
Are Good-for-Games Automata Good for
Probabilistic Model Checking??

Extended Version – 09.04.2014

Joachim Klein, David Müller, Christel Baier, and Sascha Klüppelholz
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Abstract. The potential double exponential blow-up for the generation
of deterministic ω-automata for linear temporal logic formulas motivates
research on weaker forms of determinism. One of these notions is the good-
for-games property that has been introduced by Henzinger and Piterman
together with an algorithm for generating good-for-games automata
from nondeterministic Büchi automata. The contribution of our paper is
twofold. First, we report on an implementation of this algorithms and
exhaustive experiments. Second, we show how good-for-games automata
can be used for the quantitative analysis of systems modeled by Markov
decision processes against ω-regular specifications and evaluate this new
method by a series of experiments.

1 Introduction

The automata-theoretic approach to formal verification relies on the effective
translation of specifications, e.g., formulas of some temporal logic such as linear
temporal logic (LTL) into automata over infinite words (ω-automata) [34,6,12].
The verification problem for finite-state system models is then solvable by ana-
lyzing the product of the system model and the automaton for the formula. In
the classical setting where the system model can be seen as a nondeterministic
automaton, nondeterministic ω-automata suffice. For some applications, such as
game-based synthesis and probabilistic model-checking problems, the nondeter-
minism of the ω-automaton poses a problem. Used as a monitor to determine the
winning strategies of turn-based two-player games, the lack of look-ahead beyond
the players’ choices in general precludes the use of nondeterministic automata.
Similarly, in probabilistic model checking, the lack of look-ahead beyond the
probabilistic choices renders nondeterministic automata unsuitable in general. In
these settings, the use of deterministic ω-automata resolves these problems at the
cost of a further worst-case exponential determinization construction [26,31,25].
Thus, there is considerable interest in methods that tackle the worst-case double
exponential time-complexity of algorithms caused by the construction of deter-
ministic ω-automata for LTL formulas. This includes for example variants of the
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determinization construction for nondeterministic Büchi automata (NBA) [28,32],
heuristics [14,15] and the direct translation from fragments of LTL to determinis-
tic automata [24,17,1]. Instead of reducing the number of states, [27] provides a
translation from non-confluent NBA that aims to generate a compact symbolic
representation of the generated deterministic automata based on binary decision
diagrams (BDDs).

There are also several attempts to avoid determinization in certain scenar-
ios [21,18] and provide better theoretical complexity and performance in practice.
Henzinger and Piterman [13] introduce a special property for nondeterministic
automata, being good-for-games (GFG), that is fulfilled by all deterministic
automata but still permits nondeterministic choices. [13] proposes an algorithm,
called the HP-algorithm here, for the construction of a nondeterministic GFG
automaton with parity acceptance from an NBA that is amenable to a symbolic
representation. The number of states in the constructed GFG automaton is still
exponential in the number of states of the given NBA, but a smaller worst-case
bound on the number of states can be provided than for Safra’s determinization al-
gorithm [31]. Among others, [4] introduced the notion determinizable-by-pruning
for automata that have an embedded deterministic automaton for the same
language. [4] states the existence of GFG automata that are not determinizable-
by-pruning, but we are not aware of any result stating the existence of languages
where GFG automata are more succinct than deterministic ones. To the best
of our knowledge, the HP-algorithm is the sole published algorithm for the con-
struction of GFG automata and it has not been implemented or experimentally
evaluated yet.

In the context of probabilistic model checking for finite-state Markov chains,
[8,3] propose the use of unambiguous automata that can be generated from
LTL formulas with a single exponential blow-up in the worst case. Alternative
approaches that also lead to single exponential-time model-checking algorithms
for Markov chains and LTL specifications have been presented in [5] using weak
alternating automata and in [7] using an iterative approach to integrate the
effect of the temporal modalities of a given LTL formula ϕ in the Markov chain.
Given that the analogous problem is 2EXPTIME-complete for models where
nondeterministic and probabilistic choices alternate [7], there is no hope to
generalize these results for Markov decision processes (MDPs). Only for the
qualitative analysis of MDPs where the task is to show that an ω-regular path
property holds with probability 1, no matter how the nondeterminism is resolved,
Büchi automata that are deterministic-in-limit are shown to be sufficient [34,7].

Contribution. The purpose of our paper is to study whether GFG automata are
adequate in the context of probabilistic model checking, both at the theoretical
and the practical level. At the theoretical level, we answer in the affirmative and
provide algorithms for the computation of maximal or minimal probabilities for
path properties specified by GFG automata in finite-state Markov decision pro-
cesses (MDPs). The time complexity of our algorithm is polynomial in the size of
the given MDP and GFG automaton. To evaluate the GFG-based approach empir-
ically, we have implemented the HP-algorithm (and various variants) symbolically
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using binary decision diagrams (BDDs). In a series of experiments, we study the
performance of the HP-algorithm – from LTL formula via NBA to GFG automa-
ton – compared to the determinization implementation of ltl2dstar [14,15]
based on Safra’s construction. We have furthermore implemented the GFG-based
approach for the analysis of MDPs in the popular probabilistic model checker
Prism [22] and evaluated its performance in practice.

Outline. Section 2 briefly introduces our notations for ω-automata and MDPs.
The applicability of GFG automata for the quantitative analysis of MDPs is shown
in Section 3. In Section 4, we study the HP-algorithm in detail and present a few
heuristics that have been integrated in our implementation. Section 5 reports on
our experiments, Section 6 contains some concluding remarks. Omitted proofs
and other additional material can be found in the appendix of this paper [16].

2 Preliminaries

Throughout the paper, the reader is supposed to be familiar with the basic
principles of ω-automata, games and temporal logics. For details we refer to
[6,12]. We briefly summarize our notations for ω-automata, present the definition
of good-for-games automata [13] and provide a condensed survey of the relevant
principles of Markov decision processes (MDPs). Further details on MDPs and
their use in the context of model checking can be found e.g. in [30,2].
Automata over infinite words. An ω-automaton A = (Q,Σ, δ, q0, Acc) is a
tuple, where Q is a finite set of states, Σ is a finite alphabet, δ : Q×Σ → 2Q is
the (nondeterministic) transition function and q0 ∈ Q is the initial state. The last
component Acc is the acceptance condition (see below). The size of |A| denotes the
number of states in A. A is said to be complete, if δ(q, σ) 6= ∅ for all states q ∈ Q
and all symbols σ ∈ Σ. A is called deterministic, if |δ(q, σ)| ≤ 1 for all q ∈ Q
and σ ∈ Σ. A run in A for an infinite word w = σ0 σ1 σ2 . . . ∈ Σω is a sequence
ρ = q0 q1 q2 . . . ∈ Qω starting in the initial state q0 such that qi+1 ∈ δ(qi, a) for all
i ∈ N. We write inf(ρ) to denote the set of all states occurring infinitely often in
ρ. A run ρ is called accepting, if it meets the acceptance condition Acc, denoted
ρ |= Acc. We consider here the following three types of acceptance conditions
and describe their constraints for infinite runs:

– Büchi: Acc = F is a set of states, i.e., F ⊆ Q, with the meaning �♦F
– parity: Acc is a function col : Q→ N assigning to each state q a parity color

and requiring that the least parity color appearing infinitely often is even
– Rabin: Acc is a set consisting of pairs (E,F ) with E,F ⊆ Q, imposing the

constraint
∨

(E,F )∈Acc
(♦�¬E ∧ �♦F )

Büchi acceptance can be seen as a special case of parity acceptance which again
can be seen as a special case of Rabin acceptance. We use the standard notations
NBA (NRA, NPA) for nondeterministic Büchi (Rabin, parity) automata and
DBA, DRA, DPA for their deterministic versions. The language of A, denoted
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L(A), consists of all infinite words w ∈ Σω that have at least one accepting run
in A, i.e., w ∈ L(A) iff there exists a run ρ for w with ρ |= Acc.

It is well-known that the classes of languages recognizable by NBA, NRA,
NPA, DRA or DPA are the same (the so-called ω-regular languages), while DBA
are less powerful. For each LTL formula ϕ with atomic propositions in some finite
set AP , the semantics of ϕ can be described as an ω-regular language L(ϕ) over
the alphabet Σ = 2AP and there is an NBA A for ϕ (i.e., L(ϕ) = L(A)) whose
size is at most exponential in the formula length |ϕ|.
Good-for-games (GFG) automata. The formal definition of GFG automata
[13] relies on a game-based view of ω-automata. Given an ω-automaton A as
before, we consider A as the game arena of a turn-based two-player game,
called monitor game: if the current state is q then player 1 chooses a symbol
σ ∈ Σ whereas the other player (player 0) has to answer by a successor state
q′ ∈ δ(q, σ), i.e., resolve the nondeterminism. In the next round q′ becomes
the current state. A play is an alternating sequence ς = q0 σ0 q1 σ1 q2 σ2 . . . of
states and (action) symbols in the alphabet Σ starting with the initial state
q0. Intuitively, the σi’s are the symbols chosen by player 1 and the qi’s are the
states chosen by player 0 in round i. Player 0 wins the play ς if ς is infinite
and if ς|Σ = σ0 σ1 σ2 . . . ∈ L(A) then ς|Q = q0 q1 q2 . . . is an accepting run. A
strategy for player 0 is a function f : (Q×Σ)+ → Q with f(. . . q σ) ∈ δ(q, σ). A
play ς = q0 σ0 q1 σ1 q2 . . . is said to be f-conform or a f-play if qi = f(ς ↓ i) for all
i ≥ 1 where ς ↓ i = q0 σ0 . . . σi−2 . . . qi−1σi is the prefix of ρ that ends with the
chosen symbol in round i. An automaton A is called good-for-games if there is
a strategy f such that player 0 wins each f-play. Such strategies will be called
GFG-strategies for A. Obviously, each deterministic automaton enjoys the GFG
property. GFG automata with Rabin or parity condition cover the full class of
ω-regular languages, while GFG automata with Büchi acceptance do not [4]. For
illustrating examples of GFG automata see Appendix A.
Markov decision processes (MDP). MDPs are an operational model for
systems that exhibit nondeterministic and probabilistic choices. For the purposes
of this paper, we formalize an MDP by a tuple M = (S,Act, P, s0,AP , `) where
S is a finite set of states, s0 ∈ S is the initial state, Act a finite set of actions
and P : S ×Act × S → [0, 1] is the transition probability function satisfying:∑

s′∈S
P (s, α, s′) ∈ {0, 1} for all s ∈ S, α ∈ Act .

We write Act(s) for the set of actions α that are enabled in s, i.e., P (s, α, s′) > 0
for some s′ ∈ S, in which case s′ 7→ P (s, α, s′) is a distribution formalizing the
probabilistic effect of taking action α in state s. We refer to the triples (s, α, s′)
with P (s, α, s′) > 0 as a step. The choice between the enabled actions is viewed
to be nondeterministic. For technical reasons, we require Act(s) 6= ∅ for all states
s. The last two components AP and ` serve to formalize properties of paths in
M. Formally, AP is a finite set of atomic propositions and ` : S → 2AP assigns
to each state s the set `(s) of atomic propositions that hold in s. Paths inM are
finite or infinite sequences π = s0 α0 s1 α2 s2 α3 . . . starting in the initial state
s0 that are built by consecutive steps, i.e., P (si, αi, si+1) > 0 for all i. The trace
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of π is the word over the alphabet Σ = 2AP that arises by taking the projections
to the state labels, i.e., trace(π) = `(s0) `(s1) `(s2) . . .. For an LTL formula ϕ
over AP we write π |= ϕ if trace(π) ∈ L(ϕ).

As the monitor game in nondeterministic automata, MDPs can be seen as
stochastic games, also called a 1 1

2 -player games. The first (full) player resolves
the nondeterministic choice by selecting an enabled action α of the current state
s. The second (half) player behaves probabilistically and selects a successor state
s′ with P (s, α, s′) > 0. Strategies for the full player are called schedulers. Since
the behavior of M is purely probabilistic if some scheduler s is fixed, one can
reason about the probability of path events. If L is an ω-regular language then
PrsM(L) denotes the probability under s for the set of infinite paths π with
trace(π) ∈ L. In notations like PrsM(ϕ) or PrsM(A) we identify LTL formulas
ϕ and ω-automata A with their languages. For the mathematical details of the
underlying sigma-algebra and probability measure, we refer to [30,2].

For a worst-case analysis of a system modeled by an MDP M, one ranges
over all initial states and all schedulers (i.e., all possible resolutions of the
nondeterminism) and considers the maximal or minimal probabilities for some
ω-regular language L. Depending on whether L represents a desired or unde-
sired path property, the quantitative worst-case analysis amounts to computing
Prmin
M (ϕ) = mins PrsM(L) or Prmax

M (L) = maxs PrsM(L).

3 Automata-based Analysis of Markov Decision Processes

We address the task to compute the maximal or minimal probability in an MDP
M for the path property imposed by a nondeterministic ω-automaton A. The
standard approach, see e.g. [2], assumes A to be deterministic and relies on a
product construction where the transitions of M are simply annotated with the
unique corresponding transition in A. Thus, M⊗A can be seen as a refinement
of M since A does not not affect M’s behaviors, but attaches information on
A’s current state for the prefixes of the traces induced by the paths of M.

We now modify the standard definition of the product for nondeterministic
ω-automaton. The crucial difference is that the actions are now pairs 〈α, p〉
consisting of an action in M and a state in A, representing the nondetermin-
istic alternatives in both the MDP M and the automaton A. Formally, let
M = (S,Act, P, s0,AP , `) be an MDP and A = (Q,Σ, δ, q0, Acc) a complete
nondeterministic ω-automaton with Σ = 2AP . The product MDP is

M⊗A = (S ×Q,Act×Q,P ′, 〈s0, q0〉,AP , `′)

where the transition probability function P ′ is given by P ′(〈s, q〉, 〈α, p〉, 〈s′, q′〉)
= P (s, α, s′) if p = q′ ∈ δ(q, `(s)). In all other cases P ′(〈s, q〉, 〈α, p〉, 〈s′, q′〉) = 0.
The assumption that A is complete yields that for each α ∈ Act(s) there is
some action 〈α, q′〉 ∈ Act(〈s, q〉) for all states s in M and q in A. The labeling
function is given by `′(〈s, q〉) = {q}. Thus, the traces in M⊗A are words over
the alphabet Q. Likewise, A’s acceptance condition Acc can be seen as a language
over Q, which permits to treat Acc as a property that the paths inM⊗A might
or might not have. We prove in Appendix C:
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Theorem 1. For each MDP M and nondeterministic ω-automaton A as above:

(a) Prmax
M⊗A

(
Acc

)
≤ Prmax

M
(
A
)

(b) If A is good-for-games then: Prmax
M⊗A

(
Acc

)
= Prmax

M
(
A
)

Theorem 1 (b) shows that with a slightly modified definition of the product,
the techniques that are known for the quantitative analysis of MDPs against
deterministic ω-automata specifications are also applicable for GFG automata.
The computation of maximal probabilities for properties given by an ω-regular
acceptance condition Acc (e.g., Büchi, Rabin or parity) can be carried out by
a graph analysis that replaces Acc with a reachability condition and linear
programming techniques for computing maximal reachability probabilities. See
e.g. [2]. The time complexity is polynomial in the size of the M and A. Thus,
if the specification is given in terms of an LTL formula ϕ then the costs of our
GFG-based approach are dominated by the generation of a GFG automaton for
ϕ. Minimal probabilities can be handled by using Prmin

M (ϕ) = 1− Prmax
M (¬ϕ).

[20,19] proves that a double exponential blow-up for translating LTL to deter-
ministic ω-automata (of any type) is unavoidable. We adapted the proof in [19] for
GFG automata (see App. D). Thus, the double exponential time complexity of the
GFG-based approach is in accordance with the known 2EXPTIME-completeness
for the analysis of MDPs against LTL specifications [7].

Theorem 2. There exists a family of LTL formulas (ϕ)n∈N such that

|ϕn| = O(n), while every GFG automaton An for ϕn has at least 22
Ω(n)

states.

4 From LTL to GFG Automata

We have previously shown [14,15] that it is possible in practice, using the tool
ltl2dstar, to obtain deterministic ω-automata for a wide range of LTL formula ϕ
via the translation to an NBA and Safra’s determinization construction [31] refined
by various heuristics. Here, we are interested in replacing Safra’s determinization
algorithm with the HP-algorithm [13] to generate a GFG automaton instead of a
deterministic automaton. We first provide an outline of the HP-algorithm and
then explain a few new heuristics.
The HP-algorithm transforms an NBA B = (Q,Σ, δ, q0, F ) with |Q| = n states
into a GFG automaton A with parity acceptance and at most 2n · n2n states
and 2n parity colors (or an NRA with n Rabin pairs), which improves on the
upper bound given for Safra’s determinization algorithm. We recall here the main
concepts, for a formal description we refer to [13]. Like Safra’s construction, the
HP-algorithm relies on the simultaneous tracking of multiple subset constructions
to determine acceptance or rejection in the NBA. However, while the states
of Safra’s DRA organize the subsets in trees, the HP-algorithm uses a simpler,
linear arrangement of the subsets. The state space P = (2Q × 2Q)n of the GFG
automaton A consists of n pairs of subsets of NBA states Q, i.e., states of the
form p = 〈(A1, B1), . . . , (An, Bn)〉 where Bi ⊆ Ai ⊆ Q, plus some additional
constraints on the state space. Each set Bi serves to mark those states in Ai
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that were reached via some accepting state in F of the NBA. The successor
state in A for symbol σ is obtained by applying the transition function δ to each
of the subsets and adding states in F to the Bi subsets. In crucial difference
to Safra’s construction, the HP-algorithm however then introduces significant
nondeterminism by allowing A to discard an arbitrary number of states in any of
the subsets. For p = 〈. . . (Ai, Bi) . . .〉, the set A′i in a σ-successor p′ of A thus does
not correspond to A′i = δ(Ai, σ) but there is a nondeterministic choice between
any A′i satisfying A′i ⊆ δ(Ai, σ), including the empty set. Whenever some Ai is
empty, A can “reset” Ai by setting Ai to some subset of the first set A1. Such
resets are reflected in the acceptance condition of A as “bad” events for the pair i,
as they signify that the previously tracked runs terminated. The “good” events in
the acceptance condition occur whenever all states in an Ai are marked as having
recently visited F , i.e., whenever Ai = Bi 6= ∅. In the next step, B′i is then cleared
and the tracking of visits to F starts anew. Infinitely many “good” events without
“bad” events then correspond to the existence of an accepting run in the NBA B.
The HP-algorithm relies on the GFG-strategy to resolve the nondeterminism in
the constructed automaton A, i.e., which states in the subsets are kept, which are
dropped and when to reset. There is a large amount of nondeterminism and a lot
of combinatorial possibilities in the reachable state space of A. This is confirmed
by our experiments, e.g., applying the construction to the two-state NBA for ♦�a
already yields a GFG automaton with 16 states, where ltl2dstar generates a
two-state DRA. As stated in [13], the HP-algorithm is thus not well-suited for
an explicit representation for A, but is intended for a symbolic implementation.
In this context, [13] briefly discusses the possibility of variants of the transition
function in the GFG automaton that either apply more or less strict constraints
on the relationship enforced between the (Ai, Bi) pairs in each state. In particular,
[13] posits that introducing even further nondeterminism (and increasing the
number of possible states) by loosening a disjunctness requirement on the Ai
may lead to a smaller symbolic representation. In our experiments, we will refer
to this as the loose variant.

Iterative approach. In the context of games, [13] proposes an iterative approach
to the HP-algorithm by successively constructing the automata Am obtained by
using only the first m of the n pairs, i.e., by setting Ai = Bi = ∅ for all m < i ≤ n.
In the acceptance condition this reduces the number of required parity colors to
2m and Rabin pairs to m as well. For these automata, L(Am) = L(A) = L(B),
but there is no guarantee that Am for m < n is good-for-games by construction.
We start with m = 1 and increase m until early success or reaching m = n. Our
experimental results indeed show that early termination appears rather often.

We now explain how the iterative approach of [13] can be integrated in the
GFG-based quantitative analysis of MDPs against LTL specifications. Suppose,
e.g., that the task is to show that Prmax

M
(
ϕ
)
≥ θ for some LTL formula ϕ and

threshold θ ∈ ]0, 1]. Let B be an n-state NBA with L(B) = L(ϕ) and Am the
automaton obtained using only the first m ≤ n pairs in the HP-algorithm applied
to B. Let Accm denote the acceptance condition of Am. By Theorem 1 (a):

If Prmax
M⊗Am

(
Accm

)
≥ θ for some m ≤ n then Prmax

M
(
ϕ
)
≥ θ.
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Moreover, Prmax
M⊗Am

(
Accm

)
≤ Prmax

M⊗Am+1

(
Accm+1

)
for m < n. These observa-

tions suggest an approach that resembles the classical abstraction-refinement
schema: starting with m = 1, we carry out the quantitative analysis of M⊗Am
against Accm and successively increase m until Prmax

M⊗Am
(
Accm

)
≥ θ or Am is

GFG (which is the case at the latest when m = n). As an additional heuristic to
increase the performance of the linear programming techniques that are applied
for the quantitative analysis of M⊗Am against Accm, one can reuse the results
computed for M⊗Am−1 and Accm−1 as initial values.

It remains to explain how to check whether Am has the GFG property. For
details we refer to Appendix E. In this aspect, our prototype implementation
departs from [13] and checks whether Am is GFG by solving a Rabin game (itself
an NP-complete problem) constructed from Am and a DRA for ¬ϕ constructed
with ltl2dstar while [13] proposes an algorithm based on checking fair simula-
tion. To study the impact of the iterative approach in terms of the number of
required iterations and the size of the resulting GFG automata, the choice of the
GFG test is irrelevant.

Union operator for disjunctive formulas. For generating a deterministic
automaton from an LTL formula, we have shown in [14] that optionally handling
disjunctive LTL formulas of the form ϕ = ϕ1 ∨ ϕ2 by constructing DRA A1 and
A2 for the subformulas ϕ1 and ϕ2 and then obtaining the DRA A1 ∪ A2 for the
language L(A1) ∪ L(A2) via a product construction can be very beneficial in
practice. The definition of A1 ∪ A2 used in [14] can easily be extended to NRA.
The GFG property is preserved by the union construction. See Appendix F.

5 Implementation and Experiments

We have implemented the HP-algorithm in a tool we refer to as ltl2gfg. Based
on ltl2gfg, we have additionally implemented the GFG-based quantitative
analysis of MDPs in Prism. After a brief overview of ltl2gfg, we report on our
experiments and comparison with the determinization approach of ltl2dstar.

LTL2GFG. Given an LTL formula ϕ, our implementation ltl2gfg constructs
a symbolic, BDD-based representation of a GFG-NPA for ϕ. It first converts
ϕ into an (explicitly represented) NBA B. In our experiments, we use ltl2ba
v1.1 [11] for this task. To facilitate an efficient symbolic representation of the
various subsets used in the HP-algorithm, B is then converted to a symbolic
representation, using a unary encoding of the |Q| = n states of B, i.e., using one
boolean variable qi per state. The state space of the GFG-automaton A, i.e., the
n pairs (Ai, Bi) is likewise encoded by n2 boolean variables ai,j and bi,j , i.e., ai,j
is true iff NBA state qj ∈ Ai and bi,j is true iff qj ∈ Bi for 1 ≤ i, j ≤ n. To allow
the encoding of the transition relations of A and B, each state variable has a
primed copy, i.e., q′i, a

′
i,j and b′i,j and each of the k atomic proposition in ϕ is

represented by a boolean variable li. For a BDD-based symbolic representation,
the order of the variables is crucial. The state variables and their copies are
always kept adjacent. The standard variable ordering used by ltl2gfg is then
an interleaving of the ai,j and bi,j variables with the qj variables, i.e.,
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Table 1. Statistics for the automata Aϕ constructed for the 94 benchmark formulas.
Number of Aϕ constructed within a given timeframe and a given range of BDD sizes.

Aϕ with constr. time Aϕ with BDD size
aborted <1s <10s <1m <30m <10 <102 <103 <104 <105 ≥105

ltl2dstar std. 0 90 91 92 94 4 65 87 90 91 3
no opt. 0 90 90 92 94 3 48 78 89 90 4

ltl2gfg std. 39 40 47 48 55 3 6 19 26 36 19
std., dynamic 45 34 36 48 49 5 8 19 36 39 10

loose, dynamic 34 43 49 56 60 5 14 31 47 56 4
lo., union, dyn. 29 52 59 61 65 4 13 35 54 60 5

lo., iterative 20 74 74 74 74 3 19 39 60 74 0
lo., it., un., dyn. 18 70 72 74 76 4 32 63 70 76 0

l1 < . . . < lk < q1 < . . . < qj < a1,j < b1,j < a2,j < b2,j < . . . < qj+1 < . . . .
ltl2gfg uses the JINC C++ BDD library for the symbolic representation.
Experimental results for the HP-algorithm. We report here on a number of
experiments with ltl2gfg using the benchmark formulas used in the evaluation
of ltl2dstar in [14,15], i.e., 39 LTL formulas from the literature [10,33] and
55 pattern formulas [9] that represent common specification patterns. All our
experiments were carried out on a computer with 2 Intel E5-2680 8-core CPUs
at 2.70 GHz with 384GB of RAM running Linux and with a memory limit of 10
GB and a time-out of 30 minutes for each formula.

For the automata Aϕ, we report on the number of BDD nodes in the encoding
of the transition function, as this the most crucial aspect. To allow a fair com-
parison with the explicit determinization in ltl2dstar, we consider symbolic
encodings of the DRA Aϕ obtained from ltl2dstar 0.5.1. This encoding uses
dlog2 ne boolean variables to straightforwardly encode the n state indices in Aϕ,
which is the same encoding employed in Prism for its DRA-based approach to
LTL model checking.

Table 1 presents statistics for the construction of DRA with ltl2dstar and
GFG-NPA with ltl2gfg for the benchmark formulas. The ltl2dstar results are
given once with standard settings and for a variant where all optimizations are
disabled, i.e., with purely Safra’s construction. For ltl2gfg, we start with the
pure HP-algorithm and consider variants with the “loose” transition definition,
the union construction, and with dynamic reordering of the variable order. We
also give statistics for the iterative approach, where ltl2gfg constructs the
partial automata Am until it can be shown (via solving a Rabin game [29]) that
the automaton is GFG.

ltl2dstar constructed most of the automata in a few seconds, the most
difficult was constructed in 95s and had 1.2 million BDD nodes. Apart from the
most difficult automata, the BDD sizes range in the hundreds and thousands.
For all the ltl2gfg variants, a significant fraction of automata could not be
constructed in the time and memory limits, around 40% for the standard HP-
algorithm, and dropping to around 20% for the best variant. The loose variant
by itself had a mixed effect, but in conjunction with dynamic reordering was
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Table 2. Results of the iterative approach in ltl2gfg, for the loose variant. M is the
minimal value m ≤ n for which the partial NPA Am could be shown to be GFG.

with n NBA states
2 3 4 5 6 7 8 9 10 11 12 >12

number of ϕ 13 17 13 9 8 3 3 1 4 2 4 11
number of ϕ, M < n 11 17 13 8 8 2 2 1 0 0 1 3
number of ϕ, M = 1 11 8 5 4 2 1 1 0 0 0 1 3
number of ϕ, M = 2 2 9 8 4 6 1 1 1 0 0 0 0

number of ϕ, GFG check aborted 0 0 0 1 0 1 1 0 4 2 3 8

generally beneficial. The union construction was very beneficial for the disjunctive
formulas. For example, the automata for �♦a→ �♦b could not be constructed
in the time limits with the standard HP-algorithm but could be handled using
the union construction. The iterative approach was successful as well in obtaining
smaller automata, which is explained by the fact that for a large number of
formulas it could be shown that the partial automata A1 or A2 were already
GFG, as detailed in Table 2. For the iterative approach we were mostly focused
on experimental data for the minimal value m for which Am becomes GFG
and the effect on the BDD size. Different algorithms or implementations for
the GFG check than the one used in ltl2gfg lead to the same final GFG
automata, but could improve the performance. At the end, despite the various
approaches implemented in ltl2gfg, there were only 6 formulas with relatively
small automata where the BDD size of the smallest GFG automaton was smaller
than that of the DRA obtained from ltl2dstar (172 nodes instead of 229 nodes,
219 instead of 347, and the other 4 automata differing by 1 or 2 at a size of less
than 20 nodes). We do not report here in detail on the number of reachable states
in the automata, as none of the GFG automata had a smaller number of states
than the DRA generated by ltl2dstar. In particular, the automata obtained
without the iterative approach often had millions and more states.
Implementation in PRISM. We have extended the MTBDD-based, symbolic
engines of Prism 4.1 with an implementation of our algorithm for computing
Prmax
M (ϕ) using GFG automata for ϕ (and Prmin

M (ϕ) using a GFG automaton for
¬ϕ). We import the BDD of A generated with ltl2gfg into Prism and perform
the product withM and analysis inM⊗A symbolically. In its standard approach,
Prism constructs an explicit DRA with an integrated version of ltl2dstar,
which is then symbolically encoded as described before. The analysis is then
carried out symbolically as well.
Experiments in PRISM. As a benchmark, we used a Prism model [23] for
parts of the WLAN carrier-sense protocol of IEEE 802.11. As was to be expected
given our results on the automata construction, the GFG-based analysis did not
improve on the standard approach. Even using the optimal variant of ltl2gfg
for each formula, ignoring the automata construction times, and for cases where
the product M⊗A had a comparable BDD size for the GFG- and DRA-based
approach, the model checking using the GFG automata took significantly longer.
For further details, we refer to Appendix G.
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6 Conclusion

We have shown that GFG automata can replace deterministic automata for the
quantitative analysis of MDPs against ω-regular specifications without increasing
the asymptotic worst-case time complexity. To evaluate the GFG-based approach
from the practical side, we implemented the HP-algorithm, integrated several
heuristics, and performed exhaustive experiments for the LTL-to-GFG construc-
tion and for probabilistic model checking. Our experimental results are a bit
disappointing, as the generated GFG automata were often larger than DRA
generated by the implementation of Safra’s algorithms in ltl2dstar, both in
the number of states and in the symbolic BDD-based representations. Thus,
our empirical results are in contrast to the expectation that the HP-algorithm
yields GFG automata that are better suited for symbolic approaches rather than
DRA generated by Safra’s algorithm. Also in the context of probabilistic model
checking, the GFG-based approach turned out to be more time- and memory-
consuming than the traditional approach with deterministic automata. However,
it is still too early to discard the concept of GFG automata for practical purposes.
Our negative empirical results might be an artefact of the HP-algorithm, which
is – to the best of our knowledge – the only known algorithm for the generation
of GFG automata that are not deterministic. Future directions are the design of
other algorithms for the construction of succinct GFG automata. Alternatively,
one might seek for automata types that are still adequate for probabilistic model
checking and other areas, but rely on weaker conditions than the GFG property.
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LNCS, vol. 2102, pp. 53–65. Springer (2001)
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Appendix

A Examples for Good-for-games Automata

In this section we want to provide an intuition for the GFG property by presenting
two examples.

q0 q1true

a

a

true

Fig. 1. Good-for-games NBA A for �♦ a

The first example, depicted in Figure 1, is an good-for-games Büchi automaton.
It accepts the language L(�♦ a). This automaton is nondeterministic for the
symbols that contain a, allowing the choice of either staying in the current state
or switching to the other. A winning strategy for player 0 is the following strategy
f: Whenever player 0 is able to choose moving to state q1, he should do so. This
means that if the current state of the play is state q1 and player 1 choose a
symbol where a does not occur, then player 0 chooses state q0. In all other cases
player 0 moves to q1.

This strategy ensures that all words accepted by L(A) are indeed accepted,
as the only way for player 1 to generate a word w ∈ L(A) is to choose infinitely
many symbols with a. But then player 0 visits infinitely often the accepting state
q1, since every time a symbol with a is selected, player 0 moves to q1 via his
strategy. So for an accepted word the f-conform play contains infinitely many
accepting states q1 and thus the projection to the automata states delivers an
accepting run.

The second NBA, shown in Figure 2, is not good-for-games. Let player 1 pick
the symbol {a} in the beginning. Now there exists a nondeterministic choice
between q1 and q2. Assume that the strategy for player 0 moves to q1. Then,
player 1 can choose the symbol {c}, leading to the trap state qt from which
no accepting run is possible. However, every word starting with {a} {c} is an
accepted word and thus choosing q1 in the first choice is not a valid move for a
winning strategy. In the other case, if the strategy of player 0 moves to q2 after
the first symbol {a}, player 1 can choose the symbol {b}, trapping the run in the
nonaccepting qt again. So, for every accepted word {a} {b} . . . the conform play
again does not yield an accepted run and thus choosing q2 is not a valid move
for a winning strategy either.

As a whole, we get that there does not exists a winning strategy, because in
the initial state q0 player 0 would need to know which of the two symbol player 1
will choose in the second step. So player 0 would need the ability to look-ahead,
which is not allowed for GFG automata.
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q0

qtq1 q2

q3

a a¬a

b

¬b

c

¬c

true

true

Fig. 2. NBA B for a ∧ ©(b ∨ c), not good-for-game

B Necessity of the GFG Property in Theorem 1(b)

To illustrate that the GFG-property is crucial in part (b) of Theorem 1, we
provide an example for an MDP M (even Markov chain) and nondeterministic
ω-automaton A such that Prmax

M⊗A
(
Acc ) is strictly smaller than Prmax

M
(
A ).

s0 a

s1b s2 c

α

1
2

1
2

β1 γ1

q0

q1 q2

q3

a a

b c

true

Fig. 3. Markov decision process M (left) and NBA A for a ∧ ©(b ∨ c) (right)

The left of Figure 3 shows the MDP M with three states s0, s1, s2, actions α,
β and γ and atomic propositions a, b and c. M behaves purely probabilistically.
Hence, it can be seen as a Markov chain and the concept of schedulers is
irrelevant for M. As M has only two paths π1 = s0 α s1 β s1 β s1 β . . . and
π2 = s0 α s2 γ s2 γ s2 γ . . .,M has only two traces, namely {a} {b}ω and {a} {c}ω.
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The picture on the right shows a fragment of an NBA A over the alphabet
2{a,b,c} and the accepting state q3. Thus, Acc is given by �♦q3. To ensure that
A is complete, A has an additional trap state qt (not shown in Figure 4). For
every state q and every symbol σ, if no transition with symbol σ starting in q is
depicted, then δ(q, σ) = {qt}. Clearly, L(A) is the language for the LTL formula

ϕ = a ∧ ©(b ∨ c)

Since both paths π1 and π2 of M satisfy ϕ, the probability for ϕ in M is 1,
which yields Prmax

M (A) = 1.

s0, q0

s1, q1s2, q1

s1, q2 s2, q2

s1, q3

s2, q3

s2, qt

s1, qt

α, q1

α, q2

1
2

1
2

1
2

1
2

β, q3

γ, q3

1

1

1

1

γ, qt

β, qt

1

1

1

1

Fig. 4. Product MDP M⊗A

Fig. 4 shows the product-MDP M⊗A. Any scheduler s for M⊗A just has
two options in the initial state 〈s0, q0〉 “select action 〈α, q1〉 or action 〈α, q2〉”,
while there is just one enabled action for the other states. In particular, M⊗A
has just two schedulers.

By symmetry, it suffices to consider the scheduler s choosing action 〈α, q1〉
for the initial state. The s-paths resolve the probabilistic choice between 〈s1, q1〉
and 〈s2, q1〉. No accepting state of the form 〈s, q3〉 is reachable from state 〈s2, q1〉,
while the accepting state 〈s1, q3〉 will be reached in the next step from 〈s1, q1〉.
Hence:

PrsM⊗A
(
Acc ) =

1

2

The same argument applies to the scheduler for M⊗ A that chooses action
〈γ, q2〉 in the first step. Thus, we get:

1

2
= Prmax

M⊗A(Acc) < Prmax
M (A) = 1

C Proof of Theorem 1 and Minimal Probabilities

The goal is to show that for each MDP M and complete nondeterministic
ω-automaton A:
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(a) Prmax
M⊗A

(
Acc

)
≤ Prmax

M
(
A
)

(b) If A is good-for-games then: Prmax
M⊗A

(
Acc

)
= Prmax

M
(
A
)

We first observe that by the definition of the transition probability function P ′

we have:

– If π′ = 〈s0, q0〉 γ0 〈s1, q1〉 γ1 〈s2, q2〉 γ2 . . . is a path in M⊗A where γi =
〈αi, pi〉 then pi = qi+1 and π′|M = s0 α0 s1 α1 s2 α2 . . . is a path in M and
π′|A = q0 q1 q2 . . . is a run in A for the word

trace
(
π′|M

)
= `(s0) `(s1) `(s2) . . . ∈

(
2AP

)ω
In this case, we have:

π′ |= Acc iff the run π′|A is accepting

– Vice versa, if π = s0 α0 s1 α1 s2 α2 . . . is a path in M and ρ = q0 q1 q2 . . . a
run in A for its trace then

πρ = 〈s0, q0〉 γ0 〈s1, q1〉 γ1 〈s2, q2〉 γ2 . . .

is a path inM⊗A where γi = 〈αi, qi+1〉. In this case, we have: ρ is accepting
iff πρ |= Acc.

Proof of statement (a). We pick a scheduler s′ for M⊗A that maximizes the
probability for A’s acceptance condition. The goal is to derive a scheduler s for
M under which the probability for generating traces in L(A) is at least

Prmax
M⊗A

(
Acc

)
= Prs

′

M⊗A
(
Acc

)
.

The task is now to define s(π) ∈ Act( last(π) ) for finite paths π in M where
last(π) denotes the last state of π. Let π = s0 α0 s1 α1 . . . αn−1 sn be a finite
path in M. We introduce inductively states q1, . . . , qn, qn+1 in A as follows. Let

γ0
def
= 〈α0, q1〉 = s′(〈s0, q0〉)

and for 0 ≤ i ≤ n:

γi
def
= 〈αi, qi+1〉 = s′

(
〈s0, q0〉 γ0 〈s1, q1〉 γ1 . . . γi−1 〈si, qi〉

)
Clearly, in the above inductive definition we have qi+1 ∈ δ(qi, `(si)) and αi ∈
Act(si). We then define:

s(s0 α0 s1 α1 . . . αn−1 sn)
def
= αn

Suppose now that π′ = 〈s0, q0〉 γ0 〈s1, q1〉 γ1 〈s2, q2〉 γ2 . . . is an infinite s′-path
with π′ |= Acc. Then, the run π′|A = q0 q1 q2 . . . for the word trace

(
π′|M

)
=

`(s0) `(s1) `(s2) . . . is accepting. Thus, the set of all s-paths π with trace(π) ∈
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L(A) contains the set of the paths π′|M where π′ is a s′-path in M⊗A with
π′ |= Acc. We obtain the desired result:

Prmax
M⊗A

(
Acc

)
= Prs

′

M⊗A
(
Acc

)
≤ PrsM

(
A
)
≤ Prmax

M
(
A
)

Proof of statement (b). We suppose now that A is good-for-games. By (a), it
suffices to show that

Prmax
M
(
A
)
≤ Prmax

M⊗A
(
Acc

)
Let f denote a GFG-strategy for the monitor game for A and let s be a scheduler
in M that maximizes the probability to generate traces in L(A). The goal is to
compose s and f to obtain a scheduler s′ for M⊗A such that the probability
under s′ for the paths π′ with π′ |= Acc is at least PrsM

(
Acc

)
.

The definition of s′(π′) for the finite paths π′ in M⊗A is by induction on
the length of π′. For the initial state we define:

s′(〈s0, q0〉)
def
= 〈 s(s0), f(q0 `(s0)) 〉

For a finite path π′ = 〈s0, q0〉 γ0 〈s1, q1〉 γ1 . . . γn−1 〈sn, qn〉 in M⊗A of length
n ≥ 1 where γi = 〈αi, qi+1〉, the definition of s(π′) is as follows:

s′(π′)
def
= 〈 s(π′|M), f

(
q0 `(s0) q1 `(s1) . . . qn−1 `(sn−1)

)
〉

Suppose now that π = s0 α0 s1 α1 s2 α2 . . . is an infinite s-path in M with
trace(π) ∈ L(A). We now consider the accepting run ρ = q0 q1 q2 . . . for trace(π)
that is obtained using the GFG-strategy f in the monitor game for A. That is:

qi+1 = f
(
q0 `(s0) q1 `(s1) . . . qi `(si)

)
Then, πρ = 〈s0, q0〉 γ0 〈s1, q1〉 γ1 〈s2, q2〉 γ2 . . . is an infinite s′-path with πρ |=
Acc where γi = 〈αi, qi+1〉. Thus, the set of all infinite s′-paths π′ with π′ |=
Acc subsumes all paths πρ resulting from combining a s-path π in M where
trace(π) ∈ L(A) with its (unique) accepting f-run ρ. This yields:

Prmax
M
(
A
)

= PrsM
(
A
)
≤ Prs

′

M⊗A
(
Acc

)
≤ Prmax

M⊗A
(
Acc

)
This completes the proof of statement (b) in Theorem 1.

Minimal probabilities. If M is an MDP as before and s a scheduler for M
then for each ω-regular language L over the alphabet 2AP :

PrsM(L) = 1− PrsM(L)

where L denotes the complement of L, i.e., L =
(
2AP

)ω \ L. Hence, we get:

Prmin
M (L) = 1− Prmax

M (L)

As a consequence of Theorem 1, we obtain:

Corollary 3. For each MDP M, LTL formula ϕ and complete GFG-automaton
A for ¬ϕ:

Prmin
M
(
ϕ
)

= 1− Prmax
M⊗A

(
Acc

)
Moreover, Prmin

M
(
ϕ
)
≤ 1−Prmax

M⊗A
(
Acc

)
for each nondeterministic ω-automaton

A for ¬ϕ.
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D Proof of Theorem 2

In [20,19], a lower bound of 22
Ω(|ϕ|)

is shown for the translation from LTL formulas
ϕ to deterministic Büchi automata (and thus for the other types of deterministic
ω-automata as well). Let Σ = {σ1, σ2} be an alphabet with two elements. [20]
defines a family of languages Ln over the alphabet Σ ∪ {#, $} of the following
form:

Ln =
⋃

w∈Σn
L(w)

where L(w) is the following ω-regular language:

L(w) =
{
x#w# y $w#ω : x, y ∈ (Σ ∪ {#})∗

}
The languages Ln are safety languages and can thus be recognized by a DBA

An, which needs at least 22Ω(n)

states. Intuitively, this is because An needs to
check that the word w ∈ {a, b}n after the $ symbol has appeared before. The

proof from [20], that every DBA accepting the language Ln needs at least 22
Ω(n)

states can be extended to a GFG automata in a straightforward manner.

Lemma 4. Every good-for-games Büchi automaton An recognising Ln has at
least 22

n

states.

Proof. Proof by contradiction. We refer to words in Σn as n-blocks. Further we
assume a total order on Σn, thereby we can define wi as the i-th word in Σn.
Additionally, we define for every set

I =
{
i1, i2, . . . , ik

}
⊆
{

0, 1, . . . , 2n−1
}

the finite word wI = #wi1#wi2# . . .#wik#$. As An is good-for-games, there
exists a GFG-strategy f. Let qI be the state reached in the f-play after consuming
the finite word wI . There exists 22

n

subsets of {0, 1, . . . , 2n−1}, but by assumption
An has less than 22

n

states. Therefore there must be two distinct sets I 6= J with
qI = qJ . W.l.o.g. let i ∈ I \ J . The word wI wi #ω belongs to Ln, and hence is
accepted by An and the f-play for wI wi #ω is accepting as well. On the other
hand, wJ wi #ω is not in Ln. But as qI = qJ there is an accepting run for the
suffix wi #ω and we get wJ wi #ω ∈ Ln. Contradiction.

The same argument holds for the other acceptance conditions, e.g., Rabin
or parity acceptance, as well. As shown in [20], there is an LTL formula ϕn of
size O

(
n2
)

for Ln, which is improved in [19] to an LTL formula ϕn of size O(n),
yielding the double exponential lower bound.

E Game-based Characterization of the GFG Property

We provide here a game-based characterization of the GFG property, which can
serve as basis to check whether a given ω-automaton A is good-for-games. This
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algorithm for checking the GFG property will be used in our implementation of
the iterative approach of the HP-construction.

Given a NRA A = (Q,Σ, δA, q0, AccA) then – by definition – A is good-
for-games, if there is a strategy that generates an accepting run for exactly
the words w with w ∈ L(A). Since the class of ω-regular languages is closed
under complementation there exists a DRA B = (P,Σ, δB, p0, AccB) with L(B) =
Σω \ L(A). W.l.o.g., we assume transition relations of A and B to be total.

We now construct a turn-based two-player game GA,B with full observation
for both players as follows. The set of game vertices is V = V1 ∪ V0 where the set
of vertices where player 1 moves is V1 = Q× P and where player 0 moves in the
vertices in V0 = Q× P ×Σ. We set the initial vertex to 〈q0, p0〉. The moves in
GA,B are defined by the following two SOS-rules:

q ∈ Q, p ∈ P, σ ∈ Σ
〈q, p〉 −→ 〈q, p, σ〉

and
q′ ∈ δA(q, σ), p′ = δB(p, σ)

〈q, p, σ〉 −→ (q′, p′)

Player 1 chooses a symbol σ ∈ Σ and player 0 resolves the nondeterminism. As
B is deterministic, the game-structure GA,B can be viewed as a refinement of the
monitor game associated with A. The states in A are simply augmented with
the information on B’s current state and the chosen symbol.

The objective in GA,B is defined such that player 0 wins a play ς, if for every
word w:

– if w ∈ L(A) then ς|A is an accepting run in A
– if w /∈ L(A) then ς|B is an accepting run in B.

where ς|A denotes the projection of ς to the states A. More precisely, we erase
all vertices 〈q, p, σ〉 from ς and replace the vertices 〈q, p〉 with q. Likewise ς|B
arises from ς by taking the projection to the B-components of the vertices 〈q, p〉
in ς. Formally, the objective for player 0 in the game GA,B is the Rabin condition
resulting from the union of the acceptance conditions of A and B lifted to the
product. That is, if

AccA =
∨

1≤i≤n
♦�¬EAi ∧�♦FAi

AccB =
∨

1≤i≤m
♦�¬EBi ∧�♦FBi

are the Rabin acceptance conditions of A and B, respectively, then we define the
objective for player 0 in the game GA,B as the Rabin acceptance condition as

ψ =
∨

1≤i≤n+m

♦�¬Ei ∧�♦Fi

where for 1 ≤ i ≤ n and 1 ≤ j ≤ m:

Ei = {〈q, p〉 ∈ V0 | q ∈ EAi }
Fi = {〈q, p〉 ∈ V0 | q ∈ FAi }

En+j = {〈q, p〉 ∈ V0 | p ∈ EBj }
Fn+j = {〈q, p〉 ∈ V0 | p ∈ FBj }
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Lemma 5 (Game-based characterization of the GFG property). A is
good-for-games iff player 0 has a winning strategy in the Rabin game GA,B.

In what follows, let G = GA,B.

Proof of “⇐=”. Assume that player 0 has a winning strategy g : (V1 V0)+ → V1
in G. To define a GFG-strategy f : (Q × Σ)+ → Q for player 0 in the monitor
game for A, we first look at the play fragment q0 σ1 q1 σ2 . . . qn σn and consider
the choice of g in G for the following play fragment in G:

ς = 〈q0, p0〉 〈q0, p0, σ1〉 〈q1, p1〉 〈q1, p1, σ2〉 . . . 〈qn, pn〉 〈qn, pn, σn〉

where pi = δB(p0, σ0 σ1 . . . σi−1) is the unique state in B that is reached from p0
by reading the finite input string σ0 σ1 . . . σi−1. Let 〈qn+1, pn+1〉 = g(ς). Then,
we define:

f(q0 σ1 q2 σ2 . . . qn σn) = qn+1

Suppose that w = σ0 σ1 σ2 . . . ∈ L(A). Since the strategy g is winning, the g-play
induced by w,

ς = 〈q0, p0〉 〈q0, p0, σ1〉 〈q1, p1〉 〈q1, p1, σ2〉 . . . ,

in G is winning for player 0, i.e., ς satisfies the Rabin condition ψ associated with
G. We pick some Rabin pair (Ei, Fi) such that ς |= ♦�¬Ei and ς |= �♦Fi. By
taking the projection of all states in (Ei, Fi) we obtain a Rabin pair (EAi , F

A
i )

in A and the f-play induced by w is q0 σ1 q1 σ2 . . .. Hence, ς|A = q0 q1 . . . is a
run for w in A and

ς|A |= ♦�¬EAi and ς|B |= �♦FAi .

Thus, ς meets the Rabin condition of A.

Proof of “=⇒”. Assume A is good-for-games. Then, there exists a GFG-strategy
f : (Q×Σ)+ → Q for the monitor game for A. We define the strategy g for player
0 in G as follows. Given the play fragment

ς = 〈q0, p0〉 〈q0, p0, σ1〉 〈q1, p1〉 〈q1, p1, σ2〉 . . . 〈qn, pn〉 〈qn, pn, σn〉

in G we define g(ς) as follows:

g(ς) = 〈f(q0 σ1 q1 σ2 . . . qn σn), δB(pn, σn)〉

Let w = σ0 σ1 σ2 . . . ∈ Σω be an infinite word.
Case 1: w ∈ L(A). Then, for the g-play ς = 〈q0, p0〉 〈q0, p0, σ0〉 〈q1, p1〉 〈q1, p1, σ1〉 . . .
induced by w in G we have:

ς|A = q0 q1 q2 . . . |= ♦�¬EAi ∧ �♦FAi

for some i ∈ {1, . . . , n}. As G’s objective ψ contains the corresponding Rabin
pair (Ei, Fi), we get ς |= ψ.
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Case 2: w /∈ L(A). Then w ∈ L(B). Let ρ be the unique run for w in B. Then,
ρ |= AccB. Hence, there exists j ∈ {1, . . . ,m} with ρ |= ♦�¬EBj and ρ |= �♦FBj .
Let

ς = 〈q0, p0〉 〈q0, p0, σ0〉 〈q1, p1〉 〈q1, p1, σ1〉 〈q2, p2〉 〈q2, p2, σ2〉 . . .

be the g-play in G if player 1 chooses the symbols σi according to w. Then,
ς|B = ρ. Hence, ς |= ♦�¬En+j and ς |= �♦Fn+j . Thus, ς satisfies the objective
ψ for player 0 in G. ut

In practice, when starting from an LTL formula ϕ, we do not construct B from
A via complementation and determinization. As we know that L(A) = L(ϕ), we
obtain the DRA B by applying standard algorithms for the construction of a
DRA for the negation ¬ϕ, i.e., via the tool ltl2dstar. Even though A and B
(and thus the game as well) have a worst case double exponential number of states
in the size of the formula, and though solving Rabin games is itself NP-complete,
we have been able in practice for the smaller automata (see Section 5) to use
this approach to determine whether the intermediate automata in the iterative
approach of the HP-construction are GFG or not.

F Union Operator for Nondeterministic Rabin GFG
Automata

The idea for the union optimisation is inspired from [14]. For constructing
a deterministic Rabin automaton for a LTL formula ϕ = ϕ1 ∨ ϕ2 the union
optimisation in [14] constructs a DRA A1 for ϕ1 and an DRA A2 for ϕ2. A
union operator is applied to A1 and A2 yielding an automaton A1 ∪ A2 with
L(A1 ∪A2) = L(A1)∪L(A2). We now show that this approach is also applicable
for GFG automata with Rabin acceptance.

Definition 6 (Union of two NRA). Let A1 = (Q1, Σ, δ1, q0,1, Acc1) and
A2 = (Q2, Σ, δ2, q0,2, Acc2) be two complete NRA over the same alphabet. The
NRA A1 ∪ A2 = (Q′, Σ, δ′, q′0, Acc

′) is defined as follows. The state space of
A1 ∪ A2 is Q′ = Q1 ×Q2 and q′0 = (q0,1, q0,2) its initial state. The transition
function δ′ is given by:

δ′((q1, q2), σ) =
{

(q′1, q
′
2) : q′1 ∈ δ1(q1, σ), q′2 ∈ δ2(q2, σ)

}
The acceptance condition Acc′ is given by:∨
(E,F )∈Acc1

(
♦�¬(E×Q2) ∧�♦(F×Q2)

)
∨

∨
(E,F )∈Acc2

(
♦�¬(Q1×E) ∧�♦(Q1×F )

)
Obviously, L(A1 ∪ A2) = L(A1) ∪ L(A2). Additionally, the union operation
preserves the GFG property.

Lemma 7 (Good-for-games for the union operation). Let A1 and A2 be
complete NRA. If A1 and A2 are GFG, then A1 ∪ A2 is good-for-games, too.
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Proof. Let f1 : (Q1×Σ)+ → Q1 be a GFG-strategy for A1 and f2 : (Q2×Σ)+ →
Q2 be a GFG-strategy for A2. We define a strategy

f : (Q′ ×Σ)+ → Q′

for A1 ∪ A2 as follows:

f(ς ↓ i) def
= 〈 f1(ς

∣∣
1
↓ i), f2(ς

∣∣
2
↓ i) 〉

where ς
∣∣
1

= q0,1 σ0 q1,1 . . . qi−1,1σi denotes the projection of the play

ς = 〈q0,1, q0,2〉σ0 〈q1,1, q1,2〉σ1 . . . 〈qi,1, qi,2〉σi
to the first automaton. ς

∣∣
2

is defined analogously.
The goal is to show that f is a GFG-strategy forA1∪A2. Let w = σ0 σ1 σ2 . . . ∈

L(A1 ∪ A2) = L(A1) ∪ L(A2) and let

ς = 〈q0,1, q0,2〉σ0 〈q1,1, q1,2〉σ1 〈q2,1, q2,2〉σ2 . . .

be the induced f-play in the monitor game for A1 ∪ A2 with ς
∣∣
Σ

= w. W.l.o.g.

we may suppose that w ∈ L(A1). By the definition of f, the play ς
∣∣
1

=
q0,1 σ0 q1,1 σ1 q2,1 σ2 . . . in the monitor game for A1 is f1-conform, and hence
q0,1 q1,1 q2,1 . . . is an accepting run in A1. Thus, there is a Rabin pair (Ew, Fw) ∈
Acc1 with

q0,1 q1,1 . . . |= ♦�¬Ew ∧�♦Fw

Hence, for the run ς
∣∣
Q

= 〈q0,1, q0,2〉 〈q1,1, q1,2〉 〈q2,1, q2,2〉 . . . in A1 ∪A2 we have:

ς
∣∣
Q
|= ♦�¬(Ew ×Q2) ∧ �♦(Fw ×Q2)

We conclude that ς
∣∣
Q

is an accepting run for the word w in A1 ∪ A2.

G Implementation and Experiments

G.1 Statistics for Selected Formulas

We provide here some more statistics for selected formulas to allow an individual
comparison between the GFG automata generated with ltl2gfg and the DRA
generated by ltl2dstar.

Table 3 lists the size of the constructed automata in terms of the number of
reachable states. We consider here the standard variant of the HP-algorithm [13]
and combinations of the loose, the union and the iterative variant. We contrast this
with the results of ltl2dstar in the default variant. Missing entries correspond
to timeouts during the generation. Table 4 lists the corresponding size of the
automata in terms of BDD nodes used for encoding the transition function of the
automata. The tables were generated with dynamic reordering of the variable
order activated.

In Table 4, we see as well one of the formula where the BDD size of the GFG
automaton was (marginally) better than the BDD size of the DRA obtained by
ltl2dstar. For �a the BDD for the transition function consists of 8 nodes in
ltl2gfg, while the BDD of ltl2dstar consists of 10 nodes.
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Table 3. Detailed statistics for example formulas: number of reachable states

Formula
ltl2gfg

ltl2dstar
standard loose union, loose iter., loose union, it., loose

true 3 3 3 3 3 2

false 2 2 2 2 2 1

a 6 8 8 4 4 3

¬a 6 8 8 4 4 3

a ∧ b 6 8 8 4 4 3

a ∨ b 6 8 50 4 10 3

a→ b 6 8 50 4 10 3

� a 3 3 3 3 3 3

♦ a 16 46 46 6 6 2

�♦ a 33 73 73 9 9 2

♦� a 16 46 46 46 46 2

♦� a→ �♦ b − 3.3 · 109 5329 6482 81 2

�♦ a→ �♦ b − 2.2 · 109 3358 − 414 4

aU b 16 46 46 6 6 3

aU(bU c) 224 7734 7734 12 12 4

�(a→ ♦ b) 33 73 73 9 9 4

G.2 Implementation and Experiments with Prism

We provide here some further details on our implementation of the GFG-based
probabilistic model checking approach in Prism. We construct a BDD-based
representation of the GFG automaton with ltl2gfg, which we import into the
MTBDD engine of Prism. We consider the GFG automata as Rabin automata,
as Prism currently has no specialized handling of automata with the parity
acceptance condition. To perform the product construction with M, we have to
represent the nondeterministic choice of the successor state in the GFG automaton
symbolically, which requires one additional copy of each boolean state variable.
Taken together with the action variables in the MDP M, they then represent
the corresponding action in the product. For the fully symbolic engine of Prism,
these action variables can remain interleaved. The hybrid engine (symbolic matrix
and explicit value vector) however requires that all action variables appear on top
of the variable ordering, before any state variables. Our experiments indicated
that this encoding leads to a significant blow-up of the symbolic representation.
Thus, we focus here only on the results using the fully symbolic engine.

GFG-based analysis of MDPs. For our experiments, we used a Prism
model [23] from the PRISM benchmark suite for parts of the WLAN carrier-sense
protocol of IEEE 802.11. For details on the model we refer to
http://www.prismmodelchecker.org/casestudies/wlan.php

It models a two-way handshake mechanism of the IEEE 802.11 (WLAN)
medium access control scheme with two senders that compete for the medium.
As messages get corrupted when both senders send at the same time (called a
collision), a probabilistic back-off mechanism is employed to reduce the likelihood

http://www.prismmodelchecker.org/casestudies/wlan.php
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Table 4. Detailed statistics for example formulas: size of the transition function BDD

Formula
ltl2gfg

ltl2dstar
standard loose union, loose iter., loose union, it., loose

true 7 7 7 7 7 3

false 7 7 7 7 7 1

a 59 46 46 17 17 11

¬a 59 46 46 17 17 11

a ∧ b 78 48 48 18 18 13

a ∨ b 78 48 90 18 32 13

a→ b 78 48 90 18 32 13

� a 8 8 8 8 8 10

♦ a 123 85 85 22 22 6

�♦ a 136 70 70 27 27 5

♦� a 141 70 70 76 76 5

♦� a→ �♦ b − 69669 147 2383 51 6

�♦ a→ �♦ b − 12710 149 − 107 8

aU b 132 102 102 23 23 15

aU(bU c) 5165 1642 1642 62 62 21

�(a→ ♦ b) 182 97 97 31 31 13

of collisions. The key feature of the protocol is a back-off procedure, which is
started if an error occurred or the sender wants to send a new message after
sending a message. The back-off procedure consists of waiting a randomized
amount of time while the channel has to be free. It ends with retrying to send a
message. To define the maximal amount of waiting time in the back-off procedure,
the model is parametrized by the parameter MAX-BACKOFF. Here, we consider
the values MAX-BACKOFF ∈ {1, . . . , 6}. Since stations cannot listen to their own
transmissions, after having started to transmit a message, they cannot determine
for a short amount of time whether another station has started to send at the
same moment, called the vulnerable section. To reduce the likelihood of this
collisions, the station has to check that the channel is free for a fixed time period.
This happens in state Wait Difs. In the model, a collision counter is used to
record the number of collisions for use in the formulas. For our experiments, we
set the maximum number of collisions that can be counted to 4.

LTL Formulas. We report here on our results when considering the following
LTL path properties:

– ϕ1 = ♦(s1 = Done ∧ s2 = Done)
“Eventually station 1 and station 2 have sent their message correctly”

– ϕ2 = ¬♦�(s1 = Backoff ∨ s1 = Wait Difs ∨ s1 = Wait ack)
“Station 1 never never gets stuck in the back-off procedure or during one of
the waiting procedures”
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– ϕ3 = (�♦ s1 = Backoff)→ (�♦ s1 = vuln)
“If station 1 backs off infinitely often, it is also infinitely often in its vulnerable
section”

– ϕ4 = �(col→ ♦ msg 1 send)
“If a collision occurred on the channel, then station 1 will nevertheless send
its message correctly at some point in the future”

– ϕ5 = �(col→ ♦(msg 1 send ∧ #col < 2))
“Like ϕ4, but with the additional constraint of no more additional collisions”

– ϕ6 = ♦(s1 = Done ∧ s2 = Done) ∧ �(# col < 2)
“Eventually both stations have sent their messages and the number of collisions
never exceeds 1”

Experiments with PRISM. We report here on a comparison of the model
checking times for calculating the probabilities Prmin

M (ϕ) for the formulas above
with Prism, once using the GFG implementation and once with the standard
settings. For ϕ1, which is normally handled by PRISM via a specialized algorithm
for simple formulas that does not need an automata product construction, we
forced the use of the general, automata-based approach. As explained above, we
used the fully symbolic MTBDD engine of Prism, i.e., where the matrix and
the value vector are stored symbolically.

We have carried out our experiments with the different variants for the
generation of GFG automata of ltl2gfg. As before, we impose a 30 minute time
and 10GB memory limit. In our tables, we will refer by WLANn to the case-study
MDP with maximum back-off value MAX BACKOFF, for n from 1 to 6. Table 5 lists
the time spent for calculating Prmin

M (ϕ) for each of the six LTL formulas ϕ and
the WLAN4 MDP. For this table, we list the results using the optimal variant of
ltl2gfg for each formula. In all cases in this table, the time spent generating
the GFG automata was less than one second. This allows a fair comparison
against the standard Prism approach using DRA. Interestingly, the BDD sizes
listed in Table 5 for the number of MTBDD nodes used to encode the transition
matrix of the product M⊗A is roughly similar between the standard approach
based on DRA and the best ltl2gfg approach. However, the time then spent
for calculating the probabilities in the product are vastly higher for the GFG
approach than for the DRA approach.

Table 6 lists the time spent in model checking the different MDPs and formulas
in Prism using the standard approach. Table 7 lists the corresponding values for
the approach using ltl2gfg in the loose variant, which also employed the iterative
and union approach. This variant generally behaved well in these experiments.
We list as well the time spent for constructing the GFG NRA for ¬ϕi. The
formula is negated because we are interesting in the minimal probabilities.

To provide an overview of the behavior of the different variants of ltl2gfg in
the context of Prism, Table 8 compares the running time of some of the variants
against the baseline of the DRA-based standard approach. We consider the 36
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Table 5. Results for model checking WLAN4

ltl2gfg Prism standard
time BDD size M⊗A time BDD size M⊗A

Prmin
M (ϕ1) 23.4 s 25,587 5.7 s 25,725

Prmin
M (ϕ2) 38.4 s 29,184 0.7 s 27,518

Prmin
M (ϕ3) 63.4 s 39,493 2.9 s 30,355

Prmin
M (ϕ4) 43.6 s 27,811 3.1 s 26,043

Prmin
M (ϕ5) 43.5 s 27,573 3.1 s 26,043

Prmin
M (ϕ6) 97.6 s 26,002 42.9 s 25,849

Table 6. Time consumption for model checking with standard Prism

Prmin
M (ϕ1) Prmin

M (ϕ2) Prmin
M (ϕ3) Prmin

M (ϕ4) Prmin
M (ϕ5) Prmin

M (ϕ6)

WLAN1 0.4 s 0.1 s 0.2 s 0.2 s 0.2 s 1.9 s

WLAN2 0.8 s 0.2 s 0.5 s 0.4 s 0.4 s 5.7 s

WLAN3 1.4 s 0.3 s 1.0 s 1.1 s 1.1 s 14.2 s

WLAN4 5.4 s 0.5 s 2.4 s 2.5 s 2.8 s 42.5 s

WLAN5 17.2 s 1.0 s 5.8 s 6.4 s 7.4 s 132.3 s

WLAN6 50.8 s 2.2 s 16.0 s 20.5 s 21.6 s 556.5 s

Table 7. Time consumption for Prism and ltl2gfg (variant loose, iterative and union)

Prmin
M (ϕ1) Prmin

M (ϕ2) Prmin
M (ϕ3) Prmin

M (ϕ4) Prmin
M (ϕ5) Prmin

M (ϕ6)

Constructing
GFG A¬ϕi

0.3 s 0.3 s 0.5 s 0.3 s 0.3 s 0.4 s

WLAN1 1.4 s 2.2 s 4.8 s 3.7 s 2.6 s 3.7 s

WLAN2 2.8 s 5.1 s 9.9 s 7.9 s 5.2 s 9.9 s

WLAN3 6.8 s 11.7 s 22.8 s 19.5 s 13.7 s 29.3 s

WLAN4 23.8 s 40.2 s 68.8 s 55.5 s 45.6 s 100.6 s

WLAN5 96.2 s 148.8 s 249.8 s 175.2 s 171.6 s 369.4 s

WLAN6 392.2 s 603.0 s 1133.3 s 729.2 s 698.1 s 1510.1 s
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combinations of WLAN1 to WLAN6 and ϕ1 to ϕ6. The table lists the number of
cases where a timeout occured and where time spent using the GFG approach
exceeded the standard approach only by a given factor. We refer to the baseline
time spent using the standard approach in Prism as tSTD and to the time spent
using the GFG approach (when there was no timeout) as tGFG. For example,

Table 8. Results for model checking with Prism and different variants of ltl2gfg

std. loose dyn.,loose un.,loose it.,loose it.,loose,dyn. it.,un.,loose

tGFG < 3 · tSTD 0 1 1 0 0 0 5

tGFG < 7 · tSTD 5 5 5 10 9 7 11

tGFG < 20 · tSTD 15 15 14 19 21 18 22

tGFG < 250 · tSTD 33 29 33 34 35 32 35

tGFG ≤ 30 min 34 31 33 35 35 35 36

Aborted 2 5 3 1 1 1 0

if we consider the loose variant with active iterative approach, in 9 of the 36
cases the run time of Prism with the GFG approach was within the time spent
by the standard Prism approach multiplied by the factor 7. As can be seen,
the loose variant with union and the iterative approach fared well in general.
Interestingly, the automata generated with active dynamic reordering in some
cases fared significantly worse than those using the initial variable ordering. As
Prism does not support a reordering of the variables, the BDD representation of
the GFG automaton is optimized by the dynamic reordering in ltl2gfg for the
stand-alone representation. Clearly, this variable ordering may however not be
optimal for the product with the MDP. Likewise, the dynamic variable reordering
sometimes slowed down the GFG check in the iterative approach.

As we have seen, the GFG approach implemented in Prism did not improve
on the model checking time of the standard, explicit determinization based
approach, even for the relatively simple LTL formulas used in our experiments.
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