
Composition of stochastic transition systems
based on spans and couplings ∗
Extended version - July 8, 2016

Daniel Gburek, Christel Baier, and Sascha Klüppelholz

Faculty of Computer Science,
Technische Universität Dresden, Germany
{daniel.gburek,christel.baier,sascha.klueppelholz}@tu-dresden.de

Abstract
Conventional approaches for parallel composition of stochastic systems relate probability mea-
sures of the individual components in terms of product measures. Such approaches rely on the
assumption that components interact stochastically independent, which might be too rigid for
modeling real world systems. In this paper, we introduce a parallel-composition operator for
stochastic transition systems that is based on couplings of probability measures and does not im-
pose any stochastic assumptions. When composing systems within our framework, the intended
dependencies between components can be determined by providing so-called spans and span cou-
plings. We present a congruence result for our operator with respect to a standard notion of
bisimilarity and develop a general theory for spans, exploiting deep results from descriptive set
theory. As an application of our general approach, we propose a model for stochastic hybrid
systems called stochastic hybrid motion automata.
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1 Introduction

When modeling complex systems, compositional approaches enjoy many favorable prop-
erties compared to their monolithic counterparts. They allow for a systematic system
design, facilitate the interchangeability and reusability of components, and thus also ease
the maintainability. A major objective in defining compositional frameworks is to separate
concerns into components – specifying the operational behavior – and composition operators
– addressing the communication and interaction of the components. Within conventional
approaches for stochastic systems, the composition operator relates probability distributions
of the individual components in terms of product distributions. Therefore, such operators
are based on the assumption that the components interact stochastically independent, which
is often not adequate. For instance, let us regard a systems composed of a device Dev and
two batteries Bat1 and Bat2 providing the energy for Dev as detailed below:
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XXX:2 Composition of stochastic transition systems

In this example, the device provides the environmental context in which Bat1 and Bat2 are
operating. Hence, Dev may, e.g., be the reason for common cause failures arising in the
system. Let the variables v1 and v2 capture the amount of energy stored within Bat1 and
Bat2, respectively. The action label α stands for the occurrence of a failure after which all
the components will crash. As a consequence, the level of the stored energy of the batteries
instantaneously drops to either 0 or 1/3 with probability 1/2, respectively. When considering
the batteries in isolation, Bat1 and Bat2 appear stochastically independent in the first place
and thus, product distributions in the parallel composition Bat1 ‖ Bat2 seem to be adequate.
However, additional dependencies can be imposed by Dev, influencing the interplay between
the batteries. The assumption that Bat1 and Bat2 are stochastically independent is hence
not adequate. Assume, e.g., that Dev uses Bat1 as the default power supply and Bat2 as a
backup. Then, within a failure situation, Bat1 is more likely to be affected than Bat2. The
most likely case is that Bat1 drops to 0 whereas Bat2 drops to 1/3. Hence, v1 and v2 might
be not independent in the composite system (Bat1 ‖ Bat2) ‖ Dev.

Motivated by this example, we consider hybrid systems that combine discrete behaviors
and continuous dynamics. In this setting, the most prominent modeling formalism are
hybrid automata, which comprise a control graph with discrete jumps between (control)
locations and flows that model the evolution of continuous variables over time. When time
passes in a hybrid system, a flow starting from the current variable evaluation is selected
non-deterministically and then the variables evolve according to the chosen flow. Besides the
stochastic independence, additional aspects are relevant for the composition of hybrid systems.
Let us assume that α1 is a (local) action of Bat1 which cannot be observed by Bat2 or Dev.
Particularly, α1 does not affect the value of variable v2. The hybrid automaton Bat1 ‖ Bat2
has states of the form 〈s1, s2〉. Suppose 〈s1
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2
1〉 →t1 〈s1
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finite path in Bat1 ‖ Bat2, comprising two timed transitions with time passages t1 and t2
and one jump transition involving action α1. As α1 cannot be observed by Bat2, we expect
s2

1 →t1+t2 s2
4 in Bat2. In particular, a faithful model for the composite system would allow

for selecting a flow for v1 within time passage t1, which is continued within the subsequent
time passage. Thus, the adaption of the flow for variable v2 should only be possible when
executing an action involving Bat2 or Dev. This aspect is also crucial in the context of
modeling controller strategies for hybrid systems. Typically, control decisions are made
at distinct points and fixed until a next control decision is enabled. For instance, when
considering a traffic alert and collision avoidance systems on aircraft, the advise of a corrective
maneuver is determined when a critical situation occurs and fixed until sensor values exceed
a threshold that indicates changes of the situation. A crucial point is to identify exactly those
situations where adaptation of flows is allowed and required, as from a practical point of view
it is important to minimize costs of adaptation and to keep the complexity of controllers
manageable.

Contribution. We introduce a generic composition operator for stochastic transition
systems (STSs) [18] based on spans and span couplings. Our operator does not rely on the
assumption that the STSs to be composed are stochastically independent and covers standard
composition operators by dealing with specific spans. Spans provide a formal approach for
introducing a universal notion of coupling probability measures. We develop an extensive
theory for spans exploiting profound results known from descriptive set theory [39]. Based
on a standard notion of bisimulation, we provide a congruence result with respect to our
span composition. In the second part of the paper, we instantiate our general approach
and introduce stochastic hybrid motion automata (SHMA) in which the progressing flow
is recorded within states. We present a compositional framework for SHMA including an
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STS-semantics, a composition operator that does not rely on the assumption of stochastic
independence, and where the adjustment of flows is always accompanied with an action. We
show that the congruence result for STSs transfers to our SHMA framework.

Additional material and detailed proofs can be found in the appendix.

Related Work. We are not aware of a compositional modeling approach of stochastic
systems which does not rely on the assumption that the components to be composed are
stochastically independent. Our work thus addresses a fundamental challenge in the context
of probabilistic operational models. The recent work [33] gives a comprehensive overview on
compositional probabilistic modeling formalisms regarding expressive power and available
analysis techniques. The concept of compositionality has its roots in the theory of process
calculi [45, 37] and there are many fundamental contributions in the field of stochastic
extensions of process calculi and probabilistic automata [49, 1, 2, 20, 15, 21, 22]. Results on
discrete systems have been extended to formalisms with continuous state spaces [18, 41]. The
theory on non-deterministic labeled Markov processes (NLMPs) provide elegant notions and
results on bisimulation and its logical characterization [24, 25, 19, 23, 6, 36]. Unfortunately,
NLMPs are a priori not appropriate for our purposes as the class of NLMPs is not closed
under the composition of stochastic transition systems (cf. appendix): Given two NLMPs,
the transition function of their composition does not need to be measurable.

When considering real-time systems, an important distinguishing aspect is the notion
of residence time, which is the time spend in a state before moving to a successor state. In
prominent compositional frameworks, timing behavior is modeled by clocks (timed automata)
[4, 11, 46, 13] or one has exponential-distributed holding times (Markov automata and
interactive Markov chains) [35, 29]. A general theory on compositionality and behavioral
equivalences has been also achieved for probabilistic real-time systems modeled by interactive
generalized semi-Markov processes [16, 14]. When adding flows to specify the evolution of
continuous variables between jumps, one enters the field of hybrid systems [3, 34, 12]. The
spirit of our work concerning hybrid systems is closest to the compositional frameworks
developed for hybrid extensions of I/O-automata [44] and reactive modules [5] in the non-
stochastic case. [44] studies parallel composition, simulation relations, and the receptiveness
property and deals with prefix-, suffix- and concatenation-closed sets of flows on a syntactic
level to obtain time-transitivity. Probabilistic hybrid automata [51, 31] extend classical
hybrid automata by discrete probabilistic updates for the jumps. In [30, 32, 31], stochastic
hybrid automata are considered where variables can be updated according to continuous
distributions. Different from these hybrid automata, the change of flows in SHMA is only
possible when some action is executed. Stochastic flows, i.e., where stochastic choices can be
made continuously over time, are considered in [17, 38]. Our framework does not incorporate
this kind of flows so far.

2 Preliminaries

We suppose the reader is familiar with standard concepts from measure and probability
theory [9, 10]. We briefly summarize our notations used throughout this paper.

Couplings. Within our work we understand couplings as a “modeling tool”. Intuitively,
couplings relate given measures in a product space by a measure with corresponding marginals.
Prob(X) denotes the set of all probability measures on the measurable space X. Let X1
and X2 be measurable spaces. Given µ1 ∈ Prob(X1) and µ2 ∈ Prob(X2), µ ∈ Prob(X1 ×X2)
is called a coupling of (µ1, µ2) if µ(M1 ×X2) = µ1(M1) and µ(X1 ×M2) = µ2(M2) for all
measurable M1 ⊆ X1 and M2 ⊆ X2. The independent coupling of (µ1, µ2) is the product
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measure of µ1 and µ2 denoted by µ1 ⊗ µ2. If µ1 = Dirac[x1] for some x1 ∈ X1, then there is
exactly one coupling of (µ1, µ2), namely the independent one. Here, Dirac[x1] denotes the
probability measure where for all measurable M1 ⊆ X1, Dirac[x1](M1) = 1 iff x1 ∈M1.

Polish spaces. A separable and completely metrizable topological space is called a Polish
space [39]. If X is a Polish space, then Prob(X) is well equipped with the topology induced
by the weak convergence of probability measures. To obtain a measurable space, Polish
spaces are equipped with the Borel sigma algebra, i.e., the coarsest sigma-algebra where all
open sets are measurable. We call a measurable space X standard Borel if there exists a
Polish topology on X where the induced Borel sigma-algebra coincides with the given one.
The Polish topology is in general not uniquely determined. We refer to measurable subsets
of standard Borel spaces as Borel sets. Of course, every Polish space is standard Borel.

Functions for probability measures. Given a measurable function f : X1 → X2 between
measurable spaces X1 and X2, the pushforward of f is defined by f] : Prob(X1)→ Prob(X2),
f](µ)(M2) = µ(f−1(M1)). Assuming Polish spaces X1 and X2, a Markov kernel is a Borel
function k : X1 → Prob(X2). Here, for every µ1 ∈ Prob(X1) we define semi-product measure
µ1 o k ∈ Prob(X1 ×X2), µ1 o k(M1 ×M2) =

∫
M1

k(x1)(M2) dµ1(x1).

Relations. Let R ⊆ X1×X2 be a binary relation over some setsX1 andX2. We usually write
x1Rx2 instead of 〈x1, x2〉 ∈ R. Then, R is called lr-total in X1 ×X2 if for all x1 ∈ X1 there
exists x2 ∈ X2 such that x1Rx2 and vice versa, i.e., also for all x2 ∈ X2 there exists x1 ∈ X1
where x1Rx2. Assume X1 and X2 constitute measurable spaces and let µ1 ∈ Prob(X1)
and µ2 ∈ Prob(X2). A weight function for (µ1, R, µ2) is a coupling W of (µ1, µ2) such that
x1Rx2 for W -almost all 〈x1, x2〉 ∈ X1 × X2. We write µ1R

w µ2 if there exists a weight
function for (µ1, R, µ2). Notice, Rw constitutes a relation in Prob(X1)× Prob(X2). Notice,
weight functions are also well-established in the discrete setting [49].

Variables. Let Var denote a countable set of variables and V ⊆ Var. We denote by Ev(V )
the set of all variable evaluations for V , i.e., functions from V to R. As the countable
product of Polish spaces equipped with the product topology again yields a Polish space,
Ev(V ) constitutes a Polish space. Let e ∈ Ev(Var) and η ∈ Prob(Ev(Var)). The projection
e|V ∈ Ev(V ) is given by e|V (v) = e(v) for all v ∈ V . As f : Ev(Var) → Ev(V ), f(e) = e|V
is measurable, we can safely define η|V = f](η). Cond(Var) denotes the set of all Boolean
conditions over Var and we write e |= c if the variable evaluation e satisfies condition c. For
instance, e |= (v ≤ 3.14159) ∧ (v ≥ 2.71828) iff e(v) ≤ 3.14159 and e(v) ≥ 2.71828.

Stochastic transition systems. An STS is a triple T = (S,Γ,→) comprising a measurable
space S of states, a set Γ of labels, and a relation → ⊆ S×Γ×Prob(S) of transitions. If
S is a standard Borel space, then T is called standard Borel. Let Ta = (Sa,Γ,→a) and
Tb = (Sb,Γ,→b) be STSs with the same sets of labels. A relation R ⊆ Sa × Sb is a
bisimulation for (Ta, Tb) if R is lr-total in Sa × Sb and for all saRsb and γ ∈ Γ it holds:
Given µa ∈ Prob(Sa) where sa →γ

a µa, then there exists µb ∈ Prob(Sb) such that sb →γ
b µb

and µaRw µb. Vice versa, given µb ∈ Prob(Sb) with sb →γ
b µb, then there is µa ∈ Prob(Sa)

where sa →γ
a µa and µaR

w µb. We emphasize that a bisimulation is not required to be
measurable. In the context of bisimulation an important question is how to lift a relation
R ⊆ Sa × Sb to probability measures. However, there are other approaches using R-stable
pairs instead [25], closely related to the weight lifting [53, 49]. Given STSs T1 = (S1,Γ1,→1)
and T2 = (S2,Γ2,→2) and a set of synchronization labels Sync ⊆ Γ1 ∩ Γ2, their composition
is the STS T1 ‖⊗Sync T2 = (S1×S2,Γ1 ∪Γ2,→) with 〈s1, s2〉 →γ µ1⊗µ2 iff the following holds
[18]: If γ ∈ Γ1 \Sync, then s1 →γ µ1 and µ2 = Dirac[s2]. If γ ∈ Γ2 \Sync, then µ1 = Dirac[s1]
and s2 →γ µ2. If γ ∈ Sync, then s1 →γ µ1 and s2 →γ µ2.
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Flows. By T = R≥0 we denote the time axis. A flow is a function ϑ : T → Ev(Var) that
has the càdlàg property, i.e., ϑ is right continuous and has left limits everywhere. Flow(Var)
denotes the set of all flows. Let ϑ⊕T (t) = ϑ(T+t) denote the shift of ϑ at time T ∈ T by time
t ∈ T. A subset F of Flow(Var) is shift invariant if ϑ⊕ T ∈ F for every ϑ ∈ F and T ∈ T. In
the theory of stochastic processes, the càdlàg property is well established as, amongst others,
there is a topology on Flow(Var) such that Flow(Var) becomes a Polish space [8]. The exact
definition of this topology is not relevant for our purposes. If V ⊆ Var and ϑ ∈ Flow(Var),
then ϑ|V ∈ Flow(V ) is given by ϑ|V (t) = ϑ(t)|V for all t ∈ T. Given V1, V2 ⊆ Var where
V1 ∩ V2 = ∅ and ϑ1 ∈ Flow(V1) and ϑ2 ∈ Flow(Var2), then ϑ1 ] ϑ2 ∈ Flow(V1 ∪ V2) is the
flow obtained by merging ϑ1 and ϑ2.

3 Composition of stochastic transition systems

We develop our approach towards the composition of STSs. As a preparation, we introduce
spans first and give some insights on our mathematical theory for those. After that, we
present the main contribution of the paper, namely our composition operator for STSs. We
then give a congruence theorem having a quite challenging proof. Section 4 presents an
application of our framework in the context of stochastic hybrid systems.

3.1 Spans
We will formalize dependencies for the composition of STSs using spans and span couplings,
which is a generic and flexible formalism our framework benefits from in many occasions. The
idea is to allow for arbitrary Polish spaces together with continuous functions that specify
the relationships between the components. Various properties of spans then transfer to their
probabilistic version, e.g., properness or the existence of inverses. This is an essential point
in the context of stochastic models and hence also for STSs. We will then use spans within
the definition of our composition in STS and later on also in the context of stochastic hybrid
systems as a mathematical tool for our argumentation.

I Definition 1. A span is a tuple X = (X,X1, X2, ι1, ι2) consisting of Polish spaces X,
X1, and X2 and continuous functions ι1 : X → X1 and ι2 : X → X2. We call X proper, if
ι−1
1 (K1) ∩ ι−1

2 (K2) is compact in X for all compact sets K1 ⊆ X1 and K2 ⊆ X2.

Intuitively, X denotes the joint state space of X1 and X2, where ι1 and ι2 are projective
functions from X to X1 and X2, respectively. Properness connects topological aspects of the
involved spaces. The following examples are natural instances of proper spans:

X is a Cartesian span if X = X1 ×X2 and ι1 and ι2 are the natural projections.
X is a variable span if X1 = Ev(Var1), X2 = Ev(Var2), and X = Ev(Var1 ∪Var2) for some
sets of variables Var1 and Var2, and ι1 and ι2 are the natural projections.
X is a identity span if X = X1 = X2 and ι1(x) = x and ι2(x) = x for all x ∈ X.

Span couplings are a crucial notion for our approach towards a composition operator
in the next section. Given µ1 ∈ Prob(X1) and µ2 ∈ Prob(X2), we call µ ∈ Prob(X) a
X -coupling of (µ1, µ2) if (ι1)](µ) = µ1 and (ι2)](µ) = µ2. Recall that (ι1)] and (ι2)] denote
the pushforwards of ι1 and ι2, respectively. A span coupling places two probability measures
in the same probabilistic space specified by the span by exhibiting an adequate witness
measure over pairs. Thus, the ordinary notion for couplings is generalized. For all x and
µ we use x|1, x|2, µ|1, and µ|2 as shorthand notations for ι1(x), ι2(x), (ι1)](µ), and (ι2)](µ)
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respectively. Given x1 ∈ X1 and x2 ∈ X2, we then write x1 X x2 if there exists x ∈ X where
x|1 = x1 and x|2 = x2. Similarly, we write µ1 X c µ2 if there is a X -coupling of (µ1, µ2). We
sometimes drop the projection functions from the tuple and refer to (X,X1, X2) as a span.

Probabilistic version. There are various operations for spans that yield complex spans
out of some given basic spans. The question whether the operation preserves properness
is important for practical purposes. For instance, a countable product of proper spans
yields a proper span again. Within stochastic models, the following operation is important:
For a span X = (X,X1, X2, ι1, ι2) its probabilistic version is given by the tuple Prob(X ) =
(Prob(X),Prob(X1),Prob(X2), (ι1)], (ι2)]). Notice, Prob(X ) involves all X -couplings and
µ1 X c µ2 iff µ1 Prob(X )µ2 for all µ1 ∈ Prob(X1) and µ2 ∈ Prob(X2).

I Proposition 2. The probabilistic version of a span is a span. Moreover, the probabilistic
version of a proper span is proper as well.

The claim regarding properness follows from Prokhorov’s theorem [8], which characterizes
relatively compact subsets of Prob(X): If P ⊆ Prob(X) is a set of probability measures, then
P is relatively compact in Prob(X) iff P is tight in Prob(X), i.e., for every ε ∈ R>0 there is
a compact set K ⊆ X where µ(K) > 1− ε for all µ ∈ P .

Span inverse. In a compositional setting, the states of the components determine the states
of the composed system. Within our approach, a state as an element of X in the composed
system is not required to be uniquely determined: Given a span X = (X,X1, X2), x1 ∈ X1,
and x2 ∈ X2, every x ∈ X where x|1 = x1 and x|2 = x2 stands for a state in the composed
system resulting from the states x1 and x2 of the components. However, in applications later
it is important to have a mapping with additional properties: Given a span X = (X,X1, X2),
a Borel function f : X1 ×X2 → X is called an X -inverse, if for all x1 ∈ X1 and x2 ∈ X2, if
x1 X x2, then f(x1, x2)|1 = x1 and f(x1, x2)|2 = x2.

I Theorem 3. Every proper span X has an X -inverse.

It follows µ1 X c µ2 iff µ1 Rel(X )w µ2 for all µ1 ∈ Prob(X1) and µ2 ∈ Prob(X2), where
Rel(X ) = {〈x|1, x|2〉 ; x ∈ X}. Our proof of Theorem 3 is an application of a measurable
selection theorem [10]: Take some x̂ ∈ X and define Φ: X1 × X2 → 2X , Φ(x1, x2) =
{x ∈ X ; x|1 = x1 and x|2 = x2}, if the set on the right-hand side is non-empty, and
Φ(x1, x2) = {x̂}, otherwise. It suffices to argue that Φ admits a measurable selection, i.e.,
there is a measurable function f : X1 ×X2 → X where f(x1, x2) ∈ Φ(x1, x2) for all x1 ∈ X1
and x2 ∈ X2. To do so, we rely on results from descriptive set theory. Notice, together with
Proposition 2, Theorem 3 yields an Prob(X )-inverse if X is proper, which is an important
observation for our discussions later. This is not obvious even for simple spans considering
for instance the probabilistic version of a variable span. We remark that there are spans X
that have no X -inverses and thus, the properness assumption is important (cf. appendix).

3.2 Composition
A major objective in defining compositional frameworks is to separate the concerns of
components specifying the operational behavior and composition operators addressing their
interaction or coordination. We start with two STSs T1 = (S1,Γ1,→1) and T2 = (S2,Γ2,→2),
where we assume S1 and S2 are Polish spaces. To declare the interactions between T1 and
T2, we specify a set of synchronization labels Sync ⊆ Γ1 ∩ Γ2, a span S = (S, S1, S2) to
characterizes the state space of the composition, and an so-called agreement G = (LC 1,LC 2)
between T1 and T2. Here, LC 1 and LC 2 are so-called local constraints and for the moment,
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to present the central definition of this paper, it suffices to require LC 1,LC 2 ⊆ S × Prob(S).
Intuitively, we use local constraints to specify the behavior of local variables within local
transitions (see below).

I Definition 4. We define the STS T1 ‖S,G,Sync T2 = (S,Γ1 ∪ Γ2,→), where for all s ∈ S,
γ ∈ Γ, and µ ∈ Prob(S) it holds s→γ µ iff one of the following three conditions hold:

γ ∈ Γ1 \ Sync and s|1 →γ
1 µ|1 and sLC 2 µ.

γ ∈ Γ2 \ Sync and sLC 1 µ and s|2 →γ
2 µ|2.

γ ∈ Sync and s|1 →γ
1 µ|1 and s|2 →γ

2 µ|2.

To illustrate the crux of our composition operator, we regard the case where S is a Cartesian
span, i.e., S = S1×S2. Former approaches [49, 18] assume that T1 and T2 behave stochastically
independent in a synchronizing step, i.e., if s|1 →γ

1 µ1 and s|2 →γ
2 µ2, then s ↪→γ µ1 ⊗ µ2 in

T1 ‖⊗H T2. Our operator does not rely on any stochastic assumptions: Instead of considering
only the independent coupling we take all the couplings into account, i.e., if s|1 →γ

1 µ1 and
s|2 →γ

2 µ2, then s→γ µ for all couplings µ of (µ1, µ2). During a discussion about the example
from the introduction and SHMAs, we will see how additional stochastic information between
the components can be incorporated within our general framework.

Local constraints. Our composition operator is indexed by a span, which determines the
dependencies between the states of T1 and T2. For instance, one can specify shared and
local variables using the variable span. When composing STSs, one has to ensure that local
transitions and variables of the components behave in a compatible way. Let us illustrate this
and regard again the case where S is a Cartesian span. If T1 performs a local transition, i.e., a
transition that is labeled by some γ ∈ Γ1 \Sync, then the current state of T2 must not change.
The properties of a local constraint should hence guarantee sLC 2 µ iff µ|2 = Dirac[s|2]. It
then follows that 〈s1, s2〉 →γ µ1 ⊗Dirac[s2] for all s2 ∈ S2 and s1 →γ

1 µ1 where γ ∈ Γ1\Sync.
Of course, the same discussion applies for T1 and the local constraint LC 1. This leads to the
following requirements for a local constraint LC 2 ⊆ S × Prob(S):

For all s ∈ S and µ ∈ Prob(S), if µ|2 = Dirac[s|2], then sLC 2 µ.
For all sLC 2 µ and µ′ ∈ Prob(S), if µ|1 = µ′|1 and µ|2 = µ′|2, then sLC 2 µ

′.
For all sLC 2 µ, if µ|1 Sc Dirac[s|2], then µ is a S-coupling of (µ|1,Dirac[s|2]).

The requirements for LC 1 are similar. Intuitively, the first requirement for LC 2 ensures that
the STS T2 cannot block a local transition of T1 which is not critical from the view of T2, i.e.,
variables of T2 are not affected within the transition of T1. Thus, such local transition of T1
are independent of T2 and can happen autonomously. Different couplings of given probability
measures cannot be distinguished within local constraints imposed by the second property.
The third requirement intuitively demands that whenever T1 performs a local transition
where no local variables of T2 are modified, the state of T2 must not change. In case of a
Cartesian span the above requirements yield

LC 2 = {〈〈s1, s2〉, µ1 ⊗ Dirac[s2]〉 ; s1 ∈ S1 and s2 ∈ S2 and µ1 ∈ Prob(S1)} and
LC 1 = {〈〈s1, s2〉,Dirac[s1]⊗ µ2〉 ; s1 ∈ S1 and s2 ∈ S2 and µ2 ∈ Prob(S2)}.

Hence, the agreement G is uniquely determined by STSs T1 and T2. We thus simply write
T1 ‖×,Sync T2 instead of T1 ‖S,G,Sync T2. Observe that T1 ‖×,Sync T2 and T1 ‖⊗Sync T2 are
not bisimilar in general. This is due to the fact that our composition operator does not
incorporate any stochastic assumptions concerning the interaction of T1 and T2. In case
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where S is a variable span, i.e., S1 = Ev(Var1), S2 = Ev(Var2), and S = Ev(Var1 ∪ Var2) for
some sets of variables Var1 and Var2, there are more possible local constraints:

LC ′2 = {〈e, η〉 ∈ S × Prob(S) ; η|SVar = Dirac[e|SVar] implies η|Var2 = Dirac[e|Var2 ]},
LC ′′2 = {〈e, η〉 ∈ S × Prob(S) ; η|LVar2 = Dirac[e|LVar2 ]}, and
LC ′′′2 = {〈e, η〉 ∈ S × Prob(S) ; η|Var2 = Dirac[e|Var2 ]}

are local constraints and LC ′2 ⊇ LC ′′2 ⊇ LC ′′′2 . Here, LVar2 = Var2 \ Var1 and SVar =
Var1 ∩ Var2. Considering for instance LC ′′2 , all the variables in LVar2 cannot be modified
within a local transition of T1. Constraint LC ′′′2 is more restrictive: Here, all the variables in
Var2 are controlled by T2 and cannot be modified in a local transition of T1, i.e., variables in
SVar can be observed by T1 only. It turns out LC ′2 ⊇ LC 2 for every local constraint LC 2.
Every local constraint hence enjoys the property that variables in Var2 must not be adapted
within a local transition of T1 if the evaluations of the variables in SVar remain the same.

Example from the introduction. We return to the introductory stochastic systems
illustrated in Section 1. Of course, Bat1, Bat2, and Dev can be seen as STSs with sets of states

v1 = 0, v2 = 0

v1 = 0, v2 = 1/3

v1 = 1/3, v2 = 0

v1 = 1/3, v2 = 1/3

Bat12:

α

r1
r2

r3
r4

Ev({v1}), Ev({v2}), and Ev({v1, v2}), respectively.
When composing them, we need not to worry about
local constraints as there is only one synchronization
action α. In what follows, we rely on the obvious
variable spans. The composition of Bat1 and Bat2
yields the STS Bat12 depicted on the right. There
are infinitely many transitions: Every solution of the
linear equation system r1 + r2 = r1 + r3 = r2 + r4 =
r3 +r4 = 1/2 where r1, r2, r3, r4 ∈ [0, 1] represents a
coupling of the involved measures. When composing
Bat12 and Dev, the set of all couplings is refined. We are moreover able to handle more
complex stochastic information that depend on the operational behavior of the components.
To illustrate this, assume systems which result from Bat1 and Bat2 such that α can be
executed repeatedly (e.g., add some local transitions back to the blank state). An additional
component might encode that, if the system has crashed repeatedly in the past, the event
that the stored energy drops to 0 in both batteries at the same time becomes more likely
within an execution of α. We emphasize that the ordinary composition of STSs can be
expressed within our framework using an additional component (cf. appendix).

3.3 Congruence
In the context of process calculi, an important issue of bisimulation is the compatibility
with syntactic operators in the process calculus, such as parallel composition. We show
that bisimulation is a congruence for our composition operator under reasonable side-
constraints, i.e., our composition operator enjoys the substitution property with respect to
bisimulation. Suppose STSs Ta1 = (Sa1,Γ1,→a1), Ta2 = (Sa2,Γ2,→a2), Tb1 = (Sb1,Γ1,→b1),
and Tb2 = (Sb2,Γ2,→b2) such that Ta1 ∼ Tb1 and Ta2 ∼ Tb2. Define

Ta = Ta1 ‖Sa,Ga,Sync Ta2 and Tb = Tb1 ‖Sb,Gb,Sync Tb2,

where Sync ⊆ Γ1 ∩ Γ2, Sa = (Sa, Sa1, Sa2) and Sb = (Sb, Sb1, Sb2) are proper spans, and
Ga = (LCa1,LCa2) and Gb = (LC b1,LC b2) are agreements. Assume R1 is a bisimulation for
(Ta1, Tb1) and R2 is a bisimulation for (Ta2, Tb2) and define

R1 ∧R2 = {〈sa, sb〉 ∈ Sa × Sb ; sa|1R1 sb|1 and sa|2R2 sb|2}.
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We aim to show that R1 ∧R2 is a bisimulation for (Ta, Tb) and hence Ta ∼ Tb. However, we
cannot expect this result without any compatibility requirements for the involved spans and
agreements, since important relationships concerning the communication of the components
are determined within our composition operator. This motivates the following notions: We
refer to the tuple C = (Sa,Sb, R1, R2) as span connection and call C adequate if for all
µa1R

w
1 µb1 and µa2R

w
2 µb2 it holds µa1 Sc

a µa2 iff µb1 Sc
b µb2. Intuitively, adequacy requires

that the existence of span couplings is preserved by the relations R1 and R2. Observe, if
Sa and Sb are Cartesian spans, then C is always adequate. The local constraints LCa2 and
LC b2 are called C-bisimilar if for all sa (R1 ∧R2) sb holds:

For all µa ∈ Prob(Sa) and µb1 ∈ Prob(Sb1), if sa LCa2 µa and µa|1Rw
1 µb1, then there is

µb ∈ Prob(Sb) where sb LC b2 µb, µb|1 = µb1, and µa|2Rw
2 µb|2.

For all µb ∈ Prob(Sb) and µa1 ∈ Prob(Sa1), if sb LC b2 µb and µa1R
w
1 µb|1, then there is

µa ∈ Prob(Sa) where sa LCa2 µa, µa|1 = µa1, and µa|2Rw
2 µb|2.

LCa1 and LC b1 are called C-bisimilar if analogous properties are fulfilled. Observe that
the stated requirement is motivated by the definition of bisimulation in the sense that each
element of a local constraint LCa2 can be mimicked by LC b2 regarding the relations R1 and
R2. If LCa2 and LC b2 as well as LCa1 and LC b1 are C-bisimilar, respectively, then we refer
to Ga and Gb as C-bisimilar.

I Theorem 5. If the span connection C is adequate and the agreements Ga and Gb are
C-bisimilar, then R1 ∧R2 is a bisimulation for (Ta, Tb).

The challenging part of the proof can be summarized by the following claim (cf. appendix):
Let µa ∈ Prob(Sa), µb1 ∈ Prob(Sb1), and µb2 ∈ Prob(Sb2) where µa|1Rw

1 µb1 and µa|2Rw
2 µb2.

Then there is an Sb-coupling µb of (µb1, µb2) such that µa (R1∧R2)w µb. Our proof of this claim
proceeds as follows. Assume W1 is a weight function for (µa|1, R1, µb1) and W2 is a weight
function for (µa|2, R2, µb2). Using disintegration of measures [39], there are Markov kernels
k1 : Sa1 → Prob(Sa2) and k2 : Sb1 → Prob(Sb2) such that W1 = µa|1 ok1 and W2 = µa|2 ok2.
The crucial point is now to argue that there is a Markov kernel k : Sa → Prob(Sb) where k(sa)
is an Sb-coupling of (k1(sa|1), k2(sa|2)) for µa-almost all sa ∈ Sa. Here, we make use of an
Sb-inverse (cf. Theorem 3). With this Markov kernel at hand, we define W ∈ Prob(Sa × Sb)
by W = µ o k and µb ∈ Prob(Sb) by µb(Mb) = W (Sa ×Mb). It turns out that µb is an
appropriate Sb-coupling. To summarize, we defined a potential weight function W out of the
weight functions W1 and W2 and then introduced the measure µb via W .

Path measures. When resolving the non-determinism in STSs using schedulers, one
obtains a probability measure – the path measure – on the set of all infinite paths of the
STS [18]. Besides our congruence result, we expect compatibility of path measures induced
by schedulers in our compositional framework. To provide an intuition, assume STSs T1 and
T2 and let T be an STSs obtained by a composition involving T1 and T2. Assume that S1
and S2 are schedulers for T1 and T2, respectively, and S is a scheduler for T . If S satisfies
certain compatibility requirements regarding S1 and S2, one can show that the induced
path measure for T is a coupling of the corresponding path measures for T1 and T2. Here,
we consider a natural span that connects the sets of all infinite paths of T1, T2, and T .

4 Stochastic hybrid motion automata

We apply our general results of the preceding sections and develop a compositional modeling
framework for stochastic hybrid systems. The formal definition of our model relies on a
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standard schema of hybrid automata [3, 34, 31], i.e., there are a discrete control structure
consisting of locations and jumps in-between, and continuous variables whose values evolve
according to a flow formalized by a motion function. Within a jump, the variables can be
updated instantaneously. The novelty of our approach is that every jump is indexed by a set
of those variables that are not affected in the corresponding discrete step. As a consequence,
the adjustment of flows is always accompanied by a specific command.

Syntax. Every jump in our hybrid-automaton model is labeled by a command: Given a set
Var of variables and a set Act of actions, a command on (Var,Act) is a tuple 〈c, α, V, upd〉
consisting of a guard c ∈ Cond(Var), an action α ∈ Act, a set of disabled variables V ⊆ Var,
and an (non-deterministic) update upd : Ev(Var)→ 2Prob(Ev(Var)) where η|V = Dirac[e|V ] for
all η ∈ upd(e) and e ∈ Ev(Var). Cmd(Var,Act) denotes the set of all commands on (Var,Act).
Intuitively, a jump is enabled if the current variable evaluation satisfies the guard. The action
name indicates whether the jump is an internal location switch or subject to an interaction
with another component. The set of disabled variables specifies those variables which are not
affected within the jump. This also clarifies the additional requirement for updates.

I Definition 6. An SHMA is a tuple (Loc,Var,Act, Inv,Mot,�) where Loc is a finite set
of locations, Var is a set of variables, Act is a set of actions, Inv : Loc → Cond(Var) is an
invariant function, Mot : Loc→ 2Flow(Var) is a motion function which assigns a shift-invariant
set of flows to every location, and � ⊆ Loc× Cmd(Var,Act)× Prob(Loc) is a jump relation.

We write l−[cmd ]�λ instead of 〈l, cmd, λ〉 ∈�. The behavior in a location l depends on the
current variable evaluation e. In a discrete step, a jump l −[ c, α, V, upd ]� λ where e |= c is
chosen non-deterministically. Then, action α is executed and a successor location is sampled
according to λ. The evaluation of the variables changes according to a non-deterministically
chosen probability measure contained in upd(e). Entering a location l′, a flow in Mot(l′) is
also chosen non-deterministically and the variables then evolve according to this flow.

Semantics. Every SHMA H = (Loc,Var,Act, Inv,Mot,�) can be interpreted as an STS
resulting from unfolding. In what follows, S = Loc × Flow(Var) denotes the set of states.
Notice, S constitutes a Polish space as Flow(Var) is known to be a Polish space [8]. Intuitively,
a state 〈l, ϑ〉 represents the actual location l and the current active flow ϑ, i.e., ϑ corresponds
to the flow chosen in the preceding jump. Moreover, ϑ(0) stands for the present variable
evaluation. We call 〈l, ϑ〉 well-formed if ϑ ∈ Mot(l) and ϑ(0) |= Inv(l).

There are two kinds of transitions within our STS for H, namely transitions where time
passes and transitions corresponding to a jump. Time can pass in a location l as long as the
flow does not violate the invariant Inv(l). Transitions for jumps are more intricate. Assume
l −[ c, α, V, upd ]� λ is enabled in state 〈l, ϑ〉, i.e., e |= c where e = ϑ(0). Basically, jumps
in SHMAs proceed in two phases: First, a successor location and a variable evaluation are
sampled according to λ and some η ∈ upd(e), respectively. In the second phase, a flow is
chosen non-deterministically for those variables which are not disabled, i.e., the variables
in Var \ V . This is formalized as follows: A flow adapter for (ϑ, V ) is a Borel function
χ : Loc× Ev(Var)→ Flow(Var) such that for all l′ ∈ Loc and e′, ẽ′ ∈ Ev(Var):

χ(l′, e′)|V = ϑ|V and e′|Var\V = ẽ′|Var\V implies χ(l′, e′)|Var\V = χ(l′, ẽ′)|Var\V .

Intuitively, if state 〈l′, e′〉 is sampled within the first phase of a jump, then χ(l′, e′) represents
the new flow, i.e., the flow which determines the evolution of variables in a subsequent time
passage. The first condition for a flow adapter requires that the flow for disabled variables is
not allowed to change. The required implication ensures that a flow is chosen independently
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of the disabled variables. This is important for our compositional approach, as we want to
make sure that the choice of a new flow in an SHMA obtained by composition does not
depend on the local variables of the respective communication partners. If χ is a flow adapter,
then we define the auxiliary function χ̂ : Loc× Ev(Var)→ S, χ̂(l, e) = 〈l, χ(l, e)〉.

I Definition 7. The semantics of H is given by the STS JHK = (S,T ∪ Act,→), where → is
the smallest relation satisfying the following requirements for all well-formed states s = 〈l, ϑ〉:

For all T ∈ T, if ϑ(t) |= Inv(l) for every t ∈ [0, T ], then s→t Dirac[〈l, ϑ⊕ T 〉].
For all l−[ c, α, V, upd ]�λ, η ∈ upd(e), couplings ν of (λ, η), and flow adapter χ for (ϑ, V ),
if e |= c and for ν-almost all 〈l′, e′〉 ∈ Loc× Ev(Var) the state χ̂(l′, e′) is well-formed, then
s→α χ̂](ν). Here, we abbreviate e = ϑ(0).

An SHMA almost surely enters a well-formed state, i.e., if s→γ µ where γ ∈ T ∪ Act, then
s′ is well-formed for µ-almost all s′ ∈ S. We emphasize that for our approach concerning the
adaption of flows it is crucial that the current flow is part of a state. Otherwise, it would be
not possible to ensure that the flow for disabled variables is not allowed to change.

Composition. We now introduce a composition operator for SHMAs. For i ∈ {1, 2} let
Hi = (Loci,Vari,Acti, Invi,Moti,�i) be SHMAs. When running H1 and H2 in parallel, H1
and H2 synchronize on all actions contained in Act1 ∩ Act2 and the variables in Var1 ∩ Var2
are shared, i.e., Var1 \Var2 and Var2 \Var1 represent the sets of the respective local variables.
Abbreviate Loc = Loc1× Loc2, Var = Var1 ∪Var2, and Act = Act1 ∪Act2. Let upd1 and upd2
be updates for Var1 and Var2, respectively. The Var-lifting of (upd1, upd2) is the update upd
for Var such that for all e ∈ Ev(Var), upd(e) consists of all η ∈ Prob(Ev(Var)) where η|Var1 = η1
and η|Var2 = η2 for some η1 ∈ upd(e|Var1) and η2 ∈ upd(e|Var2). We define Var-liftings with
respect to an update accordingly, i.e., upd is a Var-lifting of upd1 if for all e ∈ Ev(Var),
upd(e) consists of all η ∈ Prob(Ev(Var)) where η|Var1 = η1 for some η1 ∈ upd(e|Var1) and
η|Var\Var1 = Dirac[e|Var\Var1 ]. Notice, the definition of Var-liftings involves couplings concerning
a variable span, which provides a connection to the preceding sections.

I Definition 8. H1 ‖ H2 = (Loc,Var,Act, Inv,Mot,�) is the SHMA with Inv(l1, l2) =
Inv1(l1)∧ Inv2(l2) and Mot(l1, l2) = {ϑ ∈ Flow(Var) ; ϑ|Var1 ∈ Mot1(l1) and ϑ|Var2 ∈ Mot2(l2)}
for all 〈l1, l2〉 ∈ Loc and � is the smallest relation such that 〈l1, l2〉 −[ c, α, V, upd ]� λ, if λ is
a coupling of λ1 ∈ Prob(Loc1) and λ2 ∈ Prob(Loc2) and one of the following statements hold:

α ∈ Act1 \ Act2, λ2 = Dirac[l2], and there is l1 −[ c1, α, V1, upd1 ]�1 λ1 such that c = c1,
V = V1 ∪ (Var2 \ Var1), and upd is the Var-lifting of upd1.
α ∈ Act2 \ Act1, λ1 = Dirac[l1], and there is l2 −[ c2, α, V2, upd2 ]�2 λ2 such that c = c2,
V = V2 ∪ (Var1 \ Var2), and upd is the Var-lifting of upd2.
α ∈ Act1 ∩ Act2 and there are l1 −[ c1, α, V1, upd1 ]�1 λ1 and l2 −[ c2, α, V2, upd2 ]�2 λ2
where c = c1 ∧ c2, V = V1 ∪ V2, and upd is the Var-lifting of (upd1, upd2).

When composing SHMAs, local variables of participating SHMAs become disabled for
corresponding internal jumps. Within our semantics, flow adapters thus ensure that the
adaption of flows in internal jumps in H1 ‖ H2 are independent of the local variables of
the respective communication partners. Moreover, flows for local variables of H2 cannot be
adapted within an internal jump of H1 and vice versa. It is easy to see that the composition
operator for SHMAs is commutative and associative.

Congruence. We aim for a congruence theorem for SHMAs relying on Theorem 5. For
this, we relate the composition of SHMAs with our general approach towards a composition

ICALP 2016



XXX:12 Composition of stochastic transition systems

of STSs, i.e., we represent the STS JH1 ‖ H1K as a composition involving the components
JH1K and JH2K. Notice that sampling a successor location in H1 ‖ H2 happens according to
a coupling measure. This observation also applies when combining measures for locations
and variable evaluations within our semantics of SHMAs. To this end, it is easy to define
the corresponding span S and agreement G such that

JH1 ‖ H2K = JH1K ‖S,G,Act1∩Act2 JH2K.

More precisely, S is a span arising from a Cartesian span for the locations and a span for the
sets of flows. For the agreement G, we regard local constraints where the shared variables can
be modified by both involved systems H1 and H2. The obtained representation of JH1 ‖ H2K
underpins again the flexibility of our composition operator for STS.

We rephrase Theorem 5 in the context SHMAs. Two SHMAs are bisimilar if their
semantics in terms of STSs are bisimilar. Let Ha1 and Hb1 be SHMAs with the same sets of
variables Var1 and actions Act1 and similar, let Ha2 and Hb2 be SHMAs with variables Var2
and actions Act2. Abbreviate LVar1 = Var1\Var2, LVar2 = Var2\Var1, and SVar = Var1∩Var2.

I Theorem 9. Let R1 and R2 be bisimulations for (Ha1,Hb1) and (Ha2,Hb2), respectively.
Ha1 ‖ Ha2 and Hb1 ‖ Hb2 are bisimilar if R1 and R2 do not involve shared variables, i.e.,

R1 = {〈〈la1, ϑa1|LVar1 ] ϑ
S〉, 〈lb1, ϑb1|LVar1 ] ϑ

S〉〉 ;
〈la1, ϑa1〉R1 〈lb1, ϑb1〉 and ϑS ∈ Flow(SVar)},

R2 = {〈〈la2, ϑa2|LVar2 ] ϑ
S〉, 〈lb2, ϑb2|LVar2 ] ϑ

S〉〉 ;
〈la2, ϑa2〉R2 〈lb2, ϑb2〉 and ϑS ∈ Flow(SVar)}.

Our requirement that R1 and R2 do not distinguish between shared variables yields the
compatibility assumption required for Theorem 5. Our proof then simply exploits the
representation of JHa1 ‖ Ha2K and JHb1 ‖ Hb2K in terms of a composition of STSs.

5 Concluding remarks

In this paper, we introduced a generic parallel-composition operator for STSs and SHMAs.
The essential new feature that distinguishes the novel composition from previous ones is that
it uses the mathematical concepts of spans and couplings to model the effect of composing
(potentially dependent) stochastic behaviors. The latter is crucial for systems where the
components communicate via shared variables. A further feature of the novel stochastic-
hybrid-system model (SHMA) is that the adaption of flows depends on commands rather
happening on arbitrary occasions. We proved important algebraic properties in the context
of composition, e.g., congruence with respect to bisimulation. This shows that even within
our generic operator one does not have to forgo desired properties of compositional systems.
There is plenty room for further elaborations. Firstly, we are going to develop a mathematical
theory for SHMA that also involves stochastic flows. Furthermore, we will work on a modeling
language for couplings and spans in order to obtain a theoretical basis for practical tools. Also
other kinds of models, where spans yield a powerful approach for compositional modeling,
could be investigated. Moreover, our approach concerning couplings as a modeling formalism
enables many new verification questions, e.g., for directly reasoning about the coordination
between components.
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A Descriptive set theory

A.1 In the zoo of spaces

Polish spaces. A Polish space is a separable completely metrizable topological space. We
endow a Polish space X with its Borel sigma-algebra, i.e., the sigma-algebra generated by
the open (or equivalently closed) subsets of X. Moreover, we refer to a measurable subset of
X as Borel set.

I Remark 10 (Proposition 3.3 and Theorem 17.23 in [39]). The following statements hold:

1. If X is a Polish space and A ⊆ X is an open or a closed subset of X, then A is a Polish
space when equipped with the induced topology concerning X.

2. If X is a Polish space, then Prob(X) is a Polish space when equipped with the topology
of weak convergence.

3. If (Xn)n∈N is a sequence of Polish spaces, then
∏
n∈NXn is a Polish space when equipped

with the product product topology.

Standard Borel spaces. A measurable space (X,M) is called a standard Borel space if
there exists a Polish topology O on X such that Borel(O) =M (cf. Definition 12.5 in [39]).
Here, we refer to a topology O on X where (X,O) is a Polish space and Borel(O) =M as a
Polish topology for X. The Polish topology for X is not uniquely determined, which turns
to be beneficial, as the next remarks illustrate. As for Polish spaces we refer to measurable
subsets of standard Borel spaces as Borel sets.

I Remark 11 (Theorem 13.1 in [39]). Let (X,O) be a Polish space and M ⊆ X be a Borel
set. Then, there is a Polish topology OM on X such that O ⊆ OM , Borel(O) = Borel(OM ),
and M is clopen in OM .

I Remark 12 (Corollary 13.4 in [39]). Let X be a standard Borel space and M ⊆ X be a
Borel set. Then, M equipped with the induced sigma-algebra from X is also a standard
Borel space. Notice, the claim is basically a corollary from Remarks 10 and 11

I Remark 13 (Theorem 13.11 in [39]). Let (X1,O1) be a Polish space, (X2,O2) be a second-
countable space, and f : X1 → X2 be a Borel function. Then there is a Polish topology
Of on X1 such that O1 ⊆ Of , Borel(O1) = Borel(Of ), and f is (Of ,O2)-continuous. In
particular, the claim holds if X2 is a Polish space as every Polish space is second countable.

I Remark 14 (Corollary 4.5 in [55]). Let X be a standard Borel space and M ⊆ X be a
Borel set. Then, {Dirac[m] ; m ∈M} is Borel in Prob(X).

Disintegration of measures.

I Remark 15 (Disintegration, Exercise 17.35 in [39]). Let X1 and X2 be Borel spaces and
µ ∈ Prob(X). Define µ1 ∈ Prob(X1) by µ1 = f](µ) where f1 : X1×X2 → X1, f(x1, x2) = x1.
Then, there exists a Markov kernel k : X1 → Prob(X2) such that µ = µ1 o k, i.e., for all
Borel sets M ⊆ X1 ×X2, the function g : X1 → [0, 1], g(x1) = k(x1)([x1]M,−) is Borel and

µ(M) =
∫
g(x1) dµ1(x1).

Borel functions. A Borel function is a measurable function between standard Borel spaces.
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I Remark 16 (cf. Proposition 3.1.21 in [52]). Given standard Borel spaces X and Y and a
Borel function f : X → Y , then the graph of f is Borel in X × Y .

I Remark 17. Let X1 and X2 be Polish spaces and let f : X → Y be a function. If f is
Borel function, then f] is a Borel function (cf. Theorem 17.24 in [39]). If f is continuous,
then f] is continuous. Let us give recall the argument for the second part and assume that f
is continuous. Suppose a sequence of probability measures (µn)n∈N in Prob(X) such that
(µn)n∈N converges to µ ∈ Prob(X). We justify that (f](µn))n∈N converges to f](µ). Let
g : Y → [0, 1] be a bounded and continuous function. Then their composition g◦f : X → [0, 1],
g ◦ f(x) = g(f(x)) is bounded and continuous and therefore

lim
n→∞

∫
g(y) df](µn)(y)

= lim
n→∞

∫
g ◦ f(x) dµn(x)

=
∫
g ◦ f(x) dµ(x)

=
∫
g(y) df](µ)(y).

Thus, (f](µn))n∈N converges to f](µ). We conclude that f] is continuous.

Souslin sets. Given a Hausdorff space X, a subset M of X is called a Souslin set in X if
there is a Polish space XM and a continuous function f : XM → X such that f(XM ) = M

(cf. Definition 6.6.1 in [10]). The empty set is agreed to be Souslin as well. A Souslin space
is a Hausdorff space that is a Souslin set.

I Remark 18 (Theorem 6.6.7 in [10]). Every Borel subset of a Souslin space is a Souslin set.

I Remark 19 (Theorem 6.7.3 in [10]). Let X1 and X2 be Souslin spaces and f : X1 → X2 be
a Borel function. Then, f(M1) is Souslin in X2 for all Souslin sets M1 ⊆ X1 and f−1(M2) is
Souslin in X1 for all Souslin sets M2 ⊆ X2.

I Remark 20. There exists a Borel set M ⊆ R × R such that its projection on the first
coordinate is not Borel in R, i.e.,

M1 = {r1 ∈ R ; there is r2 ∈ R where 〈r1, r2〉 ∈M}

is a set, which is not Borel in R. Observe, M1 is Souslin set in R using Remark 19: since one
has f1(M) = M1 where f1 : X1 ×X2 → X1, f1(x1, x2) = x1.

I Remark 21 (Corollary 1.5.8 in [9] and Theorem 7.4.1 in [10]). Let X be Hausdorff space,
µ ∈ Prob(X), and M ⊆ X be Souslin. There exist Borel sets Ml,Mu ⊆ X such that
Ml ⊆M ⊆Mu and µ(Ml) = µ(Mu).

Compact sets. Let X be a topological space. We call a set P ⊆ Prob(X) tight if for every
ε ∈ R>0 there exists a compact subset K ⊆ X such that for all µ ∈ P it holds µ(K) > 1− ε
(cf. Section 5 in [8]).

I Remark 22 (Prokhorov’s theorem, Theorems 5.1 and 5.2 in [8]). Let X be a Polish space.
A set P of probability measures on X is tight iff P is relatively compact.

I Remark 23. Let X be a metric space and (xn)n be a sequence. Then, (xn)n converges in
X iff the set {xn ; n ∈ N} is compact in X. The claim follows from the fact that in metric
spaces the notions of compactness and sequential compactness coincide.
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Couplings. Remind the definition of couplings where X1 and X2 are measurable spaces:
Given µ1 ∈ Prob(X1) and µ2 ∈ Prob(X2), a coupling of (µ1, µ2) is a probability measure
µ ∈ Prob(X1 ×X2) such that for all measurable sets M1 ⊆ X1 and M2 ⊆ X2,

µ(M1 ×X2) = µ1(M1) and
µ(X1 ×M2) = µ2(M2).

I Proposition 24. Let X1 and X2 be measurable spaces, µ1 ∈ Prob(X1), and x2 ∈ X2.
There exists exactly one coupling of (µ1,Dirac[x2]), namely µ1 ⊗ Dirac[x2].

Proof. Suppose µ is a coupling of (µ1,Dirac[x2]). For all measurable sets M1 ⊆ X1 and
M2 ⊆ X2, if x2 /∈M2, then µ(M1 ×M2) = 0 since

µ(M1 ×M2) ≤ µ(Xa ×M2) = Dirac[x2](M2) = 0.

Given measurable sets M1 ⊆ X1 and M2 ⊆ X2 where x2 ∈M2, we obtain

µ(M1 ×M2) = µ(M1 ×X2)− µ(M1 × (X2 \M2)) = µ(M1 ×X2) = µ1(M1).

Putting things together we have µ(M1 ×M2) = µ1(M1) · Dirac[x2](M2) for all measurable
sets M1 ⊆ X1 and M2 ⊆ X2. From this the claim follows. J

A.2 Relations
In this section we study relations between measurable spaces and discuss important properties
for the remainder of this work.

Sections of relations. Given sets X1 and X2 and a relation R ⊆ X1 × X2, for every
x1 ∈ X1 and x2 ∈ X2 define

[x1]R,− = {x′2 ∈ X2 ; x1Rx
′
2} and [x2]−,R = {x′1 ∈ X1 ; x′1Rx2}.

I Remark 25 (Lemma 9.6.1 in [48]). Let X1 and X2 be measurable spaces and R ⊆ X1×X2
be measurable. For all x1 ∈ X1 and x2 ∈ X2 the sets [x1]R,− and [x2]−,R are measurable in
X1 and X2, respectively.

I Proposition 26. Let X1 and X2 be metric spaces and R ⊆ X1 × X2 be closed. Then,
[x1]R,− and [x2]−,R are closed in X2 and X1, respectively. Moreover, if X1 and X2 are
sigma-compact, then [x1]R,− and [x2]−,R are sigma-compact in X2 and X1, respectively.

Proof. For reasons of symmetry it suffices to consider the claims concerning the set [x1]R,−
for all x1 ∈ X1. Let x1 ∈ X1. Given the assumption that R is closed in X1 ×X2, it is easy
to see that [x1]R,− is closed in X2. Let us recall the argument and suppose (x2,n)n is a
sequence in [x1]R,− that converges in X2. Denote the limit by x2 ∈ X2. Then, (〈x1, x2,n〉)n
is a sequence in R which converges in X1 ×X2 and has limit 〈x1, x2〉. Since R is closed in
X1 ×X2, it follows x1Rx2 and hence x2 ∈ [x1]R,−. Thus, [x1]R,− is closed in X2.

Assume X2 is sigma-compact and let (Kn)n be a sequence of compact sets Kn ⊆ X2,
n ∈ N, such that X2 =

⋃
n∈NKn. Since [x1]R,− is closed in X2, the set [x1]R,− ∩ Kn is

compact in X2 for all n ∈ N. Moreover,

[x1]R,− =
⋃
n∈N

([x1]R,− ∩Kn)

and hence, [x1]R,− is sigma-compact in X2. J
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Stable pairs. Suppose sets X1 and X2 and a relation R ⊆ X1 ×X2. Given sets A1 ⊆ X1
and A2 ⊆ X2 we refer to the pair 〈A1, A2〉 as R-stable if R ∩ (A1 ×X2) = R ∩ (X1 ×A2).

Quasi-equivalence relations. In what follows we introduce quasi-equivalence relations,
that generalizes the notion of equivalence relations. Let X1 and X2 be sets and R ⊆ X1×X2
be a relation. We call R lr-total (in X1 ×X2) if [x1]R,− and [x2]−,R are non-empty for all
x1 ∈ X1 and x2 ∈ X2. We say that R is z-transitive if for all x1Rx2, x1Rx

′
2, and x′1Rx2 it

holds x′1Rx′2. We call R a quasi-equivalence (in X1 ×X2) if R is lr-total in X1 ×X2 and
z-transitive. The next proposition connects the notion of quasi-equivalences and equivalences.

I Proposition 27. Let X be a set. Every equivalence in X is a quasi-equivalence in X ×X.
Vice verca, a quasi-equivalence in X ×X, that is reflexive in X, is a equivalence in X.

Proof. Let R ⊆ X ×X be a relation. Assume R is an equivalence first. Using the reflexivity
of R it follows that R is lr-total. To see that R is z-transitive assume x1Rx2, x1Rx

′
2,

and x′1Rx2. Since R is symmetric it holds x′1Rx2, x2Rx1, and x1Rx
′
2. Applying the

transitivity of R we obtain x′1Rx′2 and hence R is z-transitive. This proves the first part of
the proposition.

Suppose R is an quasi-equivalence that is reflexive. Let x1Rx2. Since x1Rx1 and x2Rx2,
the z-transitivity of R yields x2Rx1, which shows that R is symmetric. It remains to show
that R is transitive. For that assume x1Rx2 and x2Rx

′
2. Since x2Rx2, the z-transitivity

of R again implies x1Rx
′
2. J

I Proposition 28. Let X1 and X2 be sets and R ⊆ X1 ×X2 be z-transitive. Then,

R =
⋃

x1 Rx2

[x2]−,R × [x1]R,−.

Moreover, for all x1Rx2 and x′1Rx′2,

[x2]−,R = [x′2]−,R
iff [x2]−,R ∩ [x′2]−,R 6= ∅
iff [x1]R,− ∩ [x′1]R,− 6= ∅
iff [x1]R,− = [x′1]R,−.

If in addition R is lr-total in X1 ×X2, then for every R-stable pair 〈M1,M2〉,

M1 =
⋃

x2∈M2

[x2]−,R and M2 =
⋃

x1∈M1

[x1]R,−.

Proof. The arguments are straightforward applying the definitions. J

We introduce a stronger variant of lr-totality in X1 × X2 next. Suppose X1 and X2
are measurable spaces and R ⊆ X1 ×X2. We call R strongly lr-total (in X1 ×X2) if there
are measurable functions f1 : X1 → X2 and f2 : X2 → X1 such that graph(f1) ⊆ R and
graph(f2)−1 ⊆ R i.e., for all x1 ∈ X1 and x2 ∈ X2,

x1Rf1(x1) and f2(x2)Rx2.

Moreover, R is a strong quasi-equivalence (in X1 ×X2) if R is strongly lr-total in X1 ×X2
and z-transitive. Obviously, every strong quasi-equivalence in X1 ×X2 is a quasi-equivalence
in X1 ×X2. Reverse direction later ...
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Measurable selection theorems. Let X2 and X1 be measurable spaces and f : X2 → X1
be some surjective function. To obtain an right inverse g of f , i.e., a function g : X1 → X2
where f(g(x1)) = x1 for all x1 ∈ X1, one can proceed as follows: For every x1 ∈ X1 pick
some element x2 ∈ X2 where f(x2) = x1 and define g(x1) = x2. However, one often needs
a function g which is measurable as well. The latter aspect illustrates one motivation for
the research on so-called measurable selection theorems in descriptive set theory [54, 10].
To describe the (more general) setting shortly one starts with a relation R ⊆ X1 × X2
and seeks for sufficient conditions that ensure the existence of a measurable selection of R,
i.e., a measurable function g : X1 → X2 where graph(g) ⊆ R. For the sketched application
concerning a right inverse of f we can then simply instantiate R = graph(f)−1 since here
every measurable selection of R constitutes a right inverse of f .

I Remark 29 (Theorem 3.5 in [54] or Theorem 6.9.6 in [10]). Let X1 and X2 be Polish spaces
R ⊆ X1 ×X2 be a Borel set. Assume [x1]R,− is non-empty and sigma-compact in X2 for all
x1 ∈ X1. Then there exists a Borel function f : X1 → X2 such that graph(f) ⊆ R.

I Proposition 30. Let X1 and X2 be sigma-compact Polish spaces and R ⊆ X1 ×X2 be a
closed set. Then, R is lr-total iff R is strongly lr-total. In particular, R is an quasi-equivalence
iff R is a strong quasi-equivalence.

Proof. Assume R is lr-total. Our task is to show that R is strongly lr-total. We first observe
that R is Borel in X1 ×X2. Let x1 ∈ X1 and x2 ∈ X2. Since R is lr-total the sets [x1]R,−
and [x2]−,R are non-empty. As R is closed in X1 × X2, the sets [x1]R,− and [x2]−,R are
closed and thus sigma-compact in X2 and X1, respectively (cf. Proposition 26). We are in
the situation of Remark 29 that finally yields the claim. J

Diagonal relation. We introduce a special equivalence relation on a set X next: The
diagonal relation on X is given by

DiagX = {〈x1, x2〉 ∈ X ×X ; x1 = x2}.

I Remark 31. Given a topological space X, it is well-known that X is Hausdorff iff the
diagonal relation on X is closed in X ×X. It follows that for every standard Borel space X
the diagonal relation on X is Borel in X ×X. The argument is straightforward: Suppose O
is a Polish topology for X, then DiagX is closed in O ⊗O and hence Borel in X ×X.

Countably separated relations. When we discuss weight functions in Section A.3 count-
ably separated relations will become of crucial interest. Let X1 and X2 be measurable spaces
and R ⊆ X1 ×X2. We say that R is countably separated if there exists a standard Borel
space X and measurable functions κ1 : X1 → X and κ2 : X2 → X such that

R = {〈x1, x2〉 ∈ X1 ×X2 ; κ1(x1) = κ2(x2)}.

Here, we then say that (X,κ1, κ2) countably separates R. Notice that if R is countably
separated, then R is an quasi-equivalence in X1×X2. The idea behind the notion of countably
separated relations is to distinguish the sets [x2]−,R × [x1]R,− by assigning to them an
element of X where x1Rx2. Indeend, for all x1Rx2 and 〈x′1, x′2〉 ∈ [x2]−,R× [x1]R,− we have
κ1(x′1) = κ2(x′2). This idea is not new for the case where X1 = X2 (cf. Exercise 5.1.10 in [52]):
Here, one defines that R ⊆ X1×X1 is countably separated if there are a standard Borel space
X and a measurable function κ : X1 → X such that R = {〈x1, x

′
1〉 ∈ X1×X1 ; κ(x1) = κ(x′1)}

(and thus R is an equivalence in X1). Notice, in this case X1 = X2 the requirement in our
definition is weaker.
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We know regard the question when a given quasi-equivalence relation is countably
separated. Here, we rely on results presented in [52] concerning equivalence relations. The
idea is to transform an quasi-equivalence relation in an appropriate equivalence relation and
then rely on results proven in [52].

I Theorem 32. Let X1 and X2 be Polish spaces and R ⊆ X1 × X2 be an strong quasi-
equivalence, which is closed in X1 ×X2. Then, R is countably separated.

Proof. Define R′ ⊆ R×R by

R′ = {〈〈x1, x2〉, 〈x′1, x′2〉〉 ∈ R×R ; x1Rx
′
2}.

We argue that R′ is an equivalence in R. Reflexivity is clear. Symmetry can be seen as
follows. Let 〈x1, x2〉R′ 〈x′1, x′2〉. Thus, x1Rx2, x′1Rx′2, and x1Rx

′
2. Since R is z-transitive,

we obtain x′1Rx2 and thus 〈x′1, x′2〉R′ 〈x1, x2〉. It remains to show transitivity. Suppose
〈x1, x2〉R′ 〈x′1, x′2〉 and 〈x′1, x′2〉R′ 〈x′′1 , x′′2〉. As R′ is symmetric, 〈x′′1 , x′′2〉R 〈x′1, x′2〉. We have
x1Rx

′
2, x′′1 Rx′2, and x′′1 Rx′′2 . The z-transitivity of R therefore implies x1Rx

′′
2 and hence

〈x1, x2〉R 〈x′′1 , x′′2〉.
Since R is closed in X1 ×X2, the set R equipped with the topology induced by X1 ×X2

constitutes a Polish space (cf. Remark 10). Furthermore, the set R′ is closed in R×R, which
can be seen as follows: Define the continuous function f : R×R→ X1 ×X2,

f(〈x1, x2〉, 〈x′1, x′2〉) = 〈x1, x
′
2〉.

Since R is closed in X1 ×X2, the set R′ = f−1(R) is closed in R×R.
We are in the situation of Proposition 5.1.11 in [52] and thus there exist a standard Borel

space X and a Borel function κ′ : R′ → X such that

R′ = {〈x, x′〉 ∈ R×R ; κ′(x) = κ′(x′)}.

We exploit that R is strongly lr-total in X1×X2 now. Let f1 : X1 → X2 and f2 : X2 → X2
be a Borel function such that x1Rf1(x1) for all x1 ∈ X1 and f2(x2)Rx2 for all x2 ∈ X2.
Define the Borel functions κ1 : X1 → X and κ2 : X2 → X by

κ1(x1) = κ(x1, f1(x1)) and
κ2(x2) = κ(x2, f2(x2))

for all x1 : X1 and x2 ∈ X2. We claim that (X,κ1, κ2) countably separates R.
We observe,

κ(x1, x2) = κ(x1, x
′
2) for all x1Rx2 and x1Rx

′
2 and

κ(x1, x2) = κ(x′1, x2) for all x1Rx2 and x′1Rx2.

Indeed, if x1Rx2 and x1Rx
′
2, then 〈x1, x2〉R′ 〈x1, x

′
2〉 and thus κ(x1, x2) = κ(x1, x

′
2). Analo-

gously, given x1Rx2 and x′1Rx2, then 〈x1, x2〉R′ 〈x′1, x2〉 and therefore κ(x1, x2) = κ(x′1, x2).
We finally show R = {〈x1, x2〉 ∈ X1 ×X2 ; κ1(x1) = κ2(x2)}. Let x1 ∈ X1 and x2 ∈ X2.

Assuming x1Rx2, it follows

κ1(x1) = κ(x1, f1(x1)) = κ(x1, x2) = κ(f2(x2), x2) = κ2(x2).

If κ1(x1) = κ2(x2), then

κ(x1, f1(x1)) = κ1(x1) = κ2(x2) = κ(f2(x2), x2)

and with that 〈x1, f1(x1)〉R′ 〈f2(x2), x2〉, which yields x1Rx2. J
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I Corollary 33. Let X1 and X2 be sigma-compact Polish spaces and R ⊆ X1 ×X2 be an
quasi-equivalence, which is closed in X1 ×X2. Then, R is countably separated.

Proof. Proposition 30 and Theorem 32 yield the claim. J

A.3 Weight functions
In the context of bisimulation for probabilistic systems an important question is how to lift a
relation R ⊆ X1 ×X2 to probability measures, i.e., to a relation R′ ⊆ Prob(X1)× Prob(X2).
For a conservative notion of a lifting it is for instance desirable to have Dirac[x1]R′ Dirac[x2]
for all x1Rx2. We recall the weight lifting of relations next, discuss related literature, and
present results that connect the weight lifting with ths so-called stable-pair lifting.

Let X1 and X2 be measurable spaces. Assuming a relation R ⊆ X1 × X2, a weight
function for (µ1, R, µ2) is a coupling W of (µ1, µ2) such that x1Rx2 for W -almost all
〈x1, x2〉 ∈ X1 × X2, i.e., there exists a measurable set R′ in X1 × X2 where R′ ⊆ R and
W (R′) = 1. Notice, R is not required to be measurable. The weight lifting of R is given by
Rw ⊆ Prob(X1)× Prob(X2) such that for all µ1 ∈ Prob(X1) and µ2 ∈ Prob(X2),

µ1R
w µ2 iff there is a weight function for (µ1, R, µ2).

The probability-theory community has investigated sufficient and necessary conditions
for the existence of a weight function for (µ1, R, µ2), e.g., [53, 28, 40, 50]. The most
distinguishing fact of these articles is the assumption concerning the involved spaces X1 and
X2. For instance, [53] considers Polish spaces, [28] investigates compact Hausdorff spaces,
and [50] generalizes results to Hausdorff spaces. Weight functions have been attended in the
verification community as well, e.g., [49] (cf. Section 8.2) or [7] where X1 and X2 are supposed
to be finite. In [7] one characterizes the existence of weight functions in terms of maximum
flows in networks (cf. Lemma 5.1) which enables an algorithm to decide µ1R

w µ2 where µ1,
µ2, and R are the inputs of the decision problem (cf. Lemma 5.2). The idea concerning
maximum flows in networks is also applied in [43, 42] (cf. the proof of Proposition A.7).

I Proposition 34. Let X1 and X2 be measurable spaces, R ⊆ X1×X2 be a relation, x1 ∈ X1,
and x2 ∈ X2. Then, Dirac[x1]Rw Dirac[x2] implies x1Rx2. Moreover, if there is a measurable
set R′ ⊆ X1 ×X2 where 〈x1, x2〉 ∈ R′ ⊆ R, then Dirac[x1]Rw Dirac[x2]. In particular, if X1
and X2 are standard Borel spaces, then

x1Rx2 iff Dirac[x1]Rw Dirac[x2].

Proof. Assume W is a weight function for (Dirac[x1], R,Dirac[x2]) and R′ ⊆ X1 ×X2 is a
measurable set such that R′ ⊆ R and W (R′) = 1. According to Proposition 24 we thus
have W = Dirac[x1]⊗Dirac[x2] and hence 〈x1, x2〉 ∈ R′ ⊆ R, that shows the first part of the
proposition.

Given a measurable set R′ ⊆ X1 × X2 where 〈x1, x2〉 ∈ R′ ⊆ R, then it easy to
see that Dirac[x1] ⊗ Dirac[x2] is a weight function for (Dirac[x1], R,Dirac[x2]) and hence
Dirac[x1]Rw Dirac[x2].

If a topological space satisfies the separation axiom T1, then the singleton subsets are
closed and hence Borel. Thus, whenever X1 and X2 are standard Borel spaces, then {〈x1, x2〉}
is Borel in X1 ×X2, which yields the remaining claim. J

Considering the literature concerning LMPs and NLMPs [24, 25, 19, 47, 23, 55, 6] there
is another approach of lifting relations to probability measures summarized next. Let X1

ICALP 2016



XXX:24 Composition of stochastic transition systems

and X2 be measurable spaces and R ⊆ X1 ×X2. The stable-pair lifting of R is the relation
Rs ⊆ Prob(X1)× Prob(X2) such that for all µ1 ∈ Prob(X1) and µ2 ∈ Prob(X2),

µ1R
s µ2 iff µ1(M1) = µ2(M2)

for all measurable M1 ⊆ X1 and M2 ⊆ X2where 〈M1,M2〉 is R-stable.

Remind, 〈M1,M2〉 is R-stable pair if R ∩ (M1 ×X2) = R ∩ (X1 ×M2).

I Proposition 35. Let X1 and X2 be measurable spaces and R ⊆ X1 ×X2. Then, Rw ⊆ Rs.

Proof. Let µ1 ∈ Prob(X1) and µ2 ∈ Prob(X2) be such that µ1R
w µ2. Assume W is a

weight function for (µ1, R, µ2) and R′ ⊆ X1 × X2 is a measurable set where R′ ⊆ R and
W (R′) = 1. Suppose measurable sets M1 ⊆ X1 and M2 ⊆ X2 where 〈M1,M2〉 is R-stable,
i.e., R∩(M1×X2) = R∩(X1×M2), also R′∩(M1×X2) = R′∩(X1×M2). SinceW (R′) = 1,

µ1(M1)
= W (M1 ×X2)
= W (R′ ∩ (M1 ×X2))
= W (R′ ∩ (X1 ×M2))
= W (X1 ×M2)
= µ2(M2).

From this we obtain µ1R
s µ2, which finishes our proof. J

I Example 36. Let X = {0, 1} and consider the relation R ⊆ X × X defined by R =
{〈0, 0〉, 〈1, 0〉, 〈1, 1〉}. Since 〈0, 1〉 /∈ R we obtain 〈Dirac[0],Dirac[1]〉 /∈ Rw by Proposition 34.
However, it is easy to see that 〈Dirac[0],Dirac[1]〉 ∈ Rs since 〈∅,∅〉 and 〈X,X〉 are the only
R-stable pairs. It follows Rs 6⊆ Rw. We observe that R is no quasi-equivalence.

We now discuss condtions which ensure that the two notions of liftings coincide, i.e., Rw = Rs.
Having Proposition 35 in mind, we aim for conditions where Rs ⊆ Rw. Example 36 teaches
us that it is appropriate to restrict to quasi-equivalences. In the discrete setting there is
the following result (cf. Lemma 8.2.2 in [49]): If R is an quasi-equivalence relation between
countable sets, then Rw = Rs. The proof idea can be applied for quasi-equivalence relations
R between arbitrary measurable spaces if R admits a countable Borel decomposition [24].

We aim to show that if R is countably separated, then Rs = Rw. For this purpose we
present the following two lemmas first.

I Lemma 37. Let X be a standard Borel space. For all µ1, µ2 ∈ Prob(X),

µ1 Diagw
X µ2 iff µ1 Diags

X µ2 iff µ1 = µ2.

Proof. Remind, DiagX is Borel in X ×X by Remark 31. It turns out that µDiagw
X µ for all

µ ∈ Prob(X). Let us see why and define the Borel function f : X → X ×X, f(x) = 〈x, x〉.
Then,

f](µ)(DiagX) = µ(f−1(DiagX)) = µ(X) = 1

and for all Borel sets M ⊆ X it holds f−1(M ×X) = M and f−1(X ×M) = M and thus,

f](µ)(M ×X) = µ(f−1(M ×X)) = µ(M) and
f](µ)(X ×M) = µ(f−1(X ×M)) = µ(M).
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Therefore, f](µ) is a weight function for (µ,DiagX , µ) and thus µ1 Diagw
X µ2.

Let µ1, µ2 ∈ Prob(X) be such that µ1 Diagw
X µ2. Proposition 35 yields µ1 Diags

X µ2. For
every Borel set M ⊆ X the pair 〈M,M〉 is DiagX -stable and hence µ1(M) = µ2(M). It
follows µ1 = µ2, which yields the claimed equivalence. J

I Lemma 38. Let X1, X2, X̃1, and X̃2 be standard Borel spaces, R ⊆ X1 × X2, and
µ1 ∈ Prob(X1) and µ2 ∈ Prob(X2). Moreover, assume Borel functions f1 : X1 → X̃1 and
f2 : X2 → X̃2. Define

µ̃1 = (f1)](µ1), µ̃2 = (f2)](µ2), and R̃ = {〈f1(x1), f2(x2)〉 ; x1Rx2}.

The following statements hold:

1. µ1R
w µ2 implies µ̃1 R̃

w µ̃2.
2. µ1R

s µ2 implies µ̃1 R̃
s µ̃2.

Proof. Ad (1). Let Õ1 and Õ2 be Polish topologies for X̃1 and X̃2, respectively. According
to Remark 13 there are Polish topologies O1 and O2 on X1 and X2, respectively, such that
f1 is (O1, Õ1)-continuous and f2 is (O2, Õ2)-continuous. In what follows we suppose X1 and
X2 are equipped with the topologies O1 and O2, respectively. Define the continuous function
f : X1 ×X2 → X̃1 × X̃2,

f(x1, x2) = 〈f1(x1), f2(x2)〉.

Notice, R̃ = f(R). Assume µ1R
w µ2 and let W be a weight function for (µ1, R, µ2). Define

W̃ = f](W ).

We claim that W̃ is a weight function for (µ̃1, R̃, µ̃2). For every Borel set M̃1 ⊆ X̃1 it holds
f−1

1 (M̃1)×X2 = f−1(M̃1 × X̃2) and therefore,

µ̃1(M̃1) = µ1(f−1
1 (M̃1)) = W (f−1

1 (M̃1)×X2) = W (f−1(M̃1 × X̃2)) = W̃ (M̃1 × X̃2).

Analogously, µ̃2(M̃2) = W̃ (X̃1 × M̃2) for all Borel sets M̃2 ⊆ X̃2. Therefore, W̃ is a coupling
of (µ̃1, µ̃2).

It remains to show that x̃1 R̃ x̃2 for W̃ -almost all 〈x̃1, x̃2〉 ∈ X̃1 × X̃2. Let R′ ⊆ X1 ×X2
be a Borel set such that R′ ⊆ R and W (R′) = 1. Then, f(R′) is a Souslin set in X̃1 × X̃2.
According to Remark 21 there exist Borel sets R̃l, R̃u ⊆ X̃1× X̃2 such that R̃l ⊆ f(R′) ⊆ R̃u
and W̃ (R̃l) = W̃ (R̃u). Using R′ ⊆ f−1(f(R′)) ⊆ f−1(R̃u) we obtain

W̃ (R̃l) = W̃ (R̃u) = W (f−1(R̃u)) ≥W (R′) = 1

Since R̃l ⊆ f(R′) ⊆ f(R) = R̃ it follows that W̃ is indeed a weight function for (µ̃1, R̃, µ̃2).
Ad (2). We assume µ1R

s µ2. Let M̃1 ⊆ X̃1 and M̃2 ⊆ X̃2 be measurable sets such that
〈M̃1, M̃2〉 is a R̃-stable pair. We argue that 〈f−1

1 (M̃1), f−1
2 (M̃2)〉 is R-stable first. Let x1Rx2

where x1 ∈ f−1
1 (M̃1). Then, f1(x1) R̃ f2(x2) and f1(x1) ∈ M̃1. Since 〈M̃1, M̃2〉 is R̃-stable, it

thus follows f2(x2) ∈ M̃2 and so x2 ∈ f−1
2 (M̃2). Therefore, R∩ (f−1

1 (M̃1)×X2) ⊆ R∩ (X1×
f−1

2 (M̃2)). One analogously shows reverse inclusion R∩(f−1
1 (M̃1)×X2) ⊇ R∩(X1×f−1

2 (M̃2)).
We obtain that 〈f−1

1 (M̃1), f−1
2 (M̃2)〉 is R-stable. Using µ1R

s µ2,

µ̃1(M̃1) = µ1(f−1
1 (M̃1)) = µ2(f−1

2 (M̃2)) = µ̃2(M̃2).

This finally implies µ̃1 R̃
s µ̃2. J
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I Theorem 39. Let X1 and X2 be standard Borel spaces and R ⊆ X1 × X2. Suppose
(X,κ1, κ2) countably separates R. Then, Rw = Rs. Moreover, for all µ1 ∈ Prob(X1) and
µ2 ∈ Prob(X2),

µ1R
w µ2 iff µ1R

s µ2 iff (κ1)](µ1) = (κ2)](µ2).

Proof. Let µ1 ∈ Prob(X1) and µ2 ∈ Prob(X2). In Proposition 35 we have already seen the
first implication, i.e., µ1R

w µ2 implies µ1R
s µ2. Assume µ1R

s µ2 now. Since (X,κ1, κ2)
countably separates R,

DiagX = {〈κ1(x1), κ2(x2)〉 ; x1Rx2}.

Therefore, (κ1)](µ1) Diags
X (κ2)](µ2) by Lemma 38 (2). and hence (κ1)](µ1) = (κ2)](µ2)

applying Lemma 37. For the remaining implication, i.e., there is a weight function for
(µ1, R

w, µ2) provided (κ1)](µ1) = (κ2)](µ2), see Proposition A.7 in [43, 42]. J

We use the notations from Theorem 39 and consider the following implication,

(κ1)](µ1) = (κ2)](µ2) implies µ1R
w µ2.

This implication has been also attended in [24, 25, 26, 27] where one discusses this problem
in a categorial setting in the context of the existence of pullbacks. For a quick overview and
more details we refer to [47] (cf. the first part of Chapter 13).

Let us state two important corollaries of Theorem 39.

I Corollary 40. Let X1 and X2 be Polish spaces and R ⊆ X1 × X2 be an strong quasi-
equivalence, which is closed in X1 ×X1. Then, Rw = Rs.

Proof. Theorems 32 and 39 yield the claim. J

I Corollary 41. Let X1 and X2 be sigma-compact Polish spaces and R ⊆ X1 ×X2 be an
quasi-equivalence, that is closed in X1 ×X2. Then, Rw = Rs.

Proof. The claim follows from Corollary 33 and Theorem 39. J

B Spans

B.1 Basic notions
I Definition 42. A span is a tuple (X,X1, X2, ι1, ι2) consisting of Polish spaces X, X1, and
X2 and continuous functions ι1 : X → X1 and ι2 : X → X2. We call a span (X,X1, X2, ι1, ι2)
proper if ι−1

1 (K1) ∩ ι−1
2 (K2) is compact in X for all compact sets K1 ⊆ X1 and K2 ⊆ X2.

Let X = (X,X1, X2, ι1, ι2) be a span. We refer to ι1 and ι2 as the X -projections. If there is
no room for confusion, then we write x|1 and x|2 instead of ι1(x) and ι2(x), respectively, for
all x ∈ X. For a short notation we sometimes drop the X -projections from the notation and
refer to (X,X1, X2) as a span. Given x1 ∈ X1 and x2 ∈ X2, then we write x1 X x2, if there
exists x ∈ X such that x|1 = x1 and x|2 = x2. We define the relation Rel(X ) ⊆ X1 ×X2 by

Rel(X ) = {〈x1, x2〉 ∈ X1 ×X2 ; x1 X x2}.

I Example 43. We consider important instances of proper spans where X = (X,X1, X2, ι1, ι2):

1. X is a Cartesian span if X = X1 ×X2 and ι1 and ι2 are the natural projections.
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2. X is a variable span if X1 = Ev(Var1), X2 = Ev(Var2), and X = Ev(Var1 ∪Var2) for some
sets of variables Var1 and Var2, and ι1 and ι2 are the natural projections.

3. X is an identity span if X = X1 = X2 and ι1(x) = x and ι2(x) = x for all x ∈ X.

It is not difficult to give a span, that is not proper: Consider for instance the span X =
(R3,R,R, ι1, ι2) where ι1 : R3 → R, ι1(r1, r2, r3) = r1 and ι2 : R3 → R, ι2(r1, r2, r3) = r2.
Here, for every compact sets K1 ⊆ R and K2 ⊆ R it holds ι−1

1 (K1)∩ ι−1
2 (K2) = K1×K2×R

and hence, ι−1
1 (K1) ∩ ι−1

2 (K2) is not compact in R3.

I Proposition 44. If X = (X,X1, X2) is a span where X is compact, then X is proper. In
particular, every span (X,X1, X2) with finite set X is proper.

Proof. Let X = (X,X1, X2, ι1, ι2) be a span and assume X is compact. Let K1 ⊆ X1 and
K2 ⊆ X2 be compact sets. It is well-known that compact sets in Hausdorff spaces are closed
and thus, K1 and K2 are closed in X1 and X2, respectively. Using the continuity of ι1 and ι2
the set ι−1

1 (K1)∩ ι−1
2 (K2) is closed in X. Since X is compact, ι−1

1 (K1)∩ ι−1
2 (K2) is therefore

compact in X. This yields the claim. J

I Proposition 45. Let X = (X,X1, X2, ι1, ι2) be a span. For all compact sets K1 ⊆ X1 and
K2 ⊆ X2 the set ι−1

1 (K1) ∩ ι−1
2 (K2) is compact in X iff it is relatively compact in X.

Proof. The argument is as in Proposition 44: Given compact sets K1 ⊆ X1 and K2 ⊆ X2,
then ι−1

1 (K1) ∩ ι−1
2 (K2) is closed in X. A closed set is compact iff it is relatively compact

and hence we are done. J

I Proposition 46. Let X = (X,X1, X2) be a span. The following statements are equivalent:

1. X is proper.
2. The function ι : X → X1 ×X2, ι(x) = 〈x|1, x|2〉 is proper, i.e., ι−1(K12) is compact in X

for all compact sets K12 ⊆ X1 ×X2
3. For all converging sequences (x1,n)n in X1 and (x2,n)n in X2 the statement below holds:

If (xn)n is a sequence in X such that xn|1 = x1,n and xn|2 = x2,n for all n ∈ N, then
(xn)n has a subsequence, that converges in X.

Proof. Throughout the proof denote the X -projections by ι1 and ι2.
(1)→(3). Suppose X is proper. Let (x1,n)n and (x2,n)n be converging sequences in X1 and

X2, repsectively. Assume (xn)n is a sequence in X such that xn|1 = x1,n and xn|2 = x2,n for
all n ∈ N. Define K1 = {x1,n ; n ∈ N} and K2 = {x2,n ; n ∈ N}. Having Remark 23 in mind,
K1 and K2 are compact in X1 and X2, respectively. Since X is proper, ι−1

1 (K1)∩ ι−1
2 (K2) is

compact in X. As (xn)n is a sequene in ι−1
1 (K1) ∩ ι−1

2 (K2), there thus exists a subsequence
of (xn)n, that converges in X.

(3)→(2). Assume statement (3) holds. Let K12 be a compact set in X1 ×X2 and define
K = ι−1(K12). As in Propositions 44 and 45, K is closed in X. Thus, it order to show
that K is compact, it suffices to justify that every sequence in K has a subsequence, that
converges in X. Let (xn)n be a sequence in K. Then, (xn|1)n and (xn|2)n are sequences
in K1 and K2, respectively. Since K1 is compact in X1, there exists a strictly increasing
function σ1 : N→ N such that (xσ1(n)|1)n converges in X1. Since (xσ1(n)|2)n is a sequence in
K2 as well, there is a strictly increasing function σ2 : N→ N where (xσ2(σ1(n))|2)n converges
in X2. Define σ : N → N by σ = σ2 � σ1. Subsequences of converging sequences converge
as well and thus, (xσ(n)|1)n and (xσ(n)|2)n converge in X1 and X2, respectively. Applying
(3), (xσ(n))n has a subsequence that converges in X. Of course, this subsequence is also a
subsequence of (xn)n, that finally yields the claim.
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(2)→(1). Given compact sets K1 ⊆ X1 and K2 ⊆ X2, the Cartesian product K1 ×K2 is
compact in X1 ×X2. Since ι−1

1 (K1) ∩ ι−1
2 (K2) = ι−1(K1 ×K2), the claim follows. J

I Proposition 47. Let X = (X,X1, X2) be a span. The following statements hold:

1. Rel(X ) is a Souslin set in X1 ×X2.
2. If X is proper, then Rel(X ) is closed in X1 ×X2.

Proof. Define the continuous function ι : X → X1 ×X2, ι(x) = 〈x|1, x|2〉. Since Rel(X ) =
ι(X), claim (1) follows by the definition of a Souslin set.

We consider statement (2) and assume that X is proper. We justify that the limit
of every convergent sequences in Rel(X ) is contained Rel(X ). From this the closeness of
Rel(X ) immediately follows. Let (〈x1,n, x2,n〉)n be a convergent sequence in Rel(X ) and
〈x1, x2〉 ∈ X1 ×X2 its limit. Notice, (x1,n)n converges to x1 and (x1,n)n converges to x2.
By the definition of Rel(X ) there exists a sequence (xn)n∈N in X such that xn|1 = x1,n and
xn|2 = x2,n for all n ∈ N. According to Proposition 46 (3) there is a strictly increasing
function σ : N→ N such that (xσ(n))n converges in X. Denote the corresponding limit by x.
Since ι1 is continuous, (xσ(n)|1)n converges to x|1 in X1. Therefore,

x1 = lim
n→∞

x1,n = lim
n→∞

x1,σ(n) = lim
n→∞

xσ(n)|1 = x|1.

One similiar shows x2 = x|2 and hence x1 X x2. This finishes the proof. J

I Example 48. There exists a span X = (X,X1, X2) such that Rel(X ) is not Borel in
X1 × X2. Let us give the details. Having Remark 20 in mind there exists a Borel set
M ⊆ R × R such that M1 = M1 = {r1 ∈ R ; there is r2 ∈ R where 〈r1, r2〉 ∈ M} is not
Borel in R. Denote the natural topology on R × R by ON . Since M is Borel in R × R
there is a Polish topology O on R × R such that M ∈ O and ON ⊆ O. (cf. Remark 11).
Thus, the set M equipped with the induced topology of (R × R,O) constitutes a Polish
space (cf. Remark 10). Moreover, using ON ⊆ O, the function ι1 : M → R, ι1(r1, r2) = r1 is
continuous. Of course, the constant function ι2 : M → {0}, ι2(r1, r2) = 0 is continuous as well.
Therefore, X = (M,R, {0}, ι1, ι2) is a span. However, Rel(X ) is not Borel in R× {0} since
Rel(X ) = M1 × {0}. As a side remark it follows that X is not proper by Proposition 47 (2).

B.2 Span couplings
Given a span X = (X,X1, X2, ι1, ι2) and µ ∈ Prob(X), then we write µ|1 and µ|2 as shorthand
notations for (ι1)](µ) = µ1 and (ι2)](µ) = µ2, respectively.

I Definition 49. Let X = (X,X1, X2) be a span and µ1 ∈ Prob(X1) and µ2 ∈ Prob(X2), A
probability measure µ ∈ Prob(X) is called a X -coupling of (µ1, µ2) if

µ|1 = µ1 and µ|2 = µ2.

If there exists a X -coupling of (µ1, µ2), then we denote µ1 X c µ2.

I Proposition 50. If X = (X,X1, X2) is a span, then for all x1 ∈ X1 and x2 ∈ X2,

x1 X x2 iff Dirac[x1]X c Dirac[x2].

Proof. The claim follows directly from Proposition 34. J

I Proposition 51. If X = (X,X1, X2) is a Cartesian span, then µ1 X c µ2 for all µ1 ∈
Prob(X1) and µ2 ∈ Prob(X2).
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Proof. Given a Cartesian span X = (X,X1, X2), i.e., X = X1 × X2, then µ1 ⊗ µ2 is a
X -coupling of (µ1, µ2) for all µ1 ∈ Prob(X1) and µ2 ∈ Prob(X2). J

I Proposition 52. Given a span X = (X,X1, X2), for all µ1 ∈ Prob(X1) and µ2 ∈ Prob(X2),

µ1 X c µ2 implies µ1 Rel(X )w µ2 implies µ1 Rel(X )s µ2.

Proof. Denote the X -projections by ι1 : X → X1 and ι2 : X → X2. Let µ1 ∈ Prob(X1) and
µ2 ∈ Prob(X2) be such that µ1 X c µ2. Suppose µ is a X -coupling of (µ1, µ2). Define the
Borel function ι : X → X1 ×X2, ι(x) = 〈x|1, x|2〉 and let W = ι](µ). We claim that W is a
weight function for (µ1,Rel(X ), µ2). It is not hard to see that W is a coupling of (µ1, µ2).
Indeed, for every Borel set M1 ⊆ X1,

W (M1 ×X2) = µ(ι−1(M1 ×X2)) = µ(ι−1
1 (M1)) = µ|1(M1) = µ1(M1).

Analogously, W (X1 ×M2) = µ2(M2) for all Borel sets M2 ⊆ X2.
We show that x1 Rel(X )x2 for W -almost all 〈x1, x2〉 ∈ X1 ×X2. According to Propo-

sition 47 (1), Rel(X ) is a Souslin set in X1 × X2. By Remark 21 there exist Borel
sets Rl, Ru ⊆ X1 × X2 such that Rl ⊆ Rel(X ) ⊆ Ru and W (Rl) = W (Ru). Notice,
X = ι−1(Rel(X )) ⊆ ι−1(Ru) ⊆ X and thus X = ι−1(Ru). It follows

W (Rl) = W (Ru) = µ(ι−1(Ru)) = µ(X) = 1.

Therefore, W is a weight function for (µ1,Rel(X ), µ2) and hence µ1 Rel(X )w µ2.
By the help of Proposition 35, µ1 Rel(X )s µ2 follows from µ1 Rel(X )w µ2 and hence our

proof is complete. J

For proper spans we can strengthen the first part of Proposition 52: We will see that for all
µ1 ∈ Prob(X1) and µ2 ∈ Prob(X2) one has µ1 X c µ2 iff µ1 Rel(X )w µ2 provided X is proper
(cf. Corollary 60 below). Remind that we have already discussed the connections between
the weight lifting Rel(X )w and the stable-pair lifting Rel(X )s in Section A.3.

B.3 Operations for spans
There are various operations for spans, that yield complex spans out of some given basic
spans. The question whether the operation preserves properness is important for practical
purposes.

Probabilistic version.

I Definition 53. Given a span X = (X,X1, X2, ι1, ι2), its probilistic version is defined to
be the tuple

Prob(X ) = (Prob(X),Prob(X1),Prob(X2), (ι1)], (ι2)]).

I Proposition 54. The probabilistic version of a span is a span. Moreover, the probabilistic
version of a proper span is proper as well.

Proof. Let X = (X,X1, X2, ι1, ι2) be a span. According to Remark 17 the pushforwards of
ι1 and ι2 are continuous. Since Prob(X1), Prob(X2), and Prob(X) are Polish spaces when
equipped with the topology of weak-convergence (cf. Remark 10), respectively, the tuple
Prob(X ) constitutes indeed a span.
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Assume X is proper now. Our task is to show that Prob(X ) is proper. To that end let
P1 ⊆ Prob(X1) and P2 ⊆ Prob(X2) be compact sets and define P = (ι1)−1

] (P1) ∩ (ι2)−1
] (P2),

i.e.,

P = {µ ∈ Prob(X) ; µ|1 ∈ P1 and µ|2 ∈ P2}.

It is enought to show that P is tight in Prob(X) since it then follows that P is relatively
compact in X (cf. Remark 22) and thus compact in X (cf. Proposition 45). Let ε ∈ R>0.
According to Remark 22 the sets P1 and P2 are tight in Prob(X1) and Prob(X2), respectively.
There hence exist compact sets K1 ⊆ X1 and K2 ⊆ X2 such that µ1(K1) > 1− ε/2 for all
µ1 ∈ P1 and µ2(K2) > 1− ε/2 for all µ2 ∈ P2. Define

K = ι−1
1 (K1) ∩ ι−1

2 (K2).

Using that X is proper we conclude that K is compact in X. Moreover, for all µ ∈ P ,

µ(X \K)
= µ(ι−1

1 (X1 \K1) ∪ ι−1
2 (X2 \K2))

≤ µ(ι−1
1 (X1 \K1)) + µ2(ι−1

2 (X2 \K2)
= µ|1(X1 \K1) + µ|2(X2 \K2)
< ε/2 + ε/2
= ε,

and thus µ(K) > 1− ε. It follows that P is tight in Prob(X). As discussed before this yields
that the probabilistic version of X is proper. J

Cartesian product.

I Definition 55. Let N ⊆ N be a non-empty set and for every n ∈ N suppose a span
Xn = (Xn, X1,n, X2,n, ι1,n, ι2,n). The Cartesian product of (Xn)n∈N is defined by the tuple∏
n∈N Xn = (X,X1, X2, ι1, ι2), where

X =
∏
n∈N

Xn, X1 =
∏
n∈N

X1,n, X2 =
∏
n∈N

X2,n,

and ι1 : X → X1 and ι2 : X → X2 are given by

ι1(x)[n] = ι1,n(x[n]) and ι2(x)[n] = ι2,n(x[n]),

respectively, for all x ∈ X and n ∈ N .

I Proposition 56. Let N ⊆ N be a non-empty set and for every n ∈ N let Xn be a span.
Then,

∏
n∈N Xn is a span. Moreover, if Xn is proper for all n ∈ N , then

∏
n∈N Xn is proper.

Proof. For every n ∈ N assume the span Xn is given by Xn = (Xn, X1,n, X2,n, ι1,n, ι2,n). Let
X, X1, X2, ι1 and ι2 be given as in Definition 55 and abbreviate X =

∏
n∈N Xn. Reminding

Remark 10 the sets X, X1, and X2 constitute Polish spaces, respectively. It is easy to see
that ι1 and ι2 are continuous and hence, X is indeed a span.

Suppose Xn is proper for all n ∈ N and let K1 and K2 be compact sets in X1 and X2,
respectively. In order to show that X is proper, we argue that K is compact in X, where
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K = ι−1
1 (K1) ∩ ι−1

2 (K2). For every n ∈ N define the continuous functions ι1,[n] : X1 → X1,n
and ι2,[n] : X2 → X2,n by

ι1,[n](x1) = x1[n] and ι2,[n](x2) = x2[n]

for all x1 ∈ X1 and x2 ∈ X2, respectively. For every n ∈ N let

K1,[n] = ι1,[n](K1) and K2,[n] = ι2,[n](K2).

Define K ′ ⊆ X by

K ′ = ι−1
1
( ∏
n∈N

K1,[n]
)
∩ ι−1

2
( ∏
n∈N

K2,[n]
)
.

It is well-known that the continuous image of a compact set is compact and thus K1,[n] and
K2,[n] are compact in X1,n and X2,n, respectively, for all n ∈ N . Since

K ′ =
∏
n∈N

ι−1
1,n(K1,[n]) ∩ ι−1

2,n(K2,[n])

and Xn is proper for all n ∈ N , the set K ′ is hence compact in X applying Tychonoff’s
Theorem. We conclude that K is compact in X observing K ⊆ K ′ and the fact that K is
closed in X (cf. our argument for Proposition 44). This finishes our argument. J

B.4 Span inverse
I Definition 57. Let X = (X,X1, X2) be a span. A Borel function f : X1 × X2 → X is
called an X -inverse, if for all x1 ∈ X1 and x2 ∈ X2,

x1 X x2 implies f(x1, x2)|1 = x1 and f(x1, x2)|2 = x2.

I Example 58. We present a span X , which has no X -inverse. According to Corollary 6.9.10
in [10] (for definitions see also for page 33 in [10]) there are Polish spaces X and X1 as well
as a continuous and surjective function ι1 : X → X1 satisfying the property below: ι1 has no
Borel right inverse, i.e., there is no Borel function g : X1 → X such that for all x1 ∈ X1,

ι1(g(x1)) = x1.

We consider the span X = (X,X1, X2, ι1, ι2) where X2 = {0} and ι2 : X → X2, ι2(x) = 0.
Notice, for every x1 ∈ X1 and x2 ∈ X2 it exists x ∈ X where x|1 = x1 and x|2 = x2.
Towards a contradiction assume f : X1 ×X2 → X is an X -inverse. Then, f is Borel and
hence h : X1 → X, h(x1) = f(x1, 0) is Borel as well. Moreover, for all x1 ∈ X1,

ι1(h(x1)) = ι1(f(x1, 0)) = x1.

This contradicts the fact that there is no Borel right inverse of ι1. It hence follows that there
exists no X -inverse.

I Theorem 59. Every proper span X has an X -inverse.

Proof. Our argument relies on a measurable selection theorem. Let X = (X,X1, X2, ι1, ι2)
be a proper span and x̂ ∈ X and abbreviate X12 = X1 × X2. Define the Borel function
ι : X → X12, ι(x) = 〈x|1, x|2〉. Moreover, let R ⊆ X12 ×X be given by

R = graph(ι)−1 ∪ ((X12 \ Rel(X ))× {x̂}).
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Observe that R is a Borel set inX12×X since graph(ι) is a Borel set inX12×X (cf. Remark 16)
and Rel(X ) is a Borel set in X12 (cf. Proposition 47 (2)). For all 〈x1, x2〉 ∈ X12 ∩ Rel(X ),

[〈x1, x2〉]R,− = ι−1
1 ({x1}) ∩ ι−1

2 ({x2})

is compact in X using the assumption that X is proper. For all 〈x1, x2〉 ∈ X12 \ Rel(X ),

[〈x1, x2〉]R,− = {x̂}

is compact in X as well. Putting things together [〈x1, x2〉]R,− is compact in X for all
〈x1, x2〉 ∈ X12. We are in the situation of the measurable selection theorem given in
Remark 29 and hence there exists a Borel function f : X12 → X such that graph(f) ⊆ R, i.e.,
for all x1 ∈ X1 and x2 ∈ X2,

〈x1, x2〉Rf(x1, x2).

It is easy to see that f is an X -inverse, that finishes our argumentation. J

I Corollary 60. Let X = (X,X1, X2) be a proper span. For every µ1 ∈ Prob(X1) and
µ2 ∈ Prob(X2) the following equivalence holds,

µ1 X c µ2 iff µ1 Rel(X )w µ2.

Proof. Denote the X -projections by ι1 : X → X1 and ι2 : X → X2. Let µ1 ∈ Prob(X1) and
µ2 ∈ Prob(X2). Proposition 52 already shows one implication of the claimed equivalence.
We consider the remaining implication and assume µ1 Rel(X )w µ2. Let W be a weight
function for (µ1,Rel(X ), µ2). Remind, Rel(X ) is a Borel set in X1×X2 by Proposition 47 (2).
According to Theorem 59 there exists an X -inverse f . Set µ = f](W ). It turns out that µ is
a X -coupling of (µ1, µ2). Indeed, for all Borel sets M1 ⊆ X1,

f−1(ι−1
1 (M1)) ∩ Rel(X ) = (M1 ×X2) ∩ Rel(X )

and therefore

µ|1(M1)
= µ(ι−1

1 (M1))
= W (f−1(ι−1

1 (M1)))
= W (f−1(ι−1

1 (M1)) ∩ Rel(X ))
= W ((M1 ×X2) ∩ Rel(X ))
= W (M1 ×X2)
= µ1(M1).

Thus, µ|1 = µ1. One similiar shows µ|2 = µ2 and hence we are done. J

I Corollary 61. Let Xa = (Xa, Xa1, Xa2) be a span and Xb = (Xb, Xb1, Xb2) be a proper
span. Suppose Markov kernels k1 : Xa1 → Prob(Xb1) and k2 : Xa2 → Prob(Xb2). Then there
is a Markov kernel k : Xa → Prob(Xb) where for all xa ∈ Xa, if k1(xa|1)X c

b k2(xa|2), then

k(xa) is a Xb-coupling of (k1(xa|1), k2(xa|2)).

Proof. Let f : Prob(Xb1)× Prob(Xb2)→ Prob(Xb) be a Prob(Xb)-inverse (cf. Proposition 54
and Theorem 59). Define k : Xa → Prob(Xb),

k(xa) = f(k1(xa|1), k2(xa|2)).

Notice, k is a Markov kernel, since the composition of Borel functions yields a Borel function.
Using the fact that f is an Prob(Xb)-inverse (cf. Definition 57), the claim follows. J
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B.5 Countably separated spans
I Definition 62. We call a span X = (X,X1, X2) countably separated if Rel(X ) is countably
separated, i.e., there exists a Polish space X and Borel functions κ1 : X1 → X and κ2 : X2 →
X such that

Rel(X ) = {〈x1, x2〉 ∈ X1 ×X2 ; κ1(x1) = κ2(x2)},

i.e., for all x1 ∈ X1 and x2 ∈ X2,

x1 X x2 iff κ1(x1) = κ2(x2).

Here, we then say that (X,κ1, κ2) countably separates X .

I Example 63. Assume X = (X,X1, X2) is a variable span, i.e., X1 = Ev(Var1), X2 =
Ev(Var2), and X = Ev(Var1 ∪ Var2) for sets of variables Var1 and Var2. Denote the set of
shared variables by SVar = Var1 ∩ Var2. Then, (Ev(SVar), κ1, κ2) countably separates X ,
where κ1(e1) = e1|SVar for all e1 ∈ Ev(Var1) and κ2(e2) = e2|SVar for all e2 ∈ Ev(Var2).

I Proposition 64. Rel(X ) is an quasi-equivalence in X1 ×X2 for every countably separated
span X = (X,X1, X2).

Proof. The claim follows directly from the definitions. J

I Proposition 65. Let X = (X,X1, X2) be a proper span and assume (X,κ1, κ2) countably
separates X . For all µ1 ∈ Prob(X1) and µ2 ∈ Prob(X2),

µ1 X c µ2 iff µ1 Rel(X )w µ2 iff µ1 Rel(X )s µ2 iff (κ1)](µ1) = (κ2)](µ2).

Proof. The claim is a consequence of Theorem 39. and Corollary 60. J

I Proposition 66. If (X,κ1, κ2) countably separates the proper span X , then Prob(X ) is
countably separated and (Prob(X), (κ1)], (κ2)]) countably separates Prob(X ).

Proof. Assume (X,κ1, κ2) countably separates the span X = (X,X1, X2). Of course,
Prob(X) is a Polish space when equipped with the topology of weak-convergence of probability
measures (cf. Remark 10) and (κ1)] and (κ2)] are Borel functions (cf. Remark 17). Let
µ1 ∈ Prob(X1) and µ2 ∈ Prob(X2). To see that (Prob(X), (κ1)], (κ2)]) countably separates
Prob(X ) we use Proposition 65 and observe

µ1 Rel(Prob(X ))µ2 iff µ1 X c µ2 iff (κ1)](µ1) = (κ2)](µ2).

This completes the argument. J

B.6 Span connections
I Definition 67. A span connection is a tuple (Xa,Xb, R1, R2) consisting of spans Xa =
(Xa, Xa1, Xa2) and Xb = (Xb, Xb1, Xb2) and relations R1 ⊆ Xa1 ×Xb1 and R2 ⊆ Xa2 ×Xb2.
Let C = (Xa,Xb, R1, R2) be a span connection. Set

R1 ∧C R2 = {〈xa, xb〉 ∈ Xa ×Xb ; xa|1R1 xb|1 and xa|2R2 xb|2}.

We call C l-adequate if for all µa1R
w
1 µb1 and µa2R

w
2 µb2,

µa1 X c
a µa2 implies µb1 X c

b µb2.
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Vice verca, C is called r-adequate, if for all µa1R
w
1 µb1 and µa2R

w
2 µb2,

µb1 X c
b µb2 implies µa1 Xac µa2.

C is defined to be adequate iff C is both, l-adequate and r-adequate.

I Proposition 68. Let C = (Xa,Xb, R1, R2) be a span connection. If Xb is a Cartesian span,
then C is l-adequate. Similiar, if Xa is a Cartesian span, then C is r-adequate.

Proof. Trivial (cf. Proposition 51). J

I Proposition 69. Let C = (X ,X , R1, R2) be a span connection with X = (X,X1, X2, ι1, ι2)
being a proper span. Suppose (X,κ1, κ2) countably separates X . Then, C is adequate if

R1 ⊆ {〈xa1, xb1〉 ∈ X1 ×X1 ; κ1(xa1) = κ1(xb1)} and
R2 ⊆ {〈xa2, xb2〉 ∈ X2 ×X2 ; κ2(xa2) = κ2(xb2)}.

Proof. For every M ⊆ X we justify the following statements first,

〈κ−1
1 (M), κ−1

1 (M)〉 is R1-stable,
〈κ−1

2 (M), κ−1
2 (M)〉 is R2-stable, and

〈κ−1
1 (M), κ−1

2 (M)〉 is Rel(X )-stable.

We argue that 〈κ−1
1 (M), κ−1

1 (M)〉 is R1-stable. If 〈xa1, xb1〉 ∈ R1 ∩ (κ−1
1 (M) ×X1), then

κ1(xb1) = κ1(xa1) ∈M and hence, 〈xa1, xb1〉 ∈ R1 ∩ (X1 × κ−1
1 (M)). One similar shows the

reverse inclusion, i.e., R1 ∩ (X1 × κ−1
1 (M)) ⊆ R1 ∩ (κ−1

1 (M)×X1). It analogously follows
that 〈κ−1

2 (M), κ−1
2 (M)〉 is R2-stable.

We show that 〈κ−1
1 (M), κ−1

2 (M)〉 is Rel(X )-stable. To do so let 〈x1, x2〉 ∈ Rel(X ) ∩
(κ−1

1 (M)×X2). Since (X,κ1, κ2) countably separates Rel(X ), we have κ2(x2) = κ1(x1) ∈M .
Thus, 〈x1, x2〉 ∈ Rel(X ) ∩ (X1 × κ−1

2 (M)). The reverse inclusion Rel(X ) ∩ (X1 × κ−1
2 (M)) ⊆

Rel(X ) ∩ (κ−1
1 (M)×X2) follows similarly.

In what follows we conclude the claim of the proposition. Let µa1R
w
1 µb1 and µa2R

w
2 µb2

be such that µa1 X c µa2. In order to show that C is l-adequate our task is to argue µb1 X c µb2.
According to Propositions 35 and 52, for every Borel set M ⊆ X,

µb1(κ−1
1 (M)) = µa1(κ−1

1 (M)) = µa2(κ−1
2 (M)) = µb2(κ−1

2 (M)).

Thus, (κ1)](µb1) = (κ2)](µb2) and hence µb1 X c µb2 by Proposition 65. It follows that C is
l-adequate. R-adequacy of C is shown accordingly. J

I Proposition 70. Let C = (Xa,Xb, R1, R2) be a span connection. For all µa (R1 ∧C R1)w µb,

µa|1R
w
1 µb|1 and µa|2R

w
2 µb|2.

Proof. Abbreviate R = R1 ∧C R1. Assume the spans are given by Xa = (Xa, Xa1, Xa2)
and Xb = (Xb, Xb1, Xb2). Define the Borel functions ι1 : Xa × Xb → Xa1 × Xb1 and
ι2 : Xa ×Xb → Xa2 ×Xb2 for all xa ∈ Xa and xb ∈ Xb by

ι1(xa, xb) = 〈xa|1, xb|1〉 and ι2(xa, xb) = 〈xa|2, xb|2〉.

Let µa ∈ Prob(Xa), µb ∈ Prob(Xb), and W be a weight function for (µa, R, µb). Then,
(ι1)](W ) is a weight function for (µa|1, R1, µb|1) and (ι2)](W ) is a weight function for
(µa|2, R2, µb|2). For reasons of symmetry we concentrate on (ι1)](W ) only in the following.
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Let R′ ⊆ Xa × Xb be a Borel set such that R′ ⊆ R and W (R′) = 1. Abbreviate
W1 = (ι1)](W ) and R′1 = ι1(R′). The set R′1 is a Souslin set in Xa1 ×Xb1 (cf. Remarks 18
and 19). Hence, there are Borel sets R′1l, R′1u ⊆ Xa1 ×Xb1 such that R′1l ⊆ R′1 ⊆ R′1u and
W1(R′1l) = W1(R′1u) (cf. Remark 21). Since R′ ⊆ ι−1

1 (R′1u),

W1(R′1l) = W1(R′1u) = W (ι−1
1 (R′1u)) ≥W (R′) = 1.

It remains to show that W1 is a coupling of (µa|1, µb|1). Denote the Xb-projections by ιa1 and
ιb1. For all Borel sets Ma1 ⊆ Xa1, it holds ι−1

1 (Ma1 ×Xb1) = ι−1
a1 (Ma1)×Xb and therefore,

W1(Ma1 ×Xb1)
= W (ι−1

1 (Ma1 ×Xb1))
= W (ι−1

a1 (Ma1)×Xb)
= µa(ι−1

a1 (Ma1))
= µa|1(Ma1).

One similar shows that W1(Xa1 ×Mb1) = µb|1(Mb1) for all Borel sets Mb1 ⊆ Xb1. J

I Lemma 71. Let Xa and Xb be standard Borel spaces and R ⊆ Xa×Xb. Let µa ∈ Prob(Xa)
and k : Xa → Prob(Xb) be a Markov kernel such that xaRxb for (µaok)-almost all 〈xa, xb〉 ∈
Xa ×Xb. Then, for µa-almost all xa ∈ Xa,

Dirac[xa]Rw k(xa).

Proof. Abbreviate W = µa o k. Let R′ ⊆ Xa ×Xb be a Borel set such that R′ ⊆ R and
W (R′) = 1. For all xa ∈ Xa the set [xa]R′,− is Borel in Xb (cf. Remark 25). For every
xa ∈ Xa define

Wxa = Dirac[xa]⊗ k(xa).

Notice that Wxa
is the only candidate for a weight function for (Dirac[xa], R, k(xa)) for all

xa ∈ Xa (cf. Proposition 24). For every Ma ⊆ Xa and xa ∈ Xa observe

xa ∈Ma implies [xa]R′,− = [xa]R′∩(Ma×Xb),− and
xa /∈Ma implies [xa]R′∩(Ma×Xb),− = ∅.

According to Remark 15 and usingW (R′) = 1 we therefore obtain for all Borel setsMa ⊆ Xa,∫
Ma

k(xa)([xa]R′,−) dµa(xa)

=
∫
Ma

k(xa)([xa]R′∩(Ma×Xb),−) dµa(xa)

=
∫
k(xa)([xa]R′∩(Ma×Xb),−) dµa(xa)

= W (R′ ∩ (Ma ×Xb))
= W (Ma ×Xb)
= µa(Ma)

=
∫
Ma

f(xa) dµa(xa),

ICALP 2016



XXX:36 Composition of stochastic transition systems

where f : Xa → R, f(xa) = 1. It follows k(xa)([xa]R′,−) = f(xa) = 1 for µa-almost all
xa ∈ Xa (cf. Folgerung 9.2.5 in [48]). Therefore,

Wxa({xa} × [xa]R′,−) = Dirac[xa]({xa}) · k(xa)([xa]R′,−) = 1

for µa-almost all xa ∈ Xa. Since {xa}× [xa]R′,− ⊆ R′ ⊆ R for all xa ∈ Xa our argumentation
for the lemma is complete. J

I Theorem 72. Let C = (Xa,Xb, R1, R2) be a span connection with Xa = (Xa, Xa1, Xa2)
and Xb = (Xb, Xb1, Xb2). Assuming C is l-adequate, for all µa ∈ Prob(Xa), µb1 ∈ Prob(Xb1),
and µb2 ∈ Prob(Xb2), if µa|1Rw

1 µb1 and µa|2Rw
2 µb2, then

there exists a Xb-coupling of (µb1, µb2) where µa (R1 ∧C R2)w µb.

Analogously, assuming C is r-adequate, for all µb ∈ Prob(Xb), µa1 ∈ Prob(Xa1), and µa2 ∈
Prob(Xa2), if µa1R

w
1 µb|1 and µa2R

w
2 µb|2, then

there exists a Xa-coupling of (µa1, µa2) where µa (R1 ∧C R2)w µb.

Proof. Denote Xa-projections by ιa1 and ιa2 and the Xb-projections by ιb1 and ιb2. Abbreviate
R = R1 ∧C R2. Let µa ∈ Prob(Xa), µb1 ∈ Prob(Xb1), and µb2 ∈ Prob(Xb2) be such that
µa|1R

w
1 µb1 and µa|2R

w
2 µb2. Suppose W1 and W2 are weight functions for (µa|1, R1, µb1)

and (µa|2, R2, µb2), respectively. Using disintegration of measures (cf. Remark 15) there are
Markov kernels k1 : Xa1 → Prob(Xb1) and k2 : Xa2 → Prob(Xb2) such that

W1 = µa|1 o k1 and W2 = µa|2 o k2.

According to Lemma 71, for µa|1-almost all xa1 ∈ Xa1 it holds Dirac[xa1]Rw
1 k1(xa1) and

similiar, for µa|2-almost all xa2 ∈ Xa2, Dirac[xa2]Rw
2 k2(xa2). From this we conclude that for

µa-almost all xa ∈ Xa,

Dirac[xa|1]Rw
1 k1(xa|1) and Dirac[xa|2]Rw

2 k2(xa|2).

Remind, Dirac[xa|1]X c
a Dirac[xa|2] for all xa ∈ Xa (cf. Proposition 50). Using the assumption

that C is l-adequate, for µa-almost all xa ∈ Xa it holds k1(xa|1)X c
b k2(xa|2), i.e., there exists

a Xb-coupling of (k1(xa|1), k2(xa|2)). We are in the situation of Corollary 61 and hence there
is a Markov kernel k : Xa → Prob(Xb) such that for µa-almost all xa ∈ Xa, the probability
measure k(xa) is a Xb-coupling of (k1(xa|1), k2(xa|2)). Define

W = µa o k

and let µb ∈ Prob(Xb) be given by

µb(Mb) = W (Xa ×Mb)

for all Borel sets Mb ⊆ Xb.
In what follows we justify that µb is a Xb-coupling of (µb1, µb2) such that µaRw µb. For

that purpose we observe that W is a (Xa ×Xb)-coupling of (W1,W2) first. Define the Borel
functions ι1 : Xa ×Xb → Xa1 ×Xb1 and ι2 : Xa ×Xb → Xa2 ×Xb2 by

ι1(xa, xb) = 〈xa|1, xb|1〉 and ι2(xa, xb) = 〈xa|2, xb|2〉
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for every xa ∈ Xa and xb ∈ Xb, respectively. For all Borel sets Ma1 ⊆ Xa1 and Mb1 ⊆ Xb1 it
holds ι−1

1 (Ma1×Mb1) = ι−1
a1 (Ma1)×ι−1

b1 (Mb1) and therefore, using integration by substitution,

(ι1)](W )(Ma1 ×Mb1)

=
∫
ι−1

a1 (Ma1)
k(xa)(ι−1

b1 (Mb1)) dµa(xa)

=
∫
ι−1

a1 (Ma1)
k1(ιa1(xa))(Mb1) dµa(xa)

=
∫
Ma1

k1(xa1)(Mb1) dµa|1(xa1)

= W1(Ma1 ×Mb1).

Carathéodory’s measure extension theorem yields (ι1)](W ) = W1. One similiar shows
(ι2)](W ) = W2 and thus, W is indeed a (Xa ×Xb)-coupling of (W1,W2).

Now it is not hard to see that µb is a Xb-coupling of (µb1, µb2). Indeed, for all Borel sets
Mb1 ⊆ Xb1 we have Xa × ι−1

b1 (Mb1) = ι−1
1 (Xa1 ×Mb1) and hence,

µb|1(Mb1) = µb(ι−1
b1 (Mb1)) = W (Xa × ι−1

b1 (Mb1)) = W1(Xa1 ×Mb1) = µb1(Mb1).

One analogously justifies µb|2 = µb2.
It remains to show µaR

w µb. To this end we justify that W is a weight function for
(µa, R, µb). Obviously, W is a coupling of (µa, µb). Let R′1 ⊆ Xa1×Xb1 and R′2 ⊆ Xa2×Xb2
be Borel sets where W1(R′1) = 1, W2(R′2) = 1, R′1 ⊆ R1, and R′2 ⊆ R2. Define

R′ = ι−1
1 (R′1) ∩ ι−1

2 (R′2).

Then, R′ is a Borel set in X1 ×X2 and R′ ⊆ R. Moreover, W (ι−1
1 (R′1)) = W1(R′1) = 1 and

W (ι−1
2 (R′2)) = W2(R′2) = 1 and therefore

W (R′) = W (ι−1
1 (R′1) ∩ ι−1

2 (R′2)) = 1.

We conclude that W is a weight function for (µa, R, µb) and hence µaRw µb. The remaining
claim of the theorem is proven accordingly. J

Weakly adequate span connections.

I Definition 73. We call a span connection (Xa,Xb, R1, R2) weakly adequate if for all
xa1R1 xb1 and xa2R2 xb2,

xa1 Xa xa2 iff xb1 Xb xb2.

I Proposition 74. Every adequate span connection is weakly adequate.

Proof. The claim follows from Propositions 34 and 50. J

I Theorem 75. Let C = (Xa,Xb, R1, R2) be a span connection where Xa = (Xa, Xa1, Xa2)
and Xb = (Xb, Xb1, Xb2). Assume that Rel(Xa) and Rel(Xb) are stable-iff-weight and R1 and
R2 are strongly lr-total in Xa1 ×Xb1 and Xa2 ×Xb2, respectively. If C is weakly adequate,
then C is adequate.
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Proof. Assume that C weakly adequate. For reasons of symmetry we argue that C is l-
adequate only. R-adequacy is proven analogously. Let µa1R

w
1 µb1 and µa2R

w
2 µb2 be such

that µa1 X c
a µa2. Our task is to justify µb1 X c

b µb2. Let 〈Mb1,Mb2〉 be a Rel(Xb)-stable pair,
where Mb1 and Mb2 are Borel sets in Xb1 and Xb2, respectively. The argument proceeds as
follows: We construct a Rel(Xa)-stable pair 〈Ma1,Ma2〉, where Ma1 and Ma2 are Borel in
Xa1 and Xa2, respectively, such that

〈Ma1,Mb1〉 is R1-stable and
〈Ma2,Mb2〉 is R2-stable.

Notice, if we prove this claim, then

µb1(Mb1) = µa1(Ma1) = µa2(Ma2) = µb2(Mb2),

that yiels µb1 Rel(Xb)s µb2 and also µb1 Rel(Xb)w µb2 using that Rel(Xb) is stable-iff-weight.
Corollary 60 thus yields µb1 X c

b µb2.
We regard the remaining claim. Let fa : Xa1 → Xb1, fb : Xb1 → Xa1, ga : Xa2 → Xb2

and gb : Xb2 → Xa2 be Borel functions where for all xa1 ∈ Xa1, xb1 ∈ Xb1, xa2 ∈ Xa2, and
xb2 ∈ Xb2,

xa1R1 fa(xa1) and fb(xb1)R1 xb1 and
xa2R2 ga(xa2) and gb(xb2)R2 xb2.

Notice, such functions indeed exist due to assumption that R1 and R2 are strongly rl-total
in Xa1 ×Xb1 and Xa2 ×Xb2, respectively. The relation Rel(Xb) is an quasi-equivalence in
Rb1 ×Rb2 (cf. Proposition 64). Therefore and as 〈Mb1,Mb2〉 is Rel(Xb)-stable, we obtain

Mb1 =
⋃

xb2∈Mb2

[xb2]−,Rel(Xb) and Mb2 =
⋃

xb1∈Mb1

[xb1]Rel(Xb),−.

applying Proposition 28. Define

Ma1 =
⋃

xb2∈Mb2

[gb(xb2)]−,Rel(Xa) and Ma2 =
⋃

xb1∈Mb1

[fb(xb1)]Rel(Xa),−.

We show that 〈Ma1,Mb1〉 is R1-stable first. Let 〈xa1, xb1〉 ∈ R1 ∩ (Ma1 ×Xb1). According
to the definition of Ma1, there is xb2 ∈ Mb2 such that xa1 Rel(Xa) gb(xb2). As xa1R1 xb1
and gb(xb2)R2 xb2, we have xb1 Rel(Xb)xb2 using the fact that C is weakly adequate. Since
〈Mb1,Mb2〉 is Rel(Xb)-stable and xb2 ∈ Mb2, we hence obtain xb1 ∈ Mb1. This shows
R1 ∩ (Ma1 × Xb1) ⊆ R1 ∩ (Xa1 × Mb1). We justify the reverse inclusion and assume
〈xa1, xb1〉 ∈ R1 ∩ (Xa1 × Mb1). Considering the properties of Mb1, there is xb2 ∈ Mb2
such that xb1 Rel(Xb)xb2. Using xa1R1 xb1 and gb(xb2)R2 xb2, weakly-adequacy of C yields
xa1 Rel(Xa) gb(xb2). Hence, xa1 ∈ Ma1 by the definition of Ma1, which yields R1 ∩ (Xa1 ×
Mb1) ⊆ R1 ∩ (Ma1 ×Xb1). It follows that 〈Ma1,Mb1〉 is R1-stable. One analogously shows
that 〈Ma2,Mb2〉 is R2-stable.

We argue that 〈Ma1,Ma2〉 is Rel(Xa)-stable now. Let 〈xa1, xa2〉 ∈ Rel(Xa)∩ (Ma1×Xa2).
The definition of Ma1 justifies the existence of some xb2 ∈ Mb2 where xa1 Rel(Xa) gb(xb2).
Since gb(xb2)R2 xb2 and as 〈Ma2,Mb2〉 is R2-stable, we obtain gb(xb2) ∈Ma2. By the defini-
tion of Ma2 there exists xb1 ∈Mb1 such that fb(xb1) Rel(Xa) gb(xb2). As xa1 Rel(Xa) gb(xb2)
and xa1 Rel(Xa)xa2, the z-transitivity of Rel(Xa) yields fb(xb1) Rel(Xa)xa2. It follows
xa2 ∈ Ma2 and thus Rel(Xa) ∩ (Ma1 × Xa2) ⊆ Rel(Xa) ∩ (Xa1 × Ma2). The reverse in-
clusion is shown accordingly and thus, 〈Ma1,Ma2〉 is Rel(Xa)-stable.
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To complete our argumentation it remains to show Ma1 and Ma2 are Borel in Xa1 and
Xa2, respectively. We concentrate on Ma1 since Ma2 can treated similarly. Define the
function h1 : Xa1 → R1,

h1(xa1) = 〈xa1, fa(xa1)〉

and equip the set R1 with the induced sigma-algebra from Xa1×Xb1. Then, h1 is measurable:
The function h̃1 : Xa1 → Xa1 × Xb1, h̃1(xa1) = 〈xa1, fa(xa1)〉 is Borel and for all M12 ⊆
Xa1 ×Xb1 it holds h−1

1 (R ∩M12) = h̃−1
1 (M12). Using that R1 ∩ (Xa1 ×Mb1) is measurable

in R1 and 〈Ma1,Mb1〉 is R1-stable,

Ma1 = h−1
1 (R1 ∩ (Ma1 ×Xb1)) = h−1

1 (R1 ∩ (Xa1 ×Mb1))

is measurable in Xa1. This finally finishes our proof as already discussed before. J

I Corollary 76. Let C = (Xa,Xb, R1, R2) be a span connection where Xa = (Xa, Xa1, Xa2)
and Xb = (Xb, Xb1, Xb2) are countably separated and proper spans. Assume that R1 and R2
are strongly lr-total in Xa1 ×Xb1 and Xa2 ×Xb2, respectively. If C is weakly adequate, then
C is adequate.

Proof. Theorem 75 together with Proposition 65 yield the claim. J

Span connections for variable spans. Throughout this paragraph let C = (X ,X , R1, R2)
be a span connection where X = (X,X1, X2) is a variable span, i.e., X1 = Ev(Var1),
X2 = Ev(Var2), and X = Ev(Var1 ∪ Var2) for sets of variables Var1 and Var2. Abbreviate

LVar1 = Var1 \ Var2, LVar2 = Var2 \ Var1, and SVar = Var1 ∩ Var2.

Remind, X is a proper span (cf. Example 43 (2)) and the tuple (Ev(SVar), κ1, κ2) countably
separates X . Here, κ1(e1) = e1|SVar and κ2(e2) = e2|SVar for all e1 ∈ Ev(Var1) and e2 ∈
Ev(Var2) (cf. Example 63).

I Definition 77. We say that the span connection C does not involve shared variables if the
following two statements hold:

1. There is R̃1 ⊆ Ev(LVar1)× Ev(LVar1) such that

R1 = {〈eLa1 ] eS , eLb1 ] eS〉 ; eLa1 R̃1 e
L
b1 and eS ∈ Ev(SVar)}.

2. There is R̃2 ⊆ Ev(LVar2)× Ev(LVar2) such that

R2 = {〈eLa2 ] eS , eLb2 ] eS〉 ; eLa2 R̃2 e
L
b2 and eS ∈ Ev(SVar)}.

I Proposition 78. If C does not involve shared variables, then C is adequate and

R1 ⊆ {〈ea1, eb1〉 ∈ Ev(Var1)× Ev(Var1) ; ea1|SVar = eb1|SVar} and
R2 ⊆ {〈ea2, eb2〉 ∈ Ev(Var2)× Ev(Var2) ; ea2|SVar = eb2|SVar}

as well as

Rw
1 ⊆ {〈ηa1, ηb1〉 ∈ Prob(Ev(Var1))× Prob(Ev(Var1)) ; ηa1|SVar = ηb1|SVar} and

Rw
2 ⊆ {〈ηa2, ηb2〉 ∈ Prob(Ev(Var2))× Prob(Ev(Var2)) ; ηa2|SVar = ηb2|SVar}.
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Proof. Suppose C does not involve shared variables. The claims concerning R1 and R2 is
direct consequence of Definition 77. Thus, C is adequate due to Proposition 69. In what
follows we regard the relations Rw

1 and Rw
2 . Notice,

DiagEv(SVar) = {〈ea1|SVar, eb1|SVar〉 ; ea1R1 eb1} and

DiagEv(SVar) = {〈ea2|SVar, eb2|SVar〉 ; ea2R2 eb2}.

Let ηa1R
w
1 ηb1. Lemma 38 (1) yields ηa1|SVar Diagw

Ev(SVar) ηb1|SVar. Lemma 37 thus implies
ηa1|SVar = ηb1|SVar. The statement concerning Rw

2 can be treated analogously. J

I Proposition 79. Assume C does not involve shared variables. For all ηa, ηb ∈ Prob(Ev(Var))
where ηa|SVar = ηb|SVar the following statements hold:

1. For all ea1R1 eb1 it holds ηa|Var1 R
w
1 ηb|Var1 if

ηa|LVar1 = Dirac[ea1|LVar1 ] and ηb|LVar1 = Dirac[eb1|LVar1 ].

2. For all ea2R2 eb2 it holds ηa|Var2 R
w
2 ηb|Var2 if

ηa|LVar2 = Dirac[ea2|LVar2 ] and ηb|LVar2 = Dirac[eb2|LVar2 ].

Proof. For reasons of symmetry we only show (1) since (2) can be treated analogously.
Let ηa, ηb ∈ Prob(Ev(Var)) and ηS ∈ Prob(Ev(SVar)) be such that ηa|SVar = ηS = ηb|SVar.
Moreover, let ea1R1 eb1. Abbreviate ea1|LVar1 = eLa1 and eb1|LVar1 = eLb1. Assume ηa|LVar1 =
Dirac[eLa1] and ηb|LVar1 = Dirac[eLb1]. Our task is to show ηa|Var1 R

w
1 ηb|Var1 .

Define f : Ev(SVar)→ Ev(Var1)× Ev(Var1),

f(eS) = 〈eLa1 ] eS , eLb1 ] eS〉.

Then, f is a Borel function and thus we can safely define W1 ∈ Prob(Ev(Var1)×Ev(Var1)) by

W1 = f](ηS).

We argue that W1 is a weight function for (ηa|Var1 , R1, ηb|Var1). For that purpose introduce

R′1 = {〈eLa1 ] eS , eLb1 ] eS〉 ; eS ∈ Ev(SVar)}.

It is easy to see that R′1 is a Borel set in Ev(Var1) × Ev(Var1). Moreover, R′1 ⊆ R1 using
ea1R1 eb1 and Proposition 78. Since f−1(R′1) = Ev(SVar),

W1(R′1) = ηS(f−1(R′1)) = ηS(Ev(SVar)) = 1.

It remains to show that W is a coupling of (ηa|Var1 , ηb|Var1). For every V ⊆ Var1 define
the Borel function gV : Ev(Var1) → Ev(V ), gV (e1) = e1|V . Let ML ⊆ Ev(LVar1) and
MS ⊆ Ev(SVar1) be Borel sets and define the Borel set M ⊆ Ev(Var1) by M ′ = g−1

LVar1
(ML)∩

g−1
SVar(MS). Since ηa|Var1 is a coupling of (ηS ,Dirac[eLa1]), Proposition 24 yields ηa|Var1(M ′) =
ηS(MS) · Dirac[eLa1](ML) and thus

W1(M ′ × Ev(Var1))
= ηS(f−1(M ′ × Ev(Var1)))
= ηS(MS) · Dirac[eLa1](ML)
= ηa|Var1(M ′).

Observe, the sigma-algebra on Ev(Var) is generated by sets of the form g−1
LVar1

(ML)∩g−1
SVar(MS)

where ML ⊆ Ev(LVar1) and MS ⊆ Ev(SVar1) are Borel sets. Carathéodory’s measure
extension theorem thus yieldsW1(M×Ev(Var1)) = ηa|Var1(M) for all Borel setsM ⊆ Ev(Var).
One similar shows W1(Ev(Var1) ×M) = ηb|Var1(M) for every Borel set M ⊆ Ev(Var), that
completes our proof. J
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C Stochastic transition systems

C.1 Composition

Local constraints.

I Definition 80. Let S = (S, S1, S2) be a span. A S2-local constraint is a relation LC 2 ⊆
S × Prob(S), that enjoys the conditions below:

1. For all s ∈ S and µ ∈ Prob(S), if µ|2 = Dirac[s|2], then sLC 2 µ.
2. For all sLC 2 µ and µ′ ∈ Prob(S), if µ|1 = µ′|1 and µ|2 = µ′|2, then sLC 2 µ

′.
3. For all sLC 2 µ, if µ|1 Sc Dirac[s|2], then µ is a S-coupling of (µ|1,Dirac[s|2]).

Similar, a S1-local constraint is a relation LC 1 ⊆ S × Prob(S), such that:

4. For all s ∈ S and µ ∈ Prob(S), if µ|1 = Dirac[s|1], then sLC 1 µ.
5. For all sLC 1 µ and µ′ ∈ Prob(S), if µ|1 = µ′|1 and µ|2 = µ′|2, then sLC 1 µ

′.
6. For all sLC 1 µ, if Dirac[s|1]Sc µ|2, then µ is a S-coupling of (Dirac[s|1], µ|2).

A pair (LC 1,LC 2) consisting of a LC 1-local constraint LC 1 and a LC 2-local constraint LC 2
is called S-agreement.

I Example 81. Let S = (S, S1, S2) be a Cartesian span, i.e., S = S1 × S2. Then,

LC 2 = {〈〈s1, s2〉, µ1 ⊗ Dirac[s2]〉 ; s1 ∈ S1, s2 ∈ S2, and µ1 ∈ Prob(S1)}

constitute a S2-local constraint Moreover, there exists no S2-local contraint different from
LC 2. Let us have a closer look and justify these claims. Requirement (1) in Definition 80
yield 〈〈s1, s2〉, µ1 ⊗Dirac[s2]〉 ∈ LC 2 for all s1 ∈ S1, s2 ∈ S2, and µ1 ∈ Prob(S1). Conversely,
let 〈〈s1, s2〉, µ〉 ∈ LC 2. Since S is supposed to be a Cartesian span we have Rel(S) = S1×S2
and thus, µ|1 Rel(S)w Dirac[s|2]. Hence, µ|1 Sc Dirac[s|2] (cf. Corollary 60). Therefore,
Definition 80 (3) yields that µ is a S-coupling of (µ|1,Dirac[s2]). We obtain µ = µ|1⊗Dirac[s2]
by Proposition 24, i.e., µ = µ1 ⊗ Dirac[s2] for some µ1 ∈ Prob(S1). From this all the claims
concerning LC 2 follow.

I Example 82. Let S = (S, S1, S2) be an identity span, i.e., S = S1 = S2. Then,

LC 2 = S × Prob(S)

is a S2-local contraint. Obviously, LC 2 satisfies the requirements (1) and (2) in Definition 80.
To justify Definition 80 (3) suppose 〈s, µ〉 ∈ LC 2 where µ|1 Sc Dirac[s|2]. Since S is an identiy
span, µ|1 = µ and Dirac[s|2] = Dirac[s]. Hence, µSc Dirac[s] and also µRel(S)w Dirac[s] (cf.
Proposition 52). We obtain µ = Dirac[s] using Rel(S) = DiagS and Lemma 37. Of course,
µ is thus a S-coupling of (µ|1,Dirac[s|2]). This finally shows that LC 2 is indeed a S2-local
constraint.

I Example 83. Let S = (S, S1, S2) be a variable span, i.e., S1 = Ev(Var1), S2 = Ev(Var2),
and S = Ev(Var1 ∪ Var2) for sets of variables Var1 and Var2. Abbreviate LVar1 = Var1 \ Var2,
LVar2 = Var2 \ Var1, and SVar = Var1 ∩ Var2. Then,

LC ′2 = {〈e, η〉 ∈ S × Prob(S) ; η|SVar = Dirac[e|SVar] implies η|Var2 = Dirac[e|Var2 ]},
LC ′′2 = {〈e, η〉 ∈ S × Prob(S) ; η|LVar2 = Dirac[e|LVar2 ]}, and
LC ′′′2 = {〈e, η〉 ∈ S × Prob(S) ; η|Var2 = Dirac[e|Var2 ]}

ICALP 2016



XXX:42 Composition of stochastic transition systems

are S2-local constraints such that LC ′2 ⊇ LC ′′2 ⊇ LC ′′′2 . Moreover, for every S2-local constraint
LC 2 we have LC ′2 ⊇ LC 2. We consider the last claim first and suppose a S2-local constraint
LC 2. Let 〈e, η〉 ∈ LC 2 where η|SVar = Dirac[e|SVar]. In order to show 〈e, η〉 ∈ LC ′2 we have
to argue η|Var2 = Dirac[e|Var2 ]. Since η|SVar = Dirac[e|SVar] we obtain η|Var1 Sc Dirac[e|Var2 ] (cf.
Proposition 65). Definition 80 (3) thus ensures that η is a S-coupling of (η|Var1 ,Dirac[e|Var2 ]).
It follows η|Var2 = Dirac[e|Var2 ], which justifies LC ′2 ⊇ LC .

Span composition. Throughout this paragraph let T1 = (S1,Γ1,→1) and T1 = (S2,Γ2,→2)
be STSs where S1 and S2 are supposed to be Polish spaces. Let S = (S, S1, S2) be a span,
Sync ⊆ Γ1 ∩ Γ2 be a set of synchronization labels, and G = (LC 1,LC 2) an S-agreement.

I Definition 84. We define the STS

T1 ‖S,G,Sync T2 = (S,Γ1 ∪ Γ2,→),

where for all s ∈ S, γ ∈ Γ, and µ ∈ Prob(S) it holds s→γ µ iff one of the conditions below
hold:

1. γ ∈ Γ1 \ Sync and s|1 →γ
1 µ|1 and sLC 2 µ.

2. γ ∈ Γ2 \ Sync and sLC 1 µ and s|2 →γ
2 µ|2.

3. γ ∈ Sync and s|1 →γ
1 µ|1 and s|2 →γ

2 µ|2.

In case S is a Cartesian span, i.e., S = S1×S2, the (T1, T2)-agreement is uniquely determined
(cf. Example 81) and hence we simply write T1 ‖×,Sync T2 instead of T1 ‖S,G,Sync T2.

I Proposition 85. Assume S is a Cartesian span, i.e., S = S1×S2. For all s1 ∈ S1, s2 ∈ S2,
γ ∈ Γ1 ∪ Γ2, and µ ∈ Prob(S), we have 〈s1, s1〉 ↪→γ µ in T1 ‖×,H T2 iff one of the following
statements hold:

1. γ ∈ Γ1 \ Sync and s1 →γ
1 µ|1 and µ2 = Dirac[s2].

2. γ ∈ Γ2 \ Sync and s2 →γ
1 µ|2 and µ1 = Dirac[s1].

3. γ ∈ Sync and s1 →γ
1 µ|1 and s2 →γ

2 µ|2.

Proof. The claim is a direct consequence of Definition 84 and Example 81. J

I Remark 86. We do not use any properties of Polish spaces within the definition of our
composition operator (cf. Definition 84). At the beginning of the paragraph we require that
S1 and S2 are Polish spaces since spans involve Polish spaces. However, one could introduce
a relaxed notion of a span (e.g., a tuple (X,X1, X2, ι1, ι2) consisting of measurable spaces
X, X1, and X2 and measurable functions ι1 : X → X1 and ι2 : X → X2) and define the
composition operator with respect to such a span.

Span versus independent composition. Recall the standard composition for STSs [18]:
Given STSs T1 = (S1,Γ1,→1) and T2 = (S2,Γ2,→2) and a set of synchronization labels
Sync ⊆ Γ1 ∩ Γ2, the STS

T1 ‖⊗Sync T2 = (S1 × S2,Γ1 ∪ Γ2,→)

with 〈s1, s2〉 →γ µ1 ⊗ µ2 iff the following holds:

If γ ∈ Γ1 \ Sync, then s1 →γ µ1 and µ2 = Dirac[s2].
If γ ∈ Γ2 \ Sync, then µ1 = Dirac[s1] and s2 →γ µ2.
If γ ∈ Sync, then s1 →γ µ1 and s2 →γ µ2.
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T :

0 1

β
1/2

1/2

α0 α1

Figure 1 STS T = (S,Γ,→) where S = {0, 1} and Γ = {α0, α1, β}.

Consider the STS T = (S,Γ,→) illustrated in Figure 1 where S = {0, 1} and Γ = {α0, α1, β}.
Assume µ ∈ Prob(S) is given by µ({0}) = µ({1}) = 1/2. Notice, 0→β µ. Abbreviate

Ta = T ‖×,Γ T and Tb = T ‖⊗Γ T and Ŝ = S × S.

We aim to show Ta and Tb are not bisimilar. Towards a contradiction assume that Ta
and Tb are bisimilar. Suppoe R ⊆ Ŝ × Ŝ is the coarsest bisimulation for (Ta, Tb), i.e., R′ ⊆ R
for every bisimulation R′ for (Ta, Tb). Remind, the union of arbitrary many bisimulations for
(Ta, Tb) yields again a bisimulation for (Ta, Tb) and thus R equals the union of all bisimulations
for (Ta, Tb). As Ta and Tb are supposed to be bisimilar, there is at least one bisimulation for
(Ta, Tb). Given sa ∈ Sa and sb ∈ Sb, we use sasb as a shorthand notation for 〈sa, sb〉 in the
following.

Since 0 is the only state in T with an outgoing α0-transition and α0 is a synchronization
label, it necessarily holds 00R 00 using the fact that R is lr-total in Ŝ× Ŝ. For similar reasons
it holds 11R 11 and moreover,

{〈00, 01〉, 〈00, 10〉, 〈00, 11〉, 〈01, 00〉, 〈10, 00〉, 〈11, 00〉} ∩R = ∅ and
{〈11, 00〉, 〈11, 01〉, 〈11, 10〉, 〈00, 11〉, 〈01, 11〉, 〈11, 10〉} ∩R = ∅.

As R is the coarsest bisimulation for (Ta, Tb), it follows

01R 01, 01R 10, 10R 01, and 10R 10.

Putting things together,

R = {〈00, 00〉, 〈11, 11〉, 〈01, 01〉, 〈01, 10〉, 〈10, 01〉, 〈10, 10〉}.

Consider the transition 00 ↪→β µ̂ in Ta where µ̂ ∈ Prob(Ŝ) is given by µ̂({00}) = µ̂({11}) = 1/2
(notice µ̂ is indeed a coupling of (µ, µ)). Since R is a bisimulation for (Ta, Tb) where 00R 00
and 00 ↪→β µ⊗µ is the only β-transition in Tb outgoing from 00, it holds µ̂ Rw (µ⊗µ). Thus,
µ̂ Rs (µ⊗ µ) by Proposition 35. The pair 〈{00}, {00}〉 is R-stable since

R ∩ ({00} × Ŝ) = {〈00, 00〉} = R ∩ (Ŝ × {00}).

But,

µ̂({00}) = 1/2 6= 1/4 = 1/2 · 1/2 = µ({0}) · µ({0}) = µ⊗ µ({00}),

that yields a contradiction. Therefore, Ta and Tb are not bisimilar.

Parallel composition of NLMPs. Labeled Markov processes and non-deterministic
labeled Markov processes (NLMPs) [25, 23, 55] are elegant formalisms that allow among
others for an rich theory on bisimulation and its logical characterization. An NLMP can
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be seen as an STS that enjoys requirements concerning measurability issues. Unfortunately,
NLMPs are a priori not appropriate for our purposes as the class of NLMPs is not closed
under composition. Let us give some details and assume an STS T = (S,Γ,→). For every
s ∈ S and γ ∈ Γ define

EnabledT (s, γ) = {µ ∈ Prob(S) ; s→γ µ}.

The STS T is called NLMP-like, if for all γ ∈ Γ the following two conditions are fulfilled:

{µ ∈ Prob(S) ; s→γ µ} is Borel in Prob(S) for all s ∈ S.
{s ∈ S ; EnabledT (s, γ) ∩ P 6= ∅} is Borel in S for all Borel sets P ⊆ Prob(S).

We now given two NLMP-like STSs T1 and T2 such that their composition is not NLMP-
like when synchronizing on all common labels. Consider the STSs T1 = (R,Γ,→1) and
T2 = (R,Γ,→2) with Γ = {γ} and

→1 = {〈r1, γ,Dirac[r1]〉 ; r1 ∈ R} and
→2 = {〈r2, γ,Dirac[r′2]〉 ; r2, r

′
2 ∈ R}.

Abbreviate T = T1 ‖×,Γ T2. It is not hard to see that T1 and T2 are NLMP-like (cf.
Remark 14). However, T is not NLMP-like. In what follows we give a formal argument. Let
M ⊆ R×R be a Borel set such thatM1 is not Borel in R, whereM1 = {r1 ∈ R ; there is r2 ∈
R where 〈r1, r2〉 ∈M} (cf. Remark 20). Define DiracM = {Dirac[r] ; r ∈M}. Then, DiracM
is Borel in Prob(R× R) (cf. Remark 14), but

{〈r1, r2〉 ∈ R× R ; EnabledT (〈r1, r2〉, γ) ∩ DiracM 6= ∅} = M1 × R

is not Borel R× R (the function f : R→ R× R, f(r) = 〈r, r〉 is Borel and if M1 is Borel in
R, then f−1(M1 × R) = M1 is Borel in R, which is not case). The STS T is therefore not
NLMP-like. Notice, this has nothing to do with our notion of composition since T = T1 ‖⊗Γ T2
(cf. Proposition 24). Moreover, the present STS T1 and T2 do not even incorporate non-trival
probability measures and can be seen as non-probabilistic models.

C.2 Congruence
Let Ta1 = (Sa1,Γ1,→a1), Ta2 = (Sa2,Γ2,→a2), Tb1 = (Sb1,Γ1,→b1), and Tb2 = (Sb2,Γ2,→b2)
be STSs such that Ta1 ∼ Tb1 and Ta2 ∼ Tb2. Notice, Ta1 and Tb1 have the same sets of labels
Γ1 and similar, Ta2 and Tb2 have the same sets of labels Γ2. Define

Ta = Ta1 ‖Sa,Ga,Sync Ta2 and Tb = Tb1 ‖Sb,Gb,Sync Tb2,

where Sync ⊆ Γ1 ∩ Γ2, Sa = (Sa, Sa1, Sa2) and Sb = (Sb, Sb1, Sb2) are proper spans, Ga =
(LCa1,LCa2) is a (Ta1, Ta2)-agreement, and Gb = (LC b1,LC b2) is a (Tb1, Tb2)-agreement.
Assume relations R1 ⊆ Sa1 × Sb1 and R2 ⊆ Sa2 × Sb2. We consider the span connection
C = (Sa,Sb, R1, R2). Reminding Definition 67,

R1 ∧C R2 = {〈sa, sb〉 ∈ Sa × Sb ; sa|1R1 sb|1 and sa|2R2 sb|2}.

We aim to show that R1 ∧C R2 is a bisimulation for (Ta, Tb) if R1 and R2 are bisimulations
for (Ta1, Tb1) and (Ta2, Tb2), respectively. For that purpose we need a notion to compare the
agreements Ga and Gb.
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I Definition 87. LCa2 and LC b2 are C-bisimilar whenever for all sa (R1 ∧C R2) sb the
following statements hold:

1. For all µa ∈ Prob(Sa) and µb1 ∈ Prob(Sb1), if sa LCa2 µa and µa|1Rw
1 µb1, then there is

µb ∈ Prob(Sb) where

sb LC b2 µb, µb|1 = µb1, and µa|2R
w
2 µb|2.

2. For all µb ∈ Prob(Sb) and µa1 ∈ Prob(Sa1), if sb LC b2 µb and µa1R
w
1 µb|1, then there is

µa ∈ Prob(Sa) where

sa LCa2 µa, µa|1 = µa1, and µa|2R
w
2 µb|2.

Similar, LCa1 and LC b1 are C-bisimilar whenever for all sa (R1 ∧C R2) sb the following
statements hold:

3. For all µa ∈ Prob(Sa) and µb2 ∈ Prob(Sb2), if sa LCa1 µa and µa|2Rw
2 µb2, then there is

µb ∈ Prob(Sb) where

sb LC b1 µb, µb|2 = µb2, and µa|1R
w
1 µb|1.

4. For all µb ∈ Prob(Sb) and µa2 ∈ Prob(Sa2), if sb LC b1 µb and µa2R
w
2 µb|2, then there is

µa ∈ Prob(Sa) where

sa LCa1 µa, µa|2 = µa2, and µa|1R
w
1 µb|1.

Ga and Gb are C-bisimilar if LCa2 and LC b2 as well as LCa1 and LC b1 are C-bisimilar.

I Proposition 88. If Sa and Sb are Cartesian spans, i.e., Sa = Sa1×Sa2 and Sb = Sb1×Sb2,
then Ga and Gb are C-bisimilar.

Proof. Abbreviate R = R1 ∧C R2. Assume Sa and Sb are Cartesian spans and C is adequate.
For reasons of symmetry we only show that LCa2 and LC b2 are C-bisimilar. According to
Example 81,

LCa2 = {〈〈sa1, sa2〉, µa1 ⊗ Dirac[sa2]〉 ; sa1 ∈ Sa1, sa2 ∈ Sa2, and µa1 ∈ Prob(Sa1)},
LC b2 = {〈〈sb1, sb2〉, µb1 ⊗ Dirac[sb2]〉 ; sb1 ∈ Sb1, sb2 ∈ Sb2, and µb1 ∈ Prob(Sb1)}.

Suppose saRsb with sa = 〈sa1, sa2〉 and sb = 〈sb1, sb2〉. Let µa ∈ Prob(Sa) and µb2 ∈
Prob(Sb2) be such that sa LCa2 µa and µa|1Rw

1 µb1. Define µb ∈ Prob(Sb) by

µb = µb1 ⊗ Dirac[sb2].

Obviously, sb LC b2 µb and µb|1 = µb1. It remains to show µa|2R
w
2 µb|2. As saRsb we

have sa2R2 sb2 and thus Dirac[sa2]Rw
2 Dirac[sb2] by Proposition 34. Since sa LCa2 µa it

follows µa = µa1 ⊗ Dirac[sa2] and therefore µa|2 = Dirac[sa2]. As µb|2 = Dirac[sb2] we hence
obtain µa|2Rw

2 µb|2. This finally yields requirement (1) in Definition 87. One similar shows
requirement (2) in Definition 87. J

I Proposition 89. Suppose S = Sa = Sb and G = Ga = Gb, where S is a variable span and
G is the standard S-agreement. Moreover, assume C does not involve shared variables. Then,
Ga and Gb are C-bisimilar.
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Proof. For reasons of symmetry we only show that LCa2 and LC b2 are C-bisimilar. Assume
S is given by S = (S, S1, S2) where S1 = Ev(Var1), S2 = Ev(Var2), and S = Ev(Var1 ∪ Var2)
for sets of variables Var1 and Var2. Reminding Example 83,

LCa2 = {〈ea, ηa〉 ∈ S × Prob(S) ; ηa|Var2\Var1 = Dirac[ea|Var2\Var1 ]},
LC b2 = {〈eb, ηb〉 ∈ S × Prob(S) ; ηb|Var2\Var1 = Dirac[eb|Var2\Var1 ]}.

Abbreviate R = R1 ∧C R2. Let eaReb, ηa ∈ Prob(S), and ηb2 ∈ Prob(S2) be such that
ea LCa2 ηa and ηa1R

w
1 ηb1. Here, we abbreviate ηa1 = ηa|Var1 . Let µb ∈ Prob(S) be the

probability measure uniquely determined by

ηb|Var1 = ηb1 and ηb|Var2\Var1 = Dirac[eb|Var2\Var1 ].

Obviously, eb LC b2 ηb. It remains to justify ηa|Var2 R
w
2 ηb|Var2 in order to justify require-

ment (1) in Definition 87. Since ηa1R
w
1 ηb1 and as C does not involve shared variables,

Proposition 78 yields ηa|SVar = ηa1|SVar = ηb1|SVar = ηb|SVar. Since ea LCa2 ηa, we have
ηa|Var2\Var1 = Dirac[ea|Var2\Var1 ]. Moreover, ea|Var2 R2 eb|Var2 and hence we are in the situation
of Proposition 79 (2), that finally yields ηa|Var2 R

w
2 ηb|Var2 .

Requirement (2) in Definition 87 is shown analogously and therefore, LCa2 and LC b2 are
C-bisimilar. J

I Theorem 90. Assume R1 and R2 are bisimulations for (Ta1, Tb1) and (Ta2, Tb2), respectively,
C is adequate, and Ga and Gb are C-bisimilar. Then,

R1 ∧C R2 is a bisimulation for (Ta, Tb).

Proof. Abbreviate R = R1 ∧C R2. For reasons of symmetry we only justify that every
transition in Ta can be mimicked by a corresponding transition in Tb. Let saRsb, γ ∈ Γ1∪Γ2,
and µa ∈ Prob(Sa) and assume sa →γ

a µa. Notice, sa|1R1 sb|1 and sa|2R2 sb|2. We justify
that there is a µb ∈ Prob(Sb) such that sb →γ

b µb and µaRµb.
We consider the case where γ ∈ Sync first. According to the definition of our composition

operator (cf. Definition 84), it holds sa|1 →γ
a1 µa|1 and sa|2 →γ

a2 µa|2. Since R1 and R2
are bisimulations for (Ta1, Tb1) and (Ta2, Tb2), respectively, there are µb1 ∈ Prob(Sb1) and
µb2 ∈ Prob(Sb2) such that

sb|1 →γ
b1 µb1 and µa|1R

w
1 µb1 and

sb|2 →γ
b2 µb2 and µa|2R

w
2 µb2.

Since C is adequate we can apply Theorem 72 and thus there exists a Sb-coupling µb of
(µb1, µb2) such that µaRw µb. As it also holds sb →γ

b µb by Definition 84, the first part of
our proof is complete.

We attend the case where γ ∈ Γ1 \Sync. Then, sa|1 →γ
a1 µa|1 and sa LCa2 µa. Using that

R1 is a bisimulation for (Ta1, Tb1), there exists µb1 ∈ Prob(Sb1) such that

sb|1 →γ
b1 µb1 and µa|1R

w
1 µb1.

Since LCa2 and LC b2 are C-bisimilar, there is µ′b ∈ Prob(Sb) such that

sb LC b2 µ
′
b, µ′b|1 = µb1, and µa|2R

w
2 µ
′
b|2

(cf. Definition 87 (1)). Again, as C is adequate Theorem 72 yields the existence of a Sb-
coupling µb of (µb1, µ′b|2) such that µaRw µb. Since µ′b|1 = µb1 = µb|1 and µ′b|2 = µb|2, we
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have sb LC b2 µb (cf. Definition 80 (2)). It follows sb →γ
b µb and hence the next part of our

proof that R is a bisimulation is complete.
The case where γ ∈ Γ2 \Sync can be treated similarly. However let us recall the argument.

We have sa|2 →γ
a2 µa|2 and sa LCa1 µa. Since R2 is a bisimulation for (Ta2, Tb2), there is

µb2 ∈ Prob(Sb2) such that

sb|2 →γ
b2 µb2 and µa|2R

w
2 µb2.

Since LCa1 and LC b1 are C-bisimilar, there is µ′b ∈ Prob(Sb) such that

sb LC b1 µ
′
b, µ′b|2 = µb2, and µa|1R

w
1 µ
′
b|1

(cf. Definition 87 (3)). Using that C is adequate, Theorem 72 yields a Sb-coupling µb of
(µ′b|1, µb2) such that µaRw µb. Since µ′b|1 = µb|1 and µ′b|2 = µb2 = µb|2, we have sb LC b1 µb
(cf. Definition 80 (5)). It follows sb →γ

b µb and hence the next part of our proof that R is a
bisimulation is complete. J

I Corollary 91. Assume R1 and R2 are bisimulations for (Ta1, Tb1) and (Ta2, Tb2), respectively.
If Sa and Sb are Cartesian spans, then

R1 ∧C R2 is a bisimulation for (Ta, Tb).

Proof. Propositions 68 and 88 together with Theorem 90 justify the claim. J

I Corollary 92. Suppose S = Sa = Sb and G = Ga = Gb, where S is a variable span and G
is the standard S-agreement. Moreover, assume C does not involve shared variables. Assume
R1 and R2 are bisimulations for (Ta1, Tb1) and (Ta2, Tb2), respectively. Then,

R1 ∧C R2 is a bisimulation for (Ta, Tb).

Proof. Notice, C is adequate due to Proposition 78 and Ga and Gb are C-bisimilar according
to Proposition 89. Hence, we are in the situation of Theorem 90, that yields the claim. J
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