end

end

end

end

set ∆(s) = ∆n(s) for all s ∈ S;

for s′ ∈ S do
if ∆n(s′) 6= ∆n+1(s

′) then
set ∆ = +∞ for all s ∈ reach(s′);

end

end

return ∆
Algorithm 1: Modified Bellman-Ford algorithm
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of the induction hypothesis, if |π̂| = k + 1 we can argue as follows. Let π̂′ be a
finite path of M and s′ ∈ S such that π̂ = π̂′ � s′s. Since ∆k(s

′) ≥ weight(π̂′) this
completes the proof of (a) as

∆k+1(s) ≥ ∆k(s
′) + weight(s′, s) ≥ weight(π̂′) + weight(s′, s) = weight(π̂).

Proof of (b). We show the two implications separately.
(⇐). Let s ∈ S and assume there exists a s′ ∈ S such that s ∈ reach(s′) and

∆n(s′) 6= ∆n+1(s
′). Clearly, ∆n+1(s

′) 6= −∞ as statement (a) for this case im-
plies ∆n+1(s

′) > ∆n(s′). Hence, there exists π̂ ∈ F (s′, n + 1) \ F (s′, n) such that
weight(π̂) = ∆n+1(s

′). As |π̂| = n+ 1 and weight(π̂) > supπ̂′∈F (s′,n) the path π̂ must
contain a positive cycle ϑ. Since s is reachable from s′ we conclude cdist(s, z) =∞.

(⇒). Assume that cdist(s, z) = ∞. This implies that there exists a finite path
π̂ ∈ FinPathsMι...s[minwgt > z] which contains a positive cycle ϑ = t0t1 . . . tmt0 and
we can safely assume that π̂′ ∈ FinPathsMι...t0 [minwgt > z] is a simple path such that
π̂′ � ϑ is a prefix of π̂. As π̂′ ∈ F (t0, n) claim (a) yields ∆n(t0) 6= −∞. Towards a
contradiction, assume that for all s′ ∈ S the following implication is true:

s ∈ reach(s′) implies ∆n(s′) = ∆n+1(s
′).

Thus, in particular ∆n(ti) = ∆n+1(ti) for all states ti on ϑ. Let s′ ∈ S for which
∆n(s′) = ∆n+1(s

′). Inspecting Algorithm 1, we obtain for every state s′′ ∈ S with
s′ ∈ succ(s′′)

∆n(s′) = ∆n+1(s
′) ≥ ∆n(s′′) + weight(s′′, s′)

which in particular implies

∆n(t0) ≥ ∆n(tm) + weight(tm, t0)

∆n(ti) ≥ ∆n(ti−1) + weight(ti−1, ti)

for all 1 ≤ i ≤ m. Putting this together, we obtain the following contradiction:

∆n(t0) 6= −∞ and ∆n(t0) ≥ ∆n(t0) + weight(ϑ).

As already discussed at the beginning of this section the lemmata of this section
in combination with the characterizations of the previous section (Lemma 4.32,
Lemma 4.33, Lemma 4.34 and Lemma 4.35) and the dualities of Lemma 4.2 yield
the following theorem.

Theorem 4.41. Let M = (S, P, ι, AP,L,weight) be a weighted Markov chain, φ =
(2AP )ω and z ∈ Z. For ♥ ∈ {�,♦,♦�,�♦} the qualitative ♥-weight problems with
respect to M, φ and z are decidable in time polynomial in the size of M.

Corollary 4.42. LetM = (S, P, ι, AP,L, utility, energy) be an energy-utility Markov
chain, φ = (2AP )ω and z ∈ Z. For ♥ ∈ {�,♦,♦�,�♦} the qualitative ♥-ratio
problems with respect to M, φ and z are decidable in time polynomial in the size of
M.

Proof. Directly follows from Lemma 4.1.
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In the previous chapter we have shown that, for a given threshold z ∈ Z and the
side constraint φ = (2AP )ω the qualitative weight and ratio decision problems are
solvable in polynomial time. In this chapter we will investigate the corresponding
computational problem to determine both qualitative weight and ratio quantiles for
the side constraint φ = (2AP )ω. In Section 5.1 we will use the results of the previous
chapter to show that qualitative weight quantiles are computable in polynomial
time. Section 5.2 is dedicated to qualitative ratio quantiles, which in contrast to the
decision problems for ratios cannot be deduced from the results for weighted Markov
chains, but require a more involved argument.

As for the previous chapter, we generalize our results towards arbitrary omega-
regular properties in Chapter 6. Thus, for the sake of short notation, we will omit
the atomic propositions and labelling function when denoting Markov chains.

5.1 Weight quantiles

Let us first consider weight quantiles and for the remainder of this section fix a
weighted Markov chain M = (S, P, ι,weight). The following lemma shows that the
♦- and �♦-weight quantiles can be reduced to the �- and ♦�-weight quantiles,
respectively. Therefore, it suffices to consider qualitative ♥-weight quantiles, where
♥ ∈ {�,♦�}.

Lemma 5.1. If the weight function weight′ for M is given by weight′ = −weight,
then

(1) Qu>0[♦weight] = −(Qu=1[�weight′] + 2),

(2) Qu=1[♦weight] = −(Qu>0[�weight′] + 2),

(3) Qu>0[�♦weight] = −(Qu=1[♦�weight′] + 2),

(4) Qu=1[�♦weight] = −(Qu>0[♦�weight′] + 2).

Proof. We prove only (1) as the remaining equalities can be proven in exactly the
same manner. Using the the fact that supA = − inf{−a : a ∈ A} for A ⊆ Z and the
duality PrMι (♦(weight > z)) = 1 − PrMι (�(weight′ > −(z + 1))) (cf. Lemma 4.2),
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we obtain

Qu>0[♦weight] = sup{z ∈ Z : PrMι (♦(weight > z)) > 0}
= sup{z ∈ Z : 1− PrMι (�(weight′ > −(z + 1))) > 0}
= sup{z ∈ Z : PrMι (�(weight′ > −z − 1)) < 1}
= − inf{z ∈ Z : PrMι (�(weight′ > z − 1)) < 1}.

Let A and B be subsets of Z given by

A = {z ∈ Z : PrMι (�(weight′ > z − 1)) < 1},
B = {z ∈ Z : PrMι (�(weight′ > z − 1)) = 1}.

Clearly A and B are disjoint, A∪B = Z and for every b ∈ B and a ∈ A holds a > b.
Hence inf A = supB + 1 which yields

Qu>0[♦weight] = − inf{z ∈ Z : PrMι (�(weight′ > z − 1)) < 1}
= − inf A = −(supB + 1)

= −(sup{z ∈ Z : PrMι (�(weight′ > z − 1)) = 1}+ 1)

= −(sup{z ∈ Z : PrMι (�(weight′ > z)) = 1}+ 1 + 1)

= −(Qu=1[�weight′] + 2)

Notice that Lemma 4.34 enables us to compute the almost-sure �-weight quantile
as it implies the following lemma.

Lemma 5.2.
Qu=1[�weight] = min

s∈S
distmin(ι, s)

Keeping the results of Chapter 4 in mind, it seems natural to reconsider the BSCC
classification introduced in Section 4.2. Given a BSCC C, exactly one of the following
statements holds

(a) EC(weight) > 0,

(b) EC(weight) = 0 and C does not contain a negative cycle,

(c) EC(weight) = 0 and C does contain a negative cycle, or

(d) EC(weight) < 0.

In the following we denote by Ca the set of a BSSCs of M which satisfy (a). The
sets Cb, Cc and Cd are defined analogously. The set of all BSCCs is denoted by C.

In fact, not only the almost-sure �-weight quantile but also both qualitative ♦�-
weight quantiles can be computed using the results of the previous chapter. The
characterizations for ♦� stated in Lemma 4.32 and Lemma 4.33 yield the following
two lemmata.
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Lemma 5.3. Let qmax = maxs∈Cb(distmax(ι, s)− µ(s)− 1).

Qu>0[♦�weight] =


+∞ if Ca 6= ∅
qmax if Ca = ∅ and Cb 6= ∅
−∞ otherwise

Proof. The claim is a direct consequence of Lemma 4.32. If Ca 6= ∅, there exists
a BSCC C such that EC(weight) > 0 and by Lemma 4.32 for every z ∈ Z we have
PrMι (♦�(weight > z)) > 0 and thus Qu>0[♦�weight] =∞.

Assume Ca = ∅ and Cb 6= ∅. Then by Lemma 4.32 we PrMι (♦�(weight > z)) > 0
for all z ∈ Z for which there exists an s ∈ Cb such that z < distmax(ι, s) − µ(s).
Hence,

Qu>0[♦�weight] = max
s∈Cb

(distmax(ι, s)− µ(s)− 1).

If both Ca and Cb are empty, Lemma 4.32 implies that there exists no z ∈ Z such
that PrMι (♦�(weight > z)) > 0 and therefore Qu>0[♦�weight] = −∞.

Lemma 5.4. Let qmin = mins∈Cb(distmin(ι, s)− µ(s)− 1).

Qu=1[♦�weight] =


−∞ if Cc ∪ Cd 6= ∅
+∞ if C = Ca 6= ∅ and Cb = ∅
qmin otherwise

Proof. Using the argument presented in the proof of Lemma 5.3, the claim is a direct
consequence of Lemma 4.33.

Let us now consider the remaining weight quantile, i.e., the positive �-weight
quantile. The characterization for the corresponding �-weight decision problem
(cf. Lemma 4.35) does not yield a computation scheme for the positive �-weight
quantile. Let us argue why. Notice that in contrast to distmin, distmax and µ, cdist
takes the given threshold z into account. Thus, trying to use cdist to compute the
positive �-weight quantile, would resemble to a dog chasing its tail.

However, by Lemma 4.35 there exists a z ∈ Z such that PrMι (�weight > z) > 0 if
and only if there exists a BSCC of type (a) or (b). Thus, we can decide in polynomial
time whether the positive �-weight evaluates to −∞. If this is not the case, we can
exploit that the integers are not dense in R and compute the quantile by deciding the
positive �-weight problem for decreasing integers starting with the maximal value
of weight.

Although the computation terminates and does the job, we are using a sledge-
hammer to crack a nut. In fact, we can amend this idea to show that the positive
�-weight quantile can be computed in polynomial time, by narrowing down the
interval and using binary search instead of linear search.

Let us first assume that weight is a reward function. Then the quantile has to
be contained in [0,maxweight] where maxweight denotes the maximum value of the
function weight. As the interval is exponential in the binary encoding size of weight,
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we can compute the positive �-reward quantile in polynomial time using a binary
search and Lemma 4.35.

In fact, we can state a similar interval for weight functions, which include negative
values.

Lemma 5.5. Let minweight and maxweight be the minimum and maximum values of
the function weight, respectively. Assume minweight < 0.

Qu>0[�weight] ∈ ([2 · |S| ·minweight,maxweight] ∩ Z) ∪ {−∞}

Proof. As trivially Qu>0[�weight] < maxweight, it suffices to show that for every
z ∈ Z

PrMι (�(weight > z)) > 0 implies PrMι (�(weight > 2 · |S| ·minweight)) > 0.

With the help of Lemma 4.35 there exists a BSCC C and π̂ ∈ FinPathsMι such that
last(π̂) ∈ C and one of the following conditions holds:

(a) EC(weight) > 0 and π̂ contains a positive cycle.

(b) EC(weight) = 0 and C does not contain a negative cycle.

In case (a) we can safely assume that π̂ contains exactly one simple cycle and that
this cycle is positive. Thus, one can iterate this positive simple cycle to construct a
finite path π̂′ ∈ FinPathsMι such that last(π̂′) = last(π̂) ∈ C and

minwgt(π̂′) ≥ |S| ·minweight > 2 · |S| ·minweight.

Turning to case (b), let π̂′′ ∈ FinPathsMι be the path that results from π̂ by
removing all cycles. Hence weight(π̂′′) ≥ |S| ·minweight. As C contains only cycles
with weight zero (cf. Lemma 4.14) we have µ(s) < −|S| · minweight for all s ∈ C.
Thus, weight(π̂′′) > µ(last(π̂′′)) + 2 · |S| ·minweight.

This completes the proof as for both cases (a) and (b) Lemma 4.35 yields

PrMι (�(weight > 2 · |S| ·minweight)) > 0.

As discussed above, using Lemma 5.5 we can conclude the following theorem.

Theorem 5.6. Let M = (S, P, ι, AP,L,weight) be an energy-utility Markov chain
and φ = (2AP )ω. For ♥ ∈ {�,♦,♦�,�♦} the qualitative ♥-weight quantiles are
computable in time polynomial in the size of M.
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5.2 Ratio quantiles

The aim of this section is to show that qualitative ratio quantiles are computable in
polynomial time. To do so, in Section 5.2.1 we will introduce the best-approximation
problem as stated in [17] and state a reduction from qualitative ratio quantiles to
this problem.

However, let us first discuss why, in contrast to the decision problems considered
in the previous chapter, we cannot simply transfer the previous sections’ results for
qualitative weight quantiles to qualitative ratio quantiles.

Why ratio and weight quantiles are different

In contrast to the decision problems, the standard reduction of ratio constraints
to weight constraints stated in Lemma 4.1 does not apply to quantiles. As this
transformation depends on the threshold q, applying it for ratio quantiles would
result in a dog chasing its tail.

Furthermore, Q is dense in R, which has several consequences. First, stating an
upper and lower bound for the quantile and applying Corollary 4.42 does not imply
that qualitative ratio quantiles are computable, but only that we can approximate
qualitative ratio quantiles up to an arbitrary small error ε ∈ Q>0. Additionally, the
definition of a quantile as the supremum and not the maximum allows for the case
that for some ♥ ∈ {�,♦,♦�,�♦} and ∗ ∈ {> 0,= 1} we have q = Qu∗[♥ratio] but
PrMι (♥ratio > q) > 0, i.e., the quantile is a real supremum and does not match with
the maximum.

Due to these fundamental differences, we can not simply transfer the results of the
previous section to ratio quantiles. Further considering dualities for ratio quantiles
is not very promising. Both, the proof of Lemma 4.2 and the proof of Lemma 5.1,
rely on the equivalence of (weight ≥ z) and (weight > z − 1). Such an equivalence
cannot be established for rational numbers.

5.2.1 A reduction to the best-approximation problem

The aim of this section is to prove that qualitative ratio quantiles can be computed
in polynomial time. For now, let us concentrate on pure computability and postpone
the discussion of complexity. We sketch the principle concept for the almost-sure
�-ratio quantile. The argument for any other qualitative ratio quantile is based on
the same idea.

Assume we could state a finite set containing the value of the almost-sure �-ratio
quantile. Then, one method to actually compute the quantile would be to decide the
corresponding almost-sure �-ratio decision problem for every element of this set, as
the exact quantile value can be distinguished from the other elements of the set in
the following way. If it has a predecessor (w.r.t the given finite set), the decision
procedure has a positive result for this predecessor. For its successor (if it exists) the
decision procedure has a negative result. The monotonicity of the �-ratio decision
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problem w.r.t. the threshold q ensures there can only be one element which satisfies
both.

This approach relies on the computation of all values in the set. However, we
can only state exponentially large sets. In the following we will state a polyno-
mial computation scheme, based on a reduction to the following best-approximation
problem.

The best approximation problem

We use the best-approximation problem as defined by Grötschel, Lovász, and Schri-
jver in [17].

Definition 5.7 ([17] Problem 5.1.1). Given a natural number N ∈ N>0 and a
rational number α ∈ Q, the best-approximation problem for N and α asks for some
β ∈ Q with denominator at most N that minimizes |α− β|.

Example 5.8. Assume N = 10. If α = 1/3 the solution to the best-approximation
problem is 1/3 as the dominator of α is less or equal to N . However, if α = 10/33
the solution is 3/10.

Using the continued-fraction method, one can show that for given N and α the
best-approximation problem is solvable in polynomial time. We will not restate the
proof, but consider the following theorem in the remainder of this section as a black
box.

Theorem 5.9 ([17], Theorem 5.1.9). Let N ∈ N, α ∈ Q. The best-approximation
problem for N ∈ N>0 and α ∈ Q is solvable in time polynomial in the encoding
length of N and α.

Let us now sketch how the best-approximation problem relates to ratio quantiles.
Above we discussed the idea to state a finite set and check for every element, whether
it constitutes the quantile value or not. Now, assume we only know that such a set
exists and can compute the largest denominator of all elements. In the following we
will denote this value by N . Further, assume that we can approximate the quantile
up to an high arbitrary precision 1/ε and let α be such an approximation of the
almost-sure �-ratio quantile. If this ε is small enough, i.e., α is closer to the actual
quantile than to any other value with denominator at most N , the quantile can be
computed using the best-approximation problem for N and α. The following lemma
formalizes this argument and characterizes small enough.

Lemma 5.10. For N ∈ N and α ∈ Q there exists at most one β ∈ Q such that

(1) |α− β| < 1/(2N2), and

(2) β ∈ {a/b : a ∈ N and b ∈ [1, N ] ∪ N}

If such β exists, it is computable in time polynomial in the size of N and α w.r.t.
their encoding length.
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Proof. Let γ ∈ Q be the solution of the best-approximation problem for N and α.
Let β be a rational number satisfying (1) and (2). We now argue that γ = β. A
similar argument has already been presented in [14].

By definition of the best-approximation problem and assumption (2), we obtain
|α− γ| ≤ |α− β|, as both γ and β are contained in {a/b : a ∈ N and b ∈ [1, N ]∩N}
and γ minimizes |α− γ|. Using the triangle inequality, this yields,

|γ − β| ≤ |γ − α|+ |α− β| ≤ 2 · |α− β| < 1

N2
. (5.1)

Towards a contradiction, assume that γ 6= β. Let γ = n1/n2 and β = m1/m2 for
some natural numbers n1, n2, m1 and m2. Since both n2 ≤ N and m2 ≤ N , and
the assumption γ 6= β implies m1n2 − n1m2 6= 0, we obtain

|γ − β| =
∣∣∣∣m1n2 − n1m2

n2m2

∣∣∣∣ ≥ |m1n2 − n1m2|
N2

≥ 1

N2

This contradicts Equation (5.1) and therefore yields γ = β. Thus, γ fulfills the
requirements (1) and (2). This completes the proof, as γ is the solution of the best-
approximation problem for N and α which by Theorem 5.9 is computable in time
polynomial in the encoding size of N and α.

Considering the above lemma it seems natural to investigate the computational
complexity of approximating qualitative ratio quantiles and computing an upper
bound for the denominator of the actual value. In the remainder of this section
we will show that both can be done in polynomial time, i.e., the following two
statements hold:

(I) Given N ∈ N we can approximate qualitative ratio quantiles up to precision
1/(2N2) in polynomial time.

(II) We can compute an upper bound for the denominator of any qualitative ratio
quantile in polynomial time.

Before we prove these two claims, let us discuss why the above statements (I) and
(II) imply that qualitative ratio quantiles can be computed in polynomial time. Us-
ing Lemma 5.10, we can state the following polynomial-time computation procedure
for qualitative ratio quantiles.

• Compute the upper bound N for the denominator.

• Approximate the quantile up to precision 1/(2N2). This yields value α.

• Solve the best-approximation problem for N and α, the solution equals the
value of the considered quantile.

Let us now consider proofs for the above two claims (I) and (II).
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Approximating ratio quantiles

As already mentioned at the beginning of the section, the results of Chapter 4 imply
that stating an upper and lower bound for qualitative ratio quantiles suffices to prove
claim (I) .

Lemma 5.11. Given N ∈ N, ♥ ∈ {�,♦,♦�,�♦}, the quantile Qu∗[♥ratio] can be
approximated up to precision 1/(2N2) in time polynomial in the encoding length of
N and the size of M.

Proof. The qualitative ♥-ratio problems are decidable in polynomial time (Corol-
lary 4.42). Hence, given r ∈ Q such that Qu∗[♥ratio] ≤ r, we can approximate the
quantile up to an arbitrary precision ε in time polynomial in the size of M and
logarithmic in 1/ε and r using a binary search on the interval [0, r].

Let T ⊆ S×S be the set containing all pairs of states (s, s′) such that P (s, s′) > 0.
To complete the proof it suffices to show

Qu∗[♥ratio] ≤
max(s,s′)∈T utility(s, s′)

min(s,s′)∈T energy(s, s′)
, (5.2)

as both the minimum and the maximum are computable in time polynomial in the
size of energy and utility. Notice, that the fact (a+ b)/(c+ d) ≤ max(a, b)/min(c, d)
implies for every finite path π̂

ratio(π̂) ≤
max(s,s′)∈T utility(s, s′)

min(s,s′)∈T energy(s, s′)
,

which directly yields Equation (5.2) and therefore completes the proof.

Bounding the denominator

The argument to prove the second claim, i.e., that we can compute an upper bound
for the denominator is more involved. We devote the rest of the section to the proof
of the following lemma.

Lemma 5.12. One can compute a natural number N in polynomial time such that

Qu∗[♥ratio] ∈ {a/b : a ∈ N and b ∈ [1, N ] ∩ N}.

As mentioned before, the idea is to state a finite set of rational numbers which
serve as candidates for the exact quantile values and then compute an upper bound
for the denominators of the elements in this set. In the following, we will show that
Qall = Qbscc ∪Qpath ∪Qcycle , where

Qbscc = {LC(ratio) : C is a BSCC of M},
Qpath = {ratio(π̂) : π̂ is a simple path starting in ι}, and

Qcycle = {ratio(ϑ) : ϑ is a simple cycle}
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fulfills all the requirements for such a set.
Let us first discuss that we can compute an upper bound for the denominators in

Qall in polynomial time. For both, Qpath and Qcycle , this trivially is the case, as we
are only considering finite paths, i.e., of length at most |S|. Thus, one upper bound
is |S| ·max(s,s′)∈S2 energy(s, s′). Note that, for Markov chains both, the BSCCs and
their expected long-run ratios, are computable in polynomial time. This implies
that Qbscc is computable in polynomial time and hence Lemma 5.12 is a direct
consequence of the following lemma.

Lemma 5.13.
Qu∗[♥ratio] ∈ Qall

Before we get to the proof, let us investigate the set Qall .

Example 5.14. Reconsider the energy-utility Markov chain of Example 3.6 depicted
in Figure 3.2. The Markov chain has exactly one BSCC C = {c1, c2, c3}, six simple
paths starting in ι and four simple cycles.

simple paths: ιt1, ιt1t2, ιt1c1, ιt1c1c2, ιt1c1c2c3, ιt1c1c3

simple cycles: t1t2t1, c1c2c3c1, c1c3c1, c3c3

Thus, dependent on the chosen variant we get the following sets (remember that
energyv1(t1, c1) = 2, energyv2(t1, c1) = 4 and energyv3(t1, c1) = 8):

v1 : Qbscc =

{
6

7

}
Qpath =

{
1

1
,

3

5
,

4

3
,

6

4
,

8

5

}
Qcycle =

{
4

8
,

4

3
,

2

2
,

0

1

}
v2 : Qbscc =

{
6

7

}
Qpath =

{
1

1
,

3

5
,

4

5
,

6

6
,

8

7

}
Qcycle =

{
4

8
,

4

3
,

2

2
,

0

1

}
v3 : Qbscc =

{
6

7

}
Qpath =

{
1

1
,

3

5
,

4

9
,

6

10
,

8

11

}
Qcycle =

{
4

8
,

4

3
,

2

2
,

0

1

}
Using the same energy-utility Markov chain we can also show that each of the

set Qbscc , Qpath and Qcycle may provide candidates for the quantile values. As
mentioned before the Markov chain contains exactly one BSCC C = {c1, c2, c3}
with LC(ratio) = 6/7. Thus Qu>0[�ratio] ≤ 6/7.

Using Lemma 4.35 and Lemma 4.1, we can argue that for variant v1 the positive
�-ratio quantile in fact evaluates to 6/7. Consider the path π̂ = ιt1c1c3c1. For any
prefix ρ of π̂ we have ratio(ρ) > 6/7. Thus, for arbitrary ε ∈ Q>0 the path π̂ contains
a positive cycle w.r.t. weight(6/7)−ε and minwgt[weight(6/7)−ε](π̂) > 0. Further,

EC(weight(6/7)−ε) > 0. Thus, Qu>0[�ratio] = 6/7 as PrMι (�ratio > (6/7) − ε) > 0

but PrMι (�ratio > 6/7) = 0. Notice that 6/7 is contained in Qbscc but neither in
Qpath nor Qcycle of variant v1.

Let us now consider variant v2. Using a similar argument, we can state that
Qu>0[�ratio] = 4/5, as every path π̂ from ι to c1 has to contain a prefix ρ (including
ρ = π̂) with ratio(ρ) ≤ 4/5. Notice that for variant v2 4/5 is only contained in Qpath .

59



5 From decision problems to quantiles

For variant v3 the positive �-ratio quantile evaluates to 1/2 which is contained in
Qcycle but not in Qbscc ∪Qpath . Let us see why. We have

lim
n→∞

1 + 4 · n+ 3

1 + 8 · n+ 8
=

1

2
.

Thus, for every q < 1/2 there exists a finite path starting in ι and ending in C such
that for every prefix ρ of π̂ holds ratio(ρ) > q. Hence using the arguments from
above we have PrMι (�ratio > q) > 0 but PrMι (�ratio > 1/2) = 0 which yields
Qu>0[�ratio] = 1/2.

Let us now return to Lemma 5.13. To prove the claim we will consider the four
modalities {�,♦,♦�,�♦} individually. For the long-run modalities {♦�,�♦} the
proofs are based on the fact that for almost all paths reaching a BSCC C, the ratio
of their prefixes converges towards the long-run ratio LC(ratio) of this BSCC.

Lemma 5.15.

Qu=1[�♦ratio] = Qu=1[♦�ratio] = minQbscc and

Qu>0[�♦ratio] = Qu>0[♦�ratio] = maxQbscc

Proof. Let r ∈ Q and abbreviate minQbscc by qmin and maxQbscc by qmax. As

PrMι (♦�(ratio > r)) ≤ PrMι (�♦(ratio > r))

it suffices to prove the following four implications.

(a) PrMι (�♦(ratio > r)) > 0 implies r ≤ qmax

(b) r < qmax implies PrMι (♦�(ratio > r)) > 0

(c) PrMι (�♦(ratio > r)) = 1 implies r ≤ qmin

(d) r < qmin implies PrMι (♦�(ratio > r)) = 1

Proof of (a). Remind that PrMι -almost all infinite paths π eventually reach a
BSCC C and LC(ratio) = limn→∞ ratio(π[. . . n]). Thus, PrMι -almost all infinite
paths π satisfy

qmin ≤ lim
n→∞

ratio(π[. . . n]) ≤ qmax. (5.3)

Proof of (b). Assume r < qmax and let C be a BSCC with LC(ratio) = qmax. For
PrMι -almost all paths π eventually reaching C we have

qmax = LC(ratio) = lim
n→∞

ratio(π[. . . n]).

Thus for every ε ∈ Q>0 and for almost all paths eventually reaching C there exists
m ∈ N such that for all n ∈ N≥m ratio(π[. . . n]) ≥ qmax − ε. Hence,

PrMι (♦�(ratio > r)) ≥ PrMι (♦C) > 0.
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Proof of (c). We show this by contraposition. Assume r > qmin and let C be a
BSCC with LC(ratio) = qmin. For all ε ∈ Q>0 and almost all paths π reaching C there
exists m ∈ N such that for all n ∈ N≥m we have limn→∞ ratio(π[. . . n]) < qmin + ε.
Hence,

PrMι (�(ratio > q) ≤ 1− PrMι (♦C) < 1.

Proof of (d). Implication (d) follows directly from inequality (5.3), as thus for
PrMι -almost all infinite path InfPaths and ε ∈ R>0 there exists m ∈ N such that for
all n ∈ N≥m

ratio(π[. . . n]) ≥ qmin − ε.

In fact, as Qbscc is computable in polynomial time, Lemma 5.15 directly yields
that qualitative ♥-ratio quantiles for ♥ ∈ {♦�,�♦} are computable in polynomial
time.

The proofs for � and ♦ are more involved. In the following we will first consider
the qualitative �-ratio quantiles and then state analogous proofs for the qualitative
♦-ratio quantiles.

Lemma 5.16.

Qu=1[�ratio] = min(Qpath ∪Qcycle)

Proof. The claim follows if the following two statements are true. Given r ∈ Q,

(a) PrMι (ratio > r) = 1 implies r ≤ qmin and,

(b) r < qmin implies PrMι (ratio > r) = 1.

Proof of (a). To prove the first statement, we show that for every r′ ∈ Qpath∪Qcycle

and every ε ∈ R>0 there is a finite path π̂ ∈ FinPathsMι such that ratio(π̂) ≤ r′ + ε.
This trivially is the case if r′ ∈ Qpath . Assume r′ ∈ Qcycle \Qpath . Let ϑ be a simple
cycle with ratio(ϑ) = r′. Given a finite path π̂ ∈ FinPathsMι reaching first(ϑ), i.e.,
such that π̂ � ϑ ∈ FinPathsMι , there exists k ∈ N such that π̂ = π̂ � (ϑ)k satisfies
ratio(π̂) ≤ r′ + ε (as before (ϑ)i is defined as ϑ0 = first(ϑ) and ϑ � (ϑ)i−1). This
follows from the fact that for all natural numbers a, b, c, and d with c 6= 0 and d 6= 0
we have limn→∞(a+ b · n)/(c+ d · n) = b/d.

Proof of (b). Towards a contradiction, assume that there are ε ∈ R>0 and π̂ ∈
FinPathsMι such that ratio(π̂) = qmin − ε. Let Θ be the set of all simple cycles
occurring in π̂ and denote by π̂′ the simple path that results from π̂ by iteratively
removing all simple cycles. We have

ratio(π̂) ≥ min
(
{ratio(π̂′)} ∪ {ratio(ϑ) : ϑ ∈ Θ}

)
≥ qmin,

as for all natural numbers a, b, c, and d with c 6= 0 and d 6= 0 holds (a+ b)/(c+d) ≥
min{a/c, b/d}. But this contradicts ratio(π̂) = qmin − ε.

61



5 From decision problems to quantiles

ι s
1, n

1, 5 1, 1

Figure 5.1: Energy-utility Markov chain (transitions are labeled with tuples
(utility, energy) and choices are assumed to be uniformly distributed)

Let us sketch the key principle of the proof for Qu>0[�ratio] ∈ Qall . We show
that PrMι (�(ratio > q)) > 0 for some q 6∈ Qall implies that there exists a q′ ∈ Qall ,
q < q′ such that PrMι (�(ratio > q′ − ε)) > 0 for all ε ∈ Q>0. Using the assumption
q 6∈ Qall , Lemma 4.1 and Lemma 4.35 yield that there exists a path π̂q reaching a
BSCC C such that

- LC(ratio) > q,

- π̂q contains a cycle ϑ with ratio(ϑ) > q and

- ratio(ρ) > q for every nonempty prefix ρ of π̂q,

which can be seen as a witness for PrMι (�(ratio > q)) > 0. Let q′ ∈ Qall be the
smallest element of Qall such that q < q′. Based on π̂q, for every ε ∈ Q>0 we
can construct a finite path π̂q′−ε ∈ FinPathsMι...last(π̂q), which serves as a witness for

PrMι (�(ratio > q′ − ε)) > 0. The construction relies on the following observation.
For any finite path π̂ there exists a finite path π̂′ = π̂0 � (ϑ)k � π̂1, where π̂0, π̂1 are
simple paths and ϑ is a simple cycle such that first(π̂) = first(π̂′), last(π̂) = last(π̂′)
and π̂′ is better than π̂ wrt. ratio. In this context better means ratio(π̂′) ≥ ratio(π̂)
and

min
n∈[1,|π̂′|]

ratio(π̂′[. . . n]) ≥ min
n∈[1,|π̂|]

ratio(π̂[. . . n]).

Example 5.17. Consider the Markov chain depicted in Figure 5.1. Assume n =
100. Using Lemma 4.1 and Lemma 4.35, the finite path π̂3/100 = ιιιs is a witness

for PrMι (�(ratio > 3/100)) > 0. Since ιι is a simple cycle and ratio(ιι) = 1/5,
given ε ∈ Q>0 there exists k ∈ N such that π̂1/5−ε = ι � (ιι)k � ιs is a witness for

PrMι (�(ratio > 1/5− ε)) > 0.
If we assume n = 1, then π̂1/6 = ιιιs is a witness for PrMι (�(ratio > 1/6)) > 0.

As ratio(ιι) = 1/5 < ratio(π̂1/6) we can ommit the cycle ιι. For every ε ∈ Q>0 the

path π̂1−ε = ιs is a witness for PrMι (�(ratio > 1− ε)) > 0.

Lemma 5.18.
Qu∗[�ratio] ∈ Qall

Proof. By Lemma 5.16 we have Qu=1[�ratio] ∈ Qall . To show Qu>0[�ratio] ∈ Qall ,
we prove the following claim.
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Let a, b ∈ Qall be such that a < b and there is no m ∈ Qall satisfying a < m < b.
Let c ∈ Q such that a < c < b. If PrMι (�(ratio > c)) > 0 then for every ε ∈ Q>0

PrMι (�(ratio > b− ε)) > 0.
As before for q1, q2 ∈ Z let weightq1/q2 : S × S → Z be given by

weightq1/q2 = q2 · utility − q1 · energy.

Assume that PrMι (�(ratio > c)) > 0. Hence we have PrMι (�(weightc > 0)) > 0
(cf. Lemma 4.1). Let c1, c2 ∈ Z be such that c = c1/c2. Notice that M cannot
contain a BSCC C with EC(weightc) = 0. This would imply LC(ratio) = c and thus
yield c ∈ Qbscc , which contradicts the assumption that there is no m ∈ Qall such
that a < m < b. Hence by Lemma 4.35 there exists a finite path π̂ ∈ FinPathsMι
and a BSCC C such that EC(weightc) > 0, last(π̂) ∈ C, minwgt[weightc](π̂) > 0 and
π̂ contains a weightc-positive cycle. We can safely assume that all simple cycles of
π̂ are weightc-positive.

We now use C and π̂ to show that PrMι (�(ratio > b − ε)) > 0 for every ε ∈
Q>0. Let us fix an ε ∈ Q>0. To be able to apply Lemma 4.35 for weightb−ε,
we need to show that EC(weightb−ε) > 0 and find a path π̂′ reaching C satisfying
minwgt[weightb−ε](π̂) > 0, which contains a weightb−ε-positive cycle. EC(weightb−ε) >
0 follows directly from the assumption that there is no m ∈ Qall such that a < m < b
and EC(weightc) > 0, as

LC(ratio) > c > a implies LC(ratio) ≥ b.

Let us now investigate π̂ to prove the existence of the required π̂′. We denote
the left-most simple cycle of π̂ by ϑ. The requirements on π̂ ensure that ϑ is a
weightc-positive cycle. Let π̂0, π̂1 ∈ FinPathsMι such that π̂ = π̂0 �ϑ � π̂1 and ϑ is not
contained in π̂0. The finite path π̂0 � ϑ contains exactly one (simple) cycle, namely
ϑ. Therefore, ratio(ρ) ∈ Qpath for every real prefix ρ of π̂0 � ϑ, i.e., ρ 6= π̂0 � ϑ and
|ρ| > 0. Furthermore, ratio(ρ) > c for every prefix of π̂ as minwgt[weightc](π̂) > 0.
Now, using the same argument as for LC(ratio), we obtain ratio(ρ) ≥ b for every real
prefix of π̂0 �ϑ. A similar argument yields ratio(ϑ) ≥ b as ϑ is weightc-positive cycle,
i.e., ratio(ϑ) > c > a.

Hence, there is a k ∈ N such that π̂′ = π̂0�(ϑ)k�π̂1 fulfills the requirements, i.e., π̂′

contains a weightb−ε-positive cycle, namely ϑ, minwgt[weightb−ε](π̂
′) > 0 and π̂ is a

finite path starting in ι and reaching BSCC C such that EC(weightb−ε) > 0. Thus, by
Lemma 4.35 PrMι (�(weightb−ε > 0)) > 0. Hence, PrMι (�(ratio > b− ε)) > 0.

Lemma 5.19.
Qu>0[♦ratio] = max(Qpath ∪Qcycle)

Proof. We show the following two implications. Given r ∈ Q,

(a) PrMι (♦(ratio > r)) > 0 implies r ≤ qmax and,

(b) r < qmax implies PrMι (♦(ratio > r)) > 0.
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Proof of (a). The first implication is an immediate consequence of the fact that
(a+ b)/(c+ d) ≤ max{a/c, b/d} for all natural numbers a, b, c, and d, where c 6= 0
and d 6= 0. Given finite paths π̂, π̂1 and π̂2 such that π̂ = π̂1 � π̂2, we thus have

ratio(π̂) ≤ max{ratio(π̂1), ratio(π̂2)}.

Proof of (b). We show that for every ε ∈ Q>0 there exists a path π̂ ∈ FinPathsMι
such that ratio(π̂) ≥ qmax − ε, which yields implication (b). If qmax ∈ Qpath , this
trivially holds. Assume qmax ∈ Qcycle \Qpath and let ϑ be a simple cycle such that
ratio(ϑ) = qmax. Further let π̂ ∈ FinPathsMι be a finite path where last(π̂) = first(ϑ).
Then, for every ε ∈ R>0 there exists k ∈ N such that ratio(π̂ � (ϑ)k) ≥ qmax − ε.

Lemma 5.20.
Qu∗[♦ratio] ∈ Qall

Proof. Qu>0[♦ratio] ∈ Qall follows directly from Lemma 5.19. In order to show
Qu=1[♦ratio] ∈ Qall we prove the following two claims.

(a) minQall ≤ Qu=1[♦ratio] ≤ maxQall

(b) Let a, b ∈ Qall such that a < b and there exists no m ∈ Qall such that
a < m < b. Further let c ∈ Q such that a < c < b. If PrMι (♦(ratio > c)) < 1,
then for all ε ∈ Q>0, Pr

M
ι (♦(ratio > α+ ε)) < 1.

Proof of (a). Given a finite path π̂ = π̂0 � π̂1, applying the argument presented
in the proof of Lemma 5.19, we have both, min(ratio(π̂0), ratio(π̂1)) ≤ ratio(π̂) and
ratio(π̂) ≤ max(ratio(π̂0), ratio(π̂1)). Hence, for all infinite paths π and all n ∈ N

min(Qpath ∪Qcycle) ≤ ratio(π[. . . n]) ≤ max(Qpath ∪Qcycle).

As minQall ≤ min(Qpath∪Qcycle) and maxQall ≥ max(Qpath∪Qcycle), this completes
the proof for claim (a).

Proof of (b). As usual for q1, q2 ∈ Z let weightq1/q2 : S × S → Z be given by

weightq1/q2 = q2 · utility − q1 · energy.

In order to proof the claim, we assume that PrMι (♦(ratio > c)) < 1 which implies
PrMι (♦(weightc > 0)) < 1. Hence Lemma 4.2 yields PrMι (�(−weightc > −1)) > 0.
The basic idea of the proof is analogous to the proof of Lemma 5.18. We use
Lemma 4.35 to find a witness path for −weightc and then for every ε ∈ Q>0 build a
witness path for −weighta+ε.

First of all, notice that M cannot contain a BSCC C with LC(ratio) = c. Thus,
there is no BSCC C with EC(−weightc) = 0 and for every BSCC C EC(−weightc) > 0
implies EC(−weighta+ε) > 0 for every ε ∈ Q>0.

Hence, Lemma 4.35 yields the existence of a path π̂ ∈ FinPathsMι and a BSCC C
such that last(π̂) ∈ C, minwgt[−weightC ](π̂) > −1, π̂ contains a (−weightc)-positive
cycle and EC(weighta+ε) > 0 for every ε ∈ Q>0. Let us fix an ε ∈ Q>0. We now

64



5.2 Ratio quantiles

use π̂ to construct a witness path π̂′ for (−weighta+ε), by repeating the arguments
of the proof of Lemma 5.18.

We can safely assume that all simple cycles of π̂ are (−weightc)-positive. Let ϑ be
the first simple cycle in π̂, i.e., ϑ is (−weightc)-positive. Let π̂0, π̂1 ∈ FinPathsM be
finite paths such that π̂ = π̂0 � ϑ � π̂1 and π̂0 does not contain ϑ.

By the choice of π̂0 and ϑ, ratio(ρ) ∈ Qpath for every real prefix ρ of π̂ � ϑ, i.e.,
ρ 6= π̂ � ϑ and |ρ| > 0. As minwgt[−weightc](π̂) > −1 and there is no m ∈ Qall with
a < m < b, we obtain for every real prefix ρ of π̂0 � ϑ, (−weightc)(ρ) ≥ 0 and thus
ratio(ρ) ≤ c which implies ratio(ρ) ≤ a. Similar arguments and the fact that ϑ is
(−weightc)-positive yield ratio(ϑ) ≤ a.

Putting things together, there exists a k ∈ N such that π̂′ = π̂0 � (ϑ)k � π̂1 ful-
fills the requirements, i.e., π̂′ contains a (−weighta+ε)-positive cycle (namely ϑ),
minwgt[−weighta+ε](π̂

′) > 0 and last(π̂′) ∈ C with EC(−weighta+ε) > 0.
Thus by Lemma 4.35 we have

PrMι
(
�(−weighta+ε > −1)

)
≥ PrMι

(
�(−weighta+ε > 0)

)
> 0

which by Lemma 4.2 yields the desired inequality

PrMι (♦(ratio > a)) = PrMι
(
♦(weighta+ε > 0)

)
< 1.

Computing qualitative ratio quantiles in polynomial time

We now have all we need to show that qualitative ratio quantiles are computable in
polynomial time. Lemma 5.15 yields that for the long-run modalities ♥ ∈ {♦�,�♦}
the qualitative quantiles can be read off the long-run ratios of the BSCCs. As both,
the BSCCs of a Markov chain as well as their long-run ratio, can be computed in
polynomial time, this directly yields that for ♥ ∈ {♦�,�♦} the qualitative ♥-ratio
quantiles can be computed in polynomial time.

For the remaining modalities � and ♦, Theorem 5.9, Lemma 5.10, Lemma 5.11
and Lemma 5.13 yield that the following indeed constitutes a polynomial-time com-
putation procedure for qualitative ♥-ratio quantiles where ♥ ∈ {�,♦}.

1. Compute the largest denominator N of any element in Qall .

2. Compute an approximation α of the quantile up to precision 1/(2N2).

3. Solve the best-approximation problem for N and α.

We can thus conclude the following theorem.

Theorem 5.21. Let M = (S, P, ι, AP,L, utility, energy) be an energy-utility Markov
chain and φ = (2AP )ω. For ♥ ∈ {�,♦,♦�,�♦} the qualitative ♥-ratio quantiles
are computable in time polynomial in the size of M.
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In this chapter we will generalize the results of the previous two chapters for omega-
regular properties. We show that for an omega-regular side constraint φ encoded by
a deterministic Rabin automaton A the qualitative weight and ratio problems are
decidable in time polynomial in the size of the Markov chain and A. Further, we
prove analogous results for qualitative weight and ratio quantiles. In Section 6.1 we
consider the almost-sure case for both decision problems and quantiles, and exploit
that for any two events A and B

Pr(A ∪B) = 1 if and only if Pr(A) = 1 and Pr(B) = 1. (6.1)

In contrast, the argument for the positive decision problems and quantiles pre-
sented in Section 6.2 relies on the standard reduction of the model-checking problem
for φ and a Markov chainM to checking reachability of specific BSCCs for the prod-
uct M⊗A.

6.1 Almost-sure decision problems and quantiles

As mentioned above, the argument for the almost-sure case is based on the obser-
vation stated in Equation (6.1).

Lemma 6.1. Let M = (S, P, ι, AP,L,weight) be a weighted Markov chain and φ an
omega-regular property for M encoded by a deterministic Rabin automaton A.

For ♥ ∈ {�,♦,♦�,�♦} the almost-sure ♥-weight problem is decidable in time
polynomial in the size of M and A and the almost-sure ♥-weight quantile is com-
putable in time polynomial in the size of M and A.

Proof. Let us first consider the decision problem. Equation (6.1) implies

PrMι (♥(weight > z) ∧ φ) = 1 iff PrMι (♥(weight > z)) = 1 and PrMι (φ) = 1.

Using Theorem 4.41, this yields the claim, as it is decidable in polynomial time in
the size of A whether PrMι (φ) = 1 (cf. Section 2.2).

Further the above equation implies

Qu=1
φ [♥weight] =

{
−∞ if PrMι (φ) < 1

Qu=1[♥weight] otherwise

Applying Theorem 5.6 completes the proof.
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Notice that the only weight-specific arguments of Lemma 6.1’s proof are the ref-
erences to Theorem 4.41 and Theorem 5.6. Thus, applying the analogous results
for ratios, Corollary 4.42 and Theorem 5.21, we can straight-forwardly extend the
argument of the above proof to energy-utility Markov chains.

Lemma 6.2. Let M = (S, P, ι, AP,L, utility, energy) be an energy-utility Markov
chain and φ an omega-regular property for M encoded by a deterministic Rabin
automaton A.

For ♥ ∈ {�,♦,♦�,�♦} the almost-sure ♥-ratio problem is decidable in time poly-
nomial in the size of M and A and the almost-sure ♥-ratio quantile is computable
in time polynomial in the size of M and A.

6.2 Positive decision problems and quantiles

Let us now consider the positive decision problems and quantiles. As in the previous
section both, the weight and the ratio constraints can be treated using the same
arguments. As a consequence we will here restrict ourselves to the weighted case
and, when necessary, mention the extension to energy-utility Markov chains and
ratios.

For the remainder of the section, let us fix a weightedM = (S, P, ι, AP,L,weight)
and a DRA A = (Q, 2AP , δ, q0, Acc) accepting the omega-regular property φ. In
the following we assume PrMι (φ) > 0 as otherwise for every integer z and ♥ ∈
{�,♦,♦�,�♦}

PrMι (♥(weight > z) ∧ φ) = 0 and Qu>0
φ [♥(weight > z)] = −∞.

We show that the results of Theorem 4.41 and Theorem 5.6 can be lifted to
arbitrary omega-regular properties based on the following idea. We construct a
Markov chain Mφ = (Sφ, P φ, ιφ,weightφ) in polynomial time, which satisfies for
every integer z ∈ Z and ♥ ∈ {�,♦,♦�,�♦}

PrMι (♥weight > z ∧ φ) > 0 iff PrM
φ

ιφ (♥weight > z) > 0.

To do so, let us first extend the product for Markov chains and DRA (cf. Defini-
tion 2.14 in Section 2.2) to weighted Markov chains. For M and A let the product
Markov chain M⊗A = (S′, P ′, ι′, AP ′, L′,weight′) where S′, P ′, ι′, AP ′ and L′ are
defined as for the standard product and

weight′(〈s, q〉, 〈s′, q′〉) = weight(s, s′).

Let Cacc be the set of all BSCCs C ofM⊗A which for some (L,K) ∈ Acc satisfy

C ∩ (S × L) = ∅ and C ∩ (S ×K) 6= ∅.

Using standard arguments for omega-regular properties, the definition of weight′

implies for every integer z ∈ Z and ♥ ∈ {�,♦,♦�,�♦}
PrMι (♥weight > z ∧ φ) > 0 iff PrM⊗Aι′ (♥weight > z ∧ φ′) > 0

where φ′ stands for the set of all paths eventually reaching a BSCC of Cacc.
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Remark 6.3. We can directly transfer the argument to energy-utility Markov chains.
If we extend the product for both reward functions energy and utility in the same
way as for weight we have

PrMι (♥(ratio > z) ∧ φ) > 0 iff PrM⊗Aι′ (♥(ratio > z) ∧ φ′) > 0

for every integer z ∈ Z and ♥ ∈ {�,♦,♦�,�♦}, where φ′ stands for the set of all
paths eventually reaching a BSCC of Cacc.

We now use the product Markov chain M⊗A to construct Mφ. The basic idea
of this construction is to “cut off” all BSCCs, which are not contained in Cacc.

However, there are two hickups to consider. First, we need to ensure that we only
remove BSCCs and not accidentally create new ones. Here the assumption that
PrMι (φ) > 0 plays a crucial role as it ensures that there exists at least one BSCC
C ∈ Cacc which is reachable from ι′. Second, simply removing transitions might
violate the requirement thatMφ constitutes a weighted Markov chain, i.e., that the
probabilities for all outgoing transitions of a given state sum up to 1. However, notice
that the characterizations of Chapter 4 just consider the existence (or absence) of
finite paths reaching a BSCC with a specific expected weight and not their exact
probability. Thus, for all transitions not contained in a BSCC, the exact probability
distribution is negligible and we can choose any transition preserving distribution.

Definition 6.4. Let M = (S, P, ι, AP,L,weight) be a weighted Markov chain, A =
(Q, 2AP , δ, q0, Acc) a DRA encoding an omega-regular property φ and their product
M⊗A = (S′, P ′, ι′, AP ′, L′,weight′).

We call the weighted Markov chain Mφ = (Sφ, ι′, P φ,weightφ) a φ-restriction of
M if

Sφ = {s ∈ S′ : there exists a BSCC in Cacc reachable from s}
P φ(s, s′) = P ′(s, s′) for s, s′ ∈ Cacc

P φ(s, s′) > 0 iff P (s, s′) > 0 for s ∈ Sφ \ Cacc, s′ ∈ Sφ

weightφ(s, s′) = weight′(s, s′) for all s, s′ ∈ Sφ

Lemma 6.5. Let M = (S, P, ι, AP,L,weight) be a weighted Markov chain, φ an
omega-regular property andMφ = (Sφ, ι′, P φ,weightφ) a φ-restriction ofM. Further
let ♥ ∈ {�,♦,♦�,�♦} and z ∈ Z.

PrMι (♥(weight > z) ∧ φ) > 0 iff PrM
φ

ι′ (♥(weight > z)) > 0

Proof. Assume that A is a DRA encoding φ such thatMφ satisfies the requirements
for a φ-restriction of M with respect to A (cf. Definition 6.4) and let M⊗ A =
(S′, P ′, ι′, AP ′, L′,weight′). It is known that

PrMι (♥(weight > z) ∧ φ) > 0 iff PrM⊗Aι′ (♥(weight > z) ∧ φ′) > 0,
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6 Omega-regular side constraints

where φ′ contains all paths reaching a BSCC of M⊗ A contained Cacc (cf. Sec-
tion 2.2). It thus suffices to show

PrM⊗Aι′ (♥(weight > z) ∧ φ′) > 0 iff PrM
φ

ιφ (♥(weight > z)) > 0. (6.2)

Notice, every BSCC C ofMφ constitutes a BSCC ofM⊗A contained in Cacc and
vice versa. This is a direct consequence of Definition 6.4 and the initial assumption
that PrMι (φ) > 0. Thus, for almost all infinite paths π of M⊗A

π ∈ InfPathsM
φ

ι′ iff π ∈ InfPathsM⊗Aι′ ∩ φ′.

Let us see why. Almost all paths in InfPathsM
φ

ι′ eventually reach a BSCC C of Mφ.
As every path of Mφ is a path of M⊗A and C ∈ Cacc, almost all paths of Mφ are
contained in InfPathsM⊗Aι′ ∩ φ′. On the other hand, all paths in InfPathsM⊗Aι′ ∩ φ′
eventually enter a BSCC of Cacc and are thus contained in InfPathsM

φ

ι′ .
Additionally by the definition of weightφ and P φ we have for all BSCCs C of Mφ

EC(weightφ) = EC(weight′).

Using the results of Chapter 4 this yields Equation (6.2) and hence completes
the proof, as the characterizations for qualitative weight problems (cf. Lemma 4.32,
Lemma 4.33, Lemma 4.34, Lemma 4.35) just consider the existence (or absence) of
certain finite paths reaching BSCCs with a specific expected weight and not their
probabilities.

AsMφ is constructible in time linear in the size ofM⊗A and the product Markov
chainM⊗A is constructible in time polynomial in the size of the Markov chainM
and A, the following theorem is a direct consequence of Theorem 4.41, Theorem 5.6
and Lemma 6.5.

Theorem 6.6. Let M be a weighted Markov chain, A a DRA encoding the linear
property φ, z ∈ Z and ♥ ∈ {�,♦,♦�,�♦}. The qualitative ♥-weight problems for
M, φ and z are decidable in time polynomial in the size of M and A. Further, the
qualitative ♥-weight quantiles for M, φ and z are computable in time polynomial in
the size of M and A.

As both Definition 6.4 and Lemma 6.5 can be straight-forwardly extended for
energy-utility Markov chains, using Corollary 4.42 and Theorem 5.21 we can state
the following analogon for Theorem 6.6.

Theorem 6.7. Let M be an energy-utility Markov chain, A a DRA encoding the
linear-time property φ, q ∈ Q and ♥ ∈ {�,♦,♦�,�♦}. The qualitative ♥-ratio
problems for M, φ and q are decidable in time polynomial in the size of M and A.
Further, the qualitative ♥-ratio quantiles for M, φ and q are computable in time
polynomial in the size of M and A.
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7 Extending the results for the
strong-release modality

Reconsider the system described in Definition 3.1, which charges and drains a bat-
tery. Assume that during the initialization phase (modeled by the states ι, t1, t2,
and t3) the system is connected to an external power source. If we want to ensure
that the system does not run out of battery, we need to consider the following event:

E : the system does not run out of battery after reaching t3

Notice that the event E cannot be expressed using ♥(weight ./ z) ∧ φ, where ♥ ∈
{�,♦,♦�,�♦}, ./ ∈ {<,≤,=,≥, >}, z ∈ Z and φ is an ω-regular property. In fact,
E is closely related to the release modality. The weight requirement is released as
soon as the system has entered state s3. However, the standard release modality
would allow for paths, which are stuck in the initialization phase.

Inspired by the weak-until modality, in this chapter we introduce the strong-release
modality and show that we can extend our results to this modality using the same
techniques as presented in Chapter 4 and Chapter 5. In Section 7.1 we consider both
qualitative decision problems and quantiles related to strong release and weighted
Markov chains, before we turn to energy-utility Markov chains in Section 7.2.

7.1 Strong release and weighted Markov chains

In the section we will consider qualitative decision problems and quantiles related to
the following events. Given a weighted Markov chain M = (S, P, ι, AP,L,weight),
a set of states goal ⊆ S, an integer z ∈ Z and ./ ∈ {<,≤,=,≥, >} the events
(goalR•�(weight ./ z)) and (goalR• ♦(weight ./ z)) are defined by

π |= (goalR•�(weight ./ z)) iff there exists k ∈ N>0 s.t. π[k] ∈ goal,

π[n1] 6∈ goal for all n1 ∈ N<k and

weight(π[. . . n2]) ./ z for all n2 ∈ N>k,

π |= (goalR• ♦(weight ./ z)) iff there exists k1, k2 ∈ N>0, k1 < k2 s.t.

π[k1] ∈ goal and weight(π[. . . k2]) ./ z.

We will show that given a weighted Markov chain M = (S, P, ι, AP,L,weight), a
set of states goal ⊆ S, a modality ♥ ∈ {�,♦}, and an integer z ∈ Z the following
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7 Extending the results for the strong-release modality

decision problems and quantiles are solvable in polynomial time.

PrMι (goalR•♥(weight > z)) > 0

PrMι (goalR•♥(weight > z)) = 1

Qu>0[(goalR•♥weight)] = sup{z′ ∈ Z : PrMι (goalR•♥(weight > z′)) > 0}
Qu=1[(goalR•♥weight)] = sup{z′ ∈ Z : PrMι (goalR•♥(weight > z′)) = 1}

To this end, for the remainder of the section let M = (S, P, ι, AP,L,weight) be a
Markov chain, goal ⊆ S a set of states and z ∈ Z.

Remark 7.1. We will not consider the analogous events for the modalities ♦� and
�♦ as they are equivalent to ♦�(weight ./ z) ∧ ♦goal and �♦(weight ./ z) ∧ ♦goal.
Hence, the results of Chapter 6 yield that for these events both, the decision problems
and the quantiles are solvable in polynomial time.

In the following, we assume that ι is not contained in goal as for ι ∈ goal the event
(goalR•♥weight > z) is equivalent to ♥(weight > z) and thus trivially reduces to
Theorem 6.6.

The proof for the above decision problems is based on the following idea. Every
path π satisfying (goalR•♥(weight > z)) can be divided into a finite path π̂ “acti-
vating” the release, i.e, last(π̂) ∈ goal and π̂[i] 6∈ goal for 0 ≤ i < |π̂|, and a suffix
π′ such that π = π̂ � π′. Using standard graph algorithms we can compute both the
minimal and maximal weight accumulated on such π̂. Let dist¬goal,max(s1, s2) be the
maximal distance from s1 to s2 with respect to the graph induced by M restricted
to the states S \ goal. Analogously dist¬goal,min(s1, s2) denotes the minimal distance
from s1 to s2 with respect to the same graph. For every s ∈ goal, we define

wmax(s) := max
s′

(dist¬goal,max(ι, s′) + weight(s′, s)) and

wmin(s) := min
s′

(dist¬goal,min(ι, s′) + weight(s′, s)),

where s′ ranges over all predecessors of s not contained in goal, i.e., s′ 6∈ goal and
P (s′, s) > 0. Using the notion of wmax and wmin we can now state the characteri-
zations for the decision problems PrMι (goalR•♥(weight > z)) > 0 (cf. Lemma 7.2)
and PrMι (goalR•♥(weight > z)) = 1 (Lemma 7.3).

Lemma 7.2.

PrMι (goalR•♥(weight > z)) > 0 if and only if

∃s ∈ goal : PrMs (♥(weight > z − wmax(s))) > 0

Proof. The implication (⇐) trivially holds. Assume that π̂ is a finite path from ι to
s such that weight(π̂) = wmax and PrMs (♥(weight > z − wmax(s))) > 0. Then,

PrMι (goalR•♥(weight > z)) > P (π̂) · PrMs (♥(weight > z − wmax(s))) > 0.
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In order to show implication (⇒), let us first consider modality ♦. Assume that
PrMι (goalR• ♦(weight > z)) > 0. Thus, there exists a path π ∈ InfPathsMι satisfying
(goalR• ♦(weight > z))) > 0. Let k be the smallest natural number such that
π[k] ∈ goal. Hence, there exists an m > k such that

weight(π[. . .m]) = weight(π[. . . k]) + weight(π[k . . .m]) > z,

where π[k . . .m] stands for π[k . . .][. . . (m− k)]. Let s = π[k]. By definition of wmax
we have weight(π[. . . k]) ≤ wmax(s), which implies π[k . . .m] > z − wmax(s) and
hence π[k . . .] |= ♦(weight > z − wmax(s)). This yields the claim for ♦ as

PrMs (♥(weight > z − wmax(s))) ≥ P (π[k . . .m]) > 0.

Let us now turn to modality �. We assume towards a contradiction that there
exists no s ∈ goal with PrMs (�(weight > z − wmax(s))) > 0 but the probability
PrMι (goalR•�(weight > z)) is positive. By Corollary 4.11 and Corollary 4.16 there
exists a path π ∈ InfPathsMι satisfying (goalR•�(weight > z)) eventually reaching
a BSCC C with either EC(weight) > 0 or EC(weight) = 0 and no negative cycles. Let
k be the first ocurrence of a goal-state in π and s = π[k], i.e., π[k] = s ∈ goal and
π[n] 6∈ goal for all n < k. Thus for all m > k,

weight(π[. . .m]) = weight(π[. . . k]) + weight(π[k . . .m]) > z.

As weight(π[. . . k]) ≤ wmax(s) this implies π[k . . .] |= �weight > z − wmax(s). Ap-
plying Lemma 4.35 yields PrMs (�(weight > z − wmax(s))) > 0 and thus the aimed
contradiction.

Lemma 7.3.

PrMι (goalR•♥(weight > z)) = 1 if and only if

PrMι (♦goal) = 1 and ∀s ∈ goal : PrMs (♥(weight > z − wmin(s))) = 1

Proof. Notice, by the definition of theR• operator, PrMι (goalR•♥(weight > z)) = 1
implies PrMι (♦goal) = 1.

(⇒): Towards a contradiction assume PrMι (goalR•♥(weight > z)) = 1 and there
exists a state s ∈ goal such that PrMs (♥(weight > z − wmin(s))) < 1. Thus,
PrMs (¬(♥(weight > z−wmin(s)))) > 0. This yields a contradiction as for any finite
path π̂ ∈ FinPathsMι...s with weight(π̂) = wmin(s)

PrMι (¬(goalR•♥(weight > z))) > P (π̂) · PrMs (¬(♥(weight > z − wmin(s)))) > 0.

(⇐): Assume that PrMι (♦goal) = 1 and for every state s ∈ goal we have
PrMs (♥(weight > z −wmin(s))) = 1. We argue for PrMι -almost-all infinite paths π.
As PrMι (♦goal) = 1, π = π̂�π′ for some π′ ∈ InfPathsM and π̂ ∈ FinPathsMι such that
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7 Extending the results for the strong-release modality

last(π̂) ∈ goal and for every real prefix ρ of π̂, last(ρ) 6∈ goal. Let s = last(π̂). By defi-
nition of wmin we have weight(π̂) ≥ wmin(s). Further π′ |= ♥(weight > z−wmin(s)).
This completes the argument as, if ♥ = � for every nonempty prefix ρ of π′

weight(π̂ � ρ) = weight(π̂) + weight(ρ) > z

and in case ♥ = ♦ there exists a prefix ρ satisfying the above inequality.

Applying Theorem 6.6, Lemma 7.2 and Lemma 7.3 directly yield that the consid-
ered decision problems are decidable in polynomial time.

Lemma 7.4. Given a weighted Markov chain M = (S, P, ι, AP,L,weight), a set of
states goal and an integer z. For ♥ ∈ {�,♦} it is decidable in time polynomial in
the size of M whether the following statements hold:

PrMι (goalR•♥(weight > z)) > 0 and PrMι (goalR•♥(weight > z)) = 1.

In fact, Lemma 7.2 and Lemma 7.3 provide a polynomial computation scheme
for the qualitative quantiles Qu>0[(goalR•♥weight)] and Qu=1[(goalR•♥weight)].
For a given s ∈ S let Qu>0

s [♥weight] be the positive ♥-weight quantile with re-
spect to (S, P, s,weight). By the definition of quantiles, for any integer w ∈ Z,
Qu>0

s [♥weight] +w is the largest integer w′ such that PrMs (♥weight > w′ −w) > 0.
Hence, we can conclude the following two lemmata.

Lemma 7.5. Let qs = Qu>0
s [♥weight] the positive ♥-weight quantile with respect to

(S, P, s,weight).

Qu>0[(goalR•♥weight)] = max
s∈goal

(qs + wmax(s))

Lemma 7.6. Let qs = Qu=1
s [♥weight] the almost-sure ♥-weight quantile with respect

to (S, P, s,weight).

Qu=1[(goalR•♥weight)] =

{
−∞ if PrMι (♦goal) < 1

mins∈goal(qs + wmin(s)) otherwise

Again, applying Theorem 6.6 yield the desired result.

Lemma 7.7. Given a weighted Markov chain M = (S, P, ι, AP,L,weight), a set of
states goal and an integer z. For ♥ ∈ {�,♦} the following quantiles are computable
in polynomial time:

Qu>0[(goalR•♥weight)] and Qu=1[(goalR•♥weight)].
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7.2 Strong release and energy-utility Markov chains

In this section, we show that the result of the previous section can be lifted to
energy-utility Markov chains.

To this end, let us first fix the notation. Given an energy-utility Markov chain
M = (S, P, ι, AP,L, utility, energy), a set of states goal ⊆ S, a threshold q ∈ Q and
./ ∈ {<,≤,=,≥, >}, the events (goalR•�(ratio ./ q)) and (goalR• ♦(ratio ./ q))
are defined analogous to the weighted case:

π |= (goalR•�(ratio ./ q)) iff there exists k ∈ N>0 s.t. π[k] ∈ goal,

π[n1] 6∈ goal for all n1 ∈ N<k and

ratio(π[. . . n2]) ./ q for all n2 ∈ N>k,

π |= (goalR• ♦(ratio ./ q)) iff there exist k1, k2 ∈ N>0, k1 < k2 s.t.

π[k1] ∈ goal and ratio(π[. . . k2]) ./ q.

As in Chapter 4 (cf. Lemma 4.1) we can reduce the qualitative decision problems
PrMι (goalR•♥(ratio > q)) > 0 and PrMι (goalR•♥(ratio > q)) = 1 to the associated
decision problems for weighted Markov chains.

Lemma 7.8. Let M = (S, P, ι, AP,L, utility, energy) be an energy-utility Markov
chain, goal ⊆ S a set of states and q1, q2 ∈ N. Further, as before let weightq1/q2 =

q2 · utility − q1 · energy. For ♥ ∈ {�,♦} and π ∈ InfPathsM

π |= (goalR•♥ratio > (q1/q2)) iff π |= (goalR•♥weightq1/q2 > 0).

Proof. Directly follows from the following fact. For every finite path π̂ we have
ratio(π̂) > (q1/q2) if and only if weight(q1/q2)(π̂) > 0.

Corollary 7.9. Let M = (S, P, ι, AP,L, utility, energy) be an energy-utility Markov
chain, goal ⊆ S a set of states and q ∈ Q≥0. For ♥ ∈ {�,♦} it is decidable in time
polynomial in the size of M whether the following statements hold:

PrMι (goalR•♥(ratio > q)) > 0 and PrMι (goalR•♥(ratio > q)) = 1.

Let us now consider quantiles with respect to the R• modality and energy-utility
Markov chains. To this end, let M = (S, P, ι, AP,L, utility, energy) be an energy-
utility Markov chain. Further, we fix a set of states goal ⊆ S and a threshold q ∈ Q.
Let us define the following qualitative quantiles for ♥ ∈ {�,♦}.

Qu>0[(goalR•♥ratio))] = sup{q ∈ Q : PrMι (goalR•♥(ratio > q)) > 0}
Qu=1[(goalR•♥ratio))] = sup{q ∈ Q : PrMι (goalR•♥(ratio > q)) = 1}

As already discussed in Section 5.2, Lemma 7.8 does not allow to reduce quali-
tative ratio quantiles to qualitative weight quantiles. To show that the quantiles
Qu>0[(goalR•♥ratio))] and Qu=1[(goalR•♥ratio))] are computable in polynomial
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s1 s2 s3 goal

s4

ι
1, 1

1, 5

1, 5

1, 5

1, 5

1, 1

1, 1

Figure 7.1: Energy-utility Markov chain (transitions are labeled with tuples
(utility, energy) and choices are assumed to be uniformly distributed)

time we will slightly adapt the argument for “standard” qualitative ratio quantiles
presented in Section 5.2.1. We there have shown that it suffices to prove the following
two claims in order to provide a polynomial time computation scheme.

(I) Given N ∈ N we can approximate the quantiles Qu>0[(goalR•♥ratio))] and
Qu=1[(goalR•♥ratio))] up to precision 1/(2N2) in polynomial time.

(II) We can compute an upper bound for the denominator of the quantile value in
polynomial time.

To show the first claim, we can straight-forwardly adapt the proof of Lemma 5.11.

Lemma 7.10. Given N ∈ N and ♥ ∈ {�,♦}, the quantiles Qu>0[(goalR•♥ratio))]
and Qu=1[(goalR•♥ratio))] can be approximated up to precision 1/(2N2) in time
polynomial in the encoding length of N and the size of M.

To show the second claim, we can adapt the proof of Lemma 5.12 to show the
following lemma.

Lemma 7.11. One can compute a natural number N in polynomial time such that
for every ♥ ∈ {�,♦} and ∗ ∈ {> 0,= 1}

Qu∗[(goalR•♥ratio))] ∈ {a/b : a ∈ N and ∈ [1, N ]}.
Remember, in order to prove Lemma 5.12 we showed that Qall = Qbscc ∪Qcycle ∪

Qpath serves as a candidate set for the qualitative ratio quantiles (cf. Lemma 5.13).
The above lemma can be proven using the same arguments, however, we need to
consider a slightly different set. To get an intuition, let us first consider why Qall

does not work.

Example 7.12. Consider the energy-utility Markov chain M depicted in Figure 7.1
and let goal = {s3}. We have Qu>0[(goalR•�ratio)] = 5/21 6∈ Qall as there exists
no π ∈ InfPathsMι with π |= (goalR•�(ratio > 5/21)), but for every ε ∈ Q>0

ιs1s2s3s2s1s
ω
4 |= (goalR•�(ratio > (5/21)− ε)).
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As already mentioned above, every infinite path π ∈ InfPathsM such that π |=
(goalR•�(ratio > q)) can be decomposed into a finite path reaching a state in goal,
a finite path starting in a goal-state and reaching a BSCC and a suffix, e.g., if we
reconsider the path ιs1s2s3s2s1s

ω
4 of Example 7.12

ιs1s2s3s2s1s
ω
4 = ιs1s2s3 � s3s2s1s4 � sω4 .

Using this decomposition, we can slightly amend the argument for Lemma 5.18
and Lemma 5.20 in order to show that the quantiles related to strong-release are
contained in the Qrelease = Qbscc ∪ Qcycle ∪ Q2|S|path , where Q2|S|path contains the
ratios of all finite paths with length at most 2 · |S|, i.e.,

Q2|S|path = {ratio(π̂) : π̂ ∈ FinPathsMι such that |π̂| < 2 · |S|}.

Before we, for the sake of completeness, rephrase the arguments presented in the
proof of Lemma 5.18 and Lemma 5.20, let us discuss an upper bound for the de-
nominators in Qrelease . Such an upper bound can be computed in polynomial time
as 2 · |S|max(s,s′)∈S2 energy(s, s′) is an upper bound for both Qcycle and Q2|S|path .
Additionally, Qbscc is computable in polynomial time.

Lemma 7.13. Let ∗ ∈ {> 0,= 1} and ♥ ∈ {�,♦}.

Qu∗[(goalR•♥ratio)] ∈ Qrelease

We dedicate the remainder of the section to the proof of the above lemma. To
this end, we will consider auxiliary Markov chains, which differ only in their initial
state and weight functions, i.e., (S, P, s,weightq1/q2) where s ∈ S, q1, q2 ∈ Q and as
before

weightq1/q2 = q2 · utility − q1 · energy.

Several of our Markov chain related notations such as cdist or wmin are defined
with respect to a given Markov chain. Whenever we refer to such a notion with
respect to an auxiliary Markov chain, we will state the considered initial state and
weight function in brackets, i.e., wmin[s,weightq](s

′) denotes wmin(s′) with respect
to (S, P, s,weightq).

In the following we will show Qu∗[(goalR•♥ratio)] ∈ Qrelease separately for every
combination ∗ ∈ {> 0,= 1} and ♥ ∈ {�,♦}. In fact, we will rephrase and slightly
amend the arguments presented in the proofs of Lemma 5.18 and Lemma 5.20. The
proofs all refer to the following simple observation.

Lemma 7.14. Let ∗ ∈ {> 0,= 1} and ♥ ∈ {�,♦}.

minQrelease ≤ Qu∗[(goalR•♥ratio)] ≤ maxQrelease

Proof. It suffices to show that for every finite path π̂,

minQrelease ≤ ratio(π̂) ≤ maxQrelease .

Notice that we have already shown this claim in the proof of Lemma 5.16 (cf.
part (b)).
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7 Extending the results for the strong-release modality

Lemma 7.15.
Qu>0[(goalR•�ratio)] ∈ Qrelease

Proof. The argument is analogous as for Lemma 5.18. Applying Lemma 7.14 it
suffices to show the following claim:

Let a, b ∈ Qrelease be such that a < b and there is no m ∈ Qrelease satisfying
a < m < b. Let c ∈ Q such that a < c < b. If PrMι (goalR•�(ratio > c)) > 0, then
for every ε ∈ Q>0, Pr

M
ι (goalR•�(ratio > b− ε)) > 0.

Applying Lemma 7.8 we can conclude that PrMι (goalR•�(ratio > c)) > 0 is
equivalent to PrMι (goalR•�(weightc > 0)) > 0. The basic idea of the proof is to
use a (specific) path satisfying (goalR•�(weightc > 0)) to show that both conditions
of the characterization for PrMι (goalR•�(weightb−ε > 0)) > 0 (cf. Lemma 7.2) are
satisfied. Applying Lemma 7.8 again yields the claim.

By Corollary 4.11 and Corollary 4.16, PrMι (goalR•�(weightc > 0)) > 0 implies
that there exists a path π satisfying (goalR•�(weightc > 0)) and reaching a BSCC
C with EC(ratio) ≥ c. As EC(ratio) ∈ Qbscc ⊆ Qrelease this yields EC(ratio) ≥ b. Let
k ∈ N be the smallest position such that π[k] ∈ goal. We can safely assume that
π[k . . .] contains at least one cycle ϑ with weightc(ϑ) ≥ 0 and π[. . . k] contains only
weightc-positive simple cycles. We now consider two cases.
π[. . . k] contains a cycle: Hence, there exists π̂1, π̂2 ∈ FinPathsM and a weightc-

positive simple cycle ϑ such that π[. . . k] = π̂1�ϑ�π̂2. As weightc(ϑ) > 0 is equivalent
to ratio(ϑ) > c and further ratio(ϑ) ∈ Qcycle ⊆ Qrelease , ϑ is a weightb−ε-positive
cycle. Notice that this implies wmax[ι,weightb−ε](π[k]) = ∞. Further EC(ratio) ≥ b
implies EC(weightb−ε) > 0 and thus by Lemma 4.35 there exists an n ∈ N such
that PrMπ[k](�weightb−ε > −n) > 0. Hence, using Lemma 7.2 we can conclude

PrMι (goalR•�(weightb−ε > 0)) > 0.
π[. . . k] is a simple path: Similar as in the proof of Lemma 5.18 we will use π[k . . .]

to construct a witness for

PrMπ[k](goalR•�(weightb−ε > −wmax[ι,weightb−ε](π[k]))) > 0. (7.1)

Let m ∈ N be the smallest position m > k such that π[m] ∈ C and π[. . .m] contains
a weightc-positive cycle. Thus, there exist π̂1, π̂2 ∈ FinPathsM and a simple weightc-
positive cycle ϑ such that π[k . . .m] = π̂1�ϑ�π̂2. Notice that ϑ is a weightb−ε-positive
cycle as weightc(ϑ) > 0 is equivalent to ratio(ϑ) > c and ratio(ϑ) ∈ Qcycle ⊆ Qrelease .
Further we can safely assume that every nonempty prefix ρ 6= π̂1 � ϑ of π̂1 � ϑ is a
simple path.

Thus, for every nonempty prefix ρ 6= π̂1 � ϑ of π̂1 � ϑ we have |π[. . . k] � ρ| <
2 · |S| and hence ratio(π[. . . k] � ρ) ∈ Qrelease . Further, ratio(π[. . . k] � ρ) > c as
π |= (goalR•�weightc > 0). Using the same argument as for ϑ, we can conclude
ratio(π[. . . k] � ρ) > b− ε and weightb−ε(π[. . . k] � ρ) > 0. Hence,

weightb−ε(ρ) = weightb−ε(π[. . . k] � ρ)− weight(π[. . . k]) > −wmax(π[k]).

As ϑ is a weightb−ε-positive cycle we have cdist[π[k],weightb−ε](π[m],−wmax) =
∞. Thus, Lemma 4.35 yields Equation (7.1) and Lemma 7.2 completes the argu-
ment.
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Lemma 7.16. Let PrMι (♦goal) = 1.

Qu=1[(goalR•�ratio)] ∈ Qrelease

Proof. We show the following claim:

Let a, b ∈ Qrelease such that a < b and there is no element m ∈ Qrelease satisfying
a < m < b. Let c ∈ Q such that a < c < b. If PrMι (goalR•�(ratio > c)) < 1, then
for every ε ∈ Q>0 Pr

M
ι (goalR•�(ratio > a+ ε)) < 1.

Let π ∈ InfPathsMι be a path satisfying ¬(goalR•�(ratio > c)) and ♦goal. Further
let k ∈ N be the smallest position such that π[k] ∈ goal and m > k the smallest
position such that ratio(π[. . .m]) ≤ c. We can safely assume that both π[. . . k] and
π[k . . .m] contain only simple cycles ϑ with ratio(ϑ) ≤ c. We now consider two cases.

π[. . . k] or π[k . . .m] contains a cycle: Hence, there exist π̂1, π̂2 ∈ FinPathsM and
a simple cycle ϑ such that ratio(ϑ) ≤ c and π[. . .m] = π̂1 � ϑ � π̂2. Further as
ratio(ϑ) ∈ Qcycle ⊆ Qrelease , we have ratio(ϑ) ≤ a. Thus for every ε ∈ Q>0 there
exists an n ∈ N such that ratio(π̂1 � (ϑ)n � π̂2) < a+ε. This completes the argument,
as

PrMι (goalR•�(ratio > a+ ε)) ≤ 1− Pr(π̂1 � (ϑ)n � π̂2) < 1.

both π[. . . k] and π[k . . .m] are simple paths: Thus |π[. . .m]| < 2 · |S| and therefore
ratio(π[. . .m]) ∈ Qrelease . This yields the claim as it implies ratio(π[. . .m]) ≤ a and
hence

PrMι (goalR•�(ratio > a+ ε)) ≤ 1− Pr(π[. . .m]) < 1.

Lemma 7.17.

Qu>0[(goalR• ♦ratio)] ∈ Qrelease

Proof. We show the following claim:

Let a, b ∈ Qrelease such that a < b and there is no element m ∈ Qrelease satisfying
a < m < b. Let c ∈ Q such that a < c < b. If PrMι (goalR• ♦(ratio > c)) > 0, then
for every ε ∈ Q>0 Pr

M
ι (goalR• ♦(ratio > b− ε)) > 0.

Let π ∈ InfPathsMι be a path satisfying (goalR• ♦(ratio > c)). Further let k ∈ N
be the smallest position such that π[k] ∈ goal and m ∈ N the smallest position
m > k such that ratio(π[. . .m]) > c. We can safely assume that both, π[. . . k] and
π[k . . .m] contain only simple cycles with ratio(ϑ) > c. We now consider two cases.

π[. . . k] or π[k . . .m] contain a cycle Hence, there exist π̂1, π̂2 ∈ FinPathsM and a
simple cycle ϑ with ratio(ϑ) > c and π[. . .m] = π̂1 � ϑ � π̂2. Further as ratio(ϑ) ∈
Qcycle ⊆ Qrelease , we have ratio(ϑ) ≥ b. Thus for every ε ∈ Q>0 there exists an n ∈ N
such that ratio(π̂1 � (ϑ)n � π̂2) > b− ε. This completes the argument, as

PrMι (goalR• ♦(ratio > b− ε)) ≥ Pr(π̂1 � (ϑ)n � π̂2) > 0.
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both π[. . . k] and π[k . . .m] are simple paths: Thus |π[. . .m]| < 2 · |S| and hence
ratio(π[. . .m]) ∈ Qrelease . This completes the argument as it implies ratio(π[. . .m]) ≥
b and therefore

PrMι (goalR• ♦(ratio > b− ε)) ≥ P (π[. . .m]) > 0.

Lemma 7.18. Let PrMι (♦goal) = 1.

Qu=1[(goalR• ♦ratio)] ∈ Qrelease

Proof. We show the following claim using a similar argument as presented in the
proof of Lemma 5.20.

Let a, b ∈ Qrelease such that a < b and there is no element m ∈ Qrelease satisfying
a < m < b. Let c ∈ Q such that a < c < b. If PrMι (goalR• ♦(ratio > c)) < 1, then
for every ε ∈ Q>0 Pr

M
ι (goalR• ♦(ratio > a+ ε)) < 1.

By Lemma 7.8 and Lemma 7.3 there exists a state s ∈ goal with

PrMs (♦ (weightc > −wmin[ι,weightc](s))) < 1.

Let us consider two cases.
Case 1: wmin[ι,weightc](s) = −∞. Thus there exist π̂1, π̂2 ∈ FinPathsM and a

weightc-negative simple cycle ϑ such that π̂ = π̂1 � ϑ � π̂2 ∈ FinPathsMι...s. Further
weightc(ϑ) < 0 is equivalent to ratio(ϑ) < c and as ratio(ϑ) ∈ Qcycle , we have
ratio(ϑ) ≤ a and hence weighta+ε(ϑ) < 0. Thus wmin[ι,weighta+ε](s) = −∞ and
Lemma 7.3 yields

PrMι (goalR• ♦(weighta+ε > 0)) < 1.

By Lemma 7.8 we have PrMι (goalR• ♦(ratio > a+ ε)) < 1.
Case 2: wmin[ι,weightc](s) ∈ Z. As wmin[ι,weightc](s) ∈ Z there exists a finite

path π̂ ∈ FinPathsMι...s such that weightc(π̂) = wmin[ι,weightc](s) and we can safely
assume that all simple cycle of π̂ are weightc-negative. Let π ∈ InfPathsMs be an
infinite path such that π̂ � π satisfies ¬(goalR• ♦(ratio > c)). In the following we
will use π and Lemma 4.35 to show

PrMs (�(−weighta+ε > wmin[ι,weighta+ε](s)− 1)) > 0. (7.2)

Notice that the following statements are equivalent

PrMs (�(−weighta+ε > wmin[ι,weighta+ε](s)− 1)) > 0

PrMs (�(weighta+ε ≤ −wmin[ι,weighta+ε](s))) > 0

PrMs (♦(weighta+ε > −wmin[ι,weighta+ε](s))) < 1.

Hence, if we can show Equation (7.2) then Lemma 7.3 completes the argument.
Remember, π is an infinite path such that π̂ � π satisfies ¬(goalR• ♦(ratio > c)).

We can safely assume that π reaches a BSCC C with EC(ratio) ≤ c which (using
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the same argument as above for ϑ) implies EC(ratio) ≤ a. Let m > 0 be the
smallest position such that π[m] ∈ C and π[. . .m] contains a cycle with ratio(ϑ) ≤ c.
Thus, there exist π̂1, π̂2 ∈ FinPathsM and a weightc-negative simple cycle ϑ such
that π[. . .m] = π̂1 � ϑ � π̂2 and we can safely assume that every nonempty prefix
ρ 6= π̂1 � ϑ of π̂1 � ϑ is a simple path. Further weightc(π̂ � ρ) < 0 and hence as
ratio(π̂ � ρ) ∈ Qrelease we have weighta+ε(π̂ � ρ) < 0. Thus,

weighta+ε(ρ) = weighta+ε(π̂ � ρ)− weighta+ε(π̂) < −wmin[ι,weighta+ε](s).

Notice that this yields cdist[s,−weighta+ε](π[m], 0) = −∞. Thus, Lemma 4.35 yields

PrMs (�(−weighta+ε > wmin[ι,weighta+ε](s)− 1))) >

PrMs (�(−weighta+ε > wmin[ι,weighta+ε](s))) > 0

and (as discussed above) completes the proof.
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8 Conclusions

In this thesis, we considered several decision and computational problems related
to weight and ratio objectives in annotated Markov chains. By stating graph-based
characterizations relying only on BSCC anlyses and variants of standard graph al-
gorithms, we showed that one can decide in polynomial-time, whether a ratio or
weight objective under an ω-regular side constraint has to be fulfilled almost-surely
or with positive probability. Further, using this decision procedure, we established
efficient algorithms to exactly compute related quantiles. Whereas weight quantiles
can be computed using a binary search over a finite and discrete interval, the ratio
quantiles are more involved. For ratio quantiles, we presented an polynomial-time
computation procedure, which first approximates the quantile value and then uses
the continued-fraction method to retrieve the exact value out of a finite set of can-
didates. A comparison of the presented polynomial-time algorithm and the naive
exponential-time computation of the candidate set is left for future work.

The presented techniques can be, to some extend, amended for events where in-
stead of a single weight function, multiple weight functions are constrained [10].
Exploiting the EXPSPACE-completeness of the coverability problem for vector ad-
dition systems with states [11, 23] one can show that the following problem is com-
plete for the complexity class EXPSPACE [22]: Given a Markov chain with weight
functions weight1, . . . ,weightd and z1, . . . , zd ∈ Z, do we have PrMι (�(weight1 >
z1) ∧ . . . ∧ �(weightd > zd)) > 0 ? However, there are open problems still to be
investigated, e.g., multi-weight problems containing arbitrary modalities or multi-
ratio and multi-weight quantiles for which the reduction to vector addition systems
with states presented in [22] is not applicable.

Quantitative ratio and weight problems are another area which is left for further
work. It is known that already the quantitative �-weight decision problem, i.e.,
deciding PrMι (�(weight > z)) > p for a given p ∈ [0, 1], is PosSLP-hard for unit-
weight Markov chains [15, 9, 4]. Thus, efficient exact computation procedures for
the corresponding quantitative quantiles cannot be expected. Exploiting the results
of this thesis, one (expensive) way to compute quantitative weight quantiles is to
perform a simple binary search applying well-known polynomial-space algorithms
for analyzing probabilistic one-counter automata on the interval induced by the
corresponding qualitative quantiles [8]. As ratio decision problems are reducible to
weight decision problems, this approach can also be used to approximate quantitative
ratio quantiles.
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