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Abstract. Within classical MAPE-K control-loop structures for adap-
tive systems, knowledge gathered from monitoring the system and its
environment is used to guide adaptation decisions at runtime. There are
several approaches to enrich this knowledge base to improve the planning
of adaptations. We consider a method where probabilistic model checking
(PMC) is used at design time to compute results for various short-term
objectives, such as the expected energy consumption, expected through-
put, or probability of success. The variety PMC-results yield the basis for
defining decision policies (PMC-based strategies) that operate at runtime
and serve as heuristics to optimize for a given long-term objective. The
main goal is to apply a robust decision making method that can deal with
different kinds of uncertainty at runtime. In this paper, we thoroughly
examine, quantify, and evaluate the potential of this approach with the
help of an experimental study on an adaptive hardware platform, where
the global objective addresses the trade-off between energy consump-
tion and performance. The focus of this study is on the robustness of
PMC-based strategies and their ability to dynamically manage situations,
where the system at runtime operates under conditions that deviate from
the (idealized) assumptions made in the preceding offline analysis.

1 Introduction

The world is full of dynamic systems, which adapt their behavior depending on
the prevailing conditions with the simple goal to survive or to self-optimize with
respect to various criteria, e.g., energy-efficiency. Nature already provides very
efficient and smart ways for the autonomous management of adaption within
biological systems and chemical processes. Likewise, there are human-created
technical systems that also allow for adaptation to changing conditions either
within the system itself or to external changes in the environment. In particular,
there is a growing importance and dependence of complex dynamic hardware/-
software systems, systems of systems, and cyber-physical systems that are subject
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to different types of changes. Recent application areas include, e.g., autonomous
driving and flying, where internal and external changes can happen anytime.
Internal changes are, e.g., software updates or failures of hardware/software com-
ponents. External or environmental changes include, e.g., bad road or weather
conditions and sudden pedestrian appearance. Adaptations may also be required
in case of a shift in the prioritization of different objectives or the rebalancing of
trade-offs, e.g., performance vs. energy efficiency. Typical decisions for system
adaptation include, e.g., switching on and off of components, switching between
management policies, (de)allocating resources, and task scheduling and migration.
The challenge of maintaining and managing complex systems efficiently at runtime
often exceeds what can easily be achieved by human beings. In practice, decision
making is usually based on heuristics that generally do not provide optimal or
close-to optimal results. In case a multitude of demands must be met, e.g., safety,
reliability, throughput, and minimizing operating costs, decision making becomes
increasingly complex. A recent trend is to direct (parts of) this complex task to
learning-based approaches, which may be problematic in safety-critical settings
where black-box decision making does not provide insights and hence trust.
Alternatively, approaches based on formal methods can be employed to enable
both transparent and (close-to) optimal decision making. In this paper, we apply
probabilistic model checking (PMC) for supporting the runtime decision-making.
The focus will be on the robustness of PMC-supported decision making when
the stochastic assumptions on the environment behavior are inaccurate or biased
and the system is subject to unforeseen dynamics.

The Approach. The general goal is to optimize runtime decision making in
adaptive systems regarding a given long-term objective, which is typically a
multi-objective property addressing the trade-off between conflicting objective
functions. A typical example for such tradeoff is the minimization of energy
consumption combined with the maximization of performance or throughput
of a system. The goal is then to balance the tradeoff appropriately according
to the application specific demands. Unfortunately in practice, the assumption
that a detailed system model can be built and optimal solutions regarding a
given long-term objective can be computed in time is often not valid. To anyhow
achieve this goal, PMC-results for various short-term objectives with fixed horizon
(such as step-bounded or reward-bounded objectives) are computed at design
time. In this step, we use an abstract and discrete-time operational system
model (i.e., a Markov decision process (MDP) annotated with costs/rewards)
and store PMC-results into a database that can later be queried at runtime. The
decision making can adapt the system according to adaptation choices that seem
optimal in regards to selected short-term objectives and in a way that potentially
approximates optimal solutions for the long-term objective. So called PMC-based
strategies are query execution plans for the database that specify how exactly
PMC-results for short-term results are combined within the decision making at
runtime. In this paper we propose different PMC-based strategies and quantify
the quality and robustness of PMC-based decision making. For this, we identified
the following critical aspects to be addressed within the experimental studies:
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(A1) reducing the accuracy of the stochastic environment assumptions, as prior
knowledge on the concrete environment behavior at runtime is in general not
available, (A2) limiting the analysis horizon, as analyzing the system model to
its full depth is practically impossible, and (A3) increasing the time between
adaptations, as adaptation in each time step is unrealistic also due to the imposed
adaptation costs, e.g. in terms of delays and additional energy.
Contributions. The main contribution of this paper is hence a robustness
study for PMC-supported decision making. As a starting point we devel-
oped a stochastic operational model of a database application that runs on an
adaptive hardware platform with alternative computational modes.

1. We suggest different PMC-based strategies for managing the trade-off between
the energy consumption and performance (i.e., the amount of database queries
that can be processed by the platform within a fixed timeframe),

2. extend Prism’s [16] simulator with features to enable an evaluation of PMC-
based strategies using statistical model checking,

3. carry out an extensive, simulation-based evaluation of PMC-based adaptation
strategies to quantify their quality and robustness regarding aspects (A1–A3)
compared to a standard heuristic for resource management, and

4. provide general guidelines on how to deploy PMC-based decision making for
robust operation depending on the critical application characteristics.

An artifact is made available under https://tud.link/8036, together with an
extended version of this paper. The artifact contains the operational model, the
full tooling, a demo example and the documentation. Furthermore, it allows for
reproducing all experimental results.
Related work. There is a large variety of formal methods addressing different
components of the classical MAPE-K loop [21,13], namely for monitoring, analyz-
ing, planning, executing and to gain additional knowledge. Existing approaches
are closely related, but do not share the primary goal of robustness decision
making. Instead, they are orthogonal and can be combined with PMC-supported
decision making. Runtime verification (RV) is for example used for the monitoring
of certain properties and their verification at runtime. RV is typically used for
safety, reliability, security, fault containment, and recovery as well as for online
system repair, but also for aiming at quantitative objectives [17]. Usually, RV does
not rely on an abstract system model and model checking at runtime. In contrast,
online model checking performs classical model checking periodically. The goal is
to obtain guarantees on the near future in particular with respect to reliability
(often covering safety only) [23,12], even though the model might be inaccurate
or of approximate nature only. The limits of any approach that carries out model
checking at runtime are determined by the time available for decision making,
which is typically very short. Incremental model checking [14,18] hence considers
an operational model for some base behavior plus models for dynamic aspects or
components. This incremental model structure potentially allows for reducing
the effort of model checking at runtime, as only the dynamic system parts have
to be considered and combined with results from previous verification runs. The

https://tud.link/8036
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development of approaches for PMC-supported decision making and planning in
adaptive software is an emerging research field [6,4,9]. Although there has been
some progress on online approaches that call a probabilistic model checker for
(bounded) models at runtime [5,20,22,19], PMC is too compute-intensive for a
pure on-the-fly approach when decisions cannot afford delays and have to be
made almost instantaneously. Incremental approaches (e.g. [10]) try to narrow
this gap in performance, but limits on what can be computed at real time while
the systems executes (or waits for adaptation) still exist. Hence, there is a clear
motivation to carry out any kind of complex PMC analysis at design time rather
than at runtime. The work in [8] also relies on a pre-analysis of quantitative
measures (only) for reliability. The results are represented and stored as symbolic
expressions, namely polynomials with free parameters that are then evaluated
at runtime for the actual parameter values. The authors rely on parametric
model-checking techniques. The clear benefit of this is, that the model checking
results can be stored very compactly (in terms of symbolic expressions), but the
approach is only practical when the number of free parameters is reasonably small.
The method in [11], which we rely and build on in this paper, uses pre-analyzed
quantitative measures to create annotated MDPs for runtime decision making.
In contrast to [8], results are stored explicitly rather than symbolically. Our
approach is similar in this aspect. Technically, we rely on a database to store
results for multiple state properties. The database is then dynamically queried
at runtime. Nevertheless, the common assumptions of [8] and [11] are, that the
measures computed in the offline analysis are fixed and the exact same as the ones
addressed and optimized for at runtime and that the full MDP model is small
enough to be analyzed in its full depth. In our work, we drop those assumptions
and address the question of how (for large systems in particular) short-term
objectives and decision policies with bounded scope on parts or fractions of the
system (which can be computed at design time) can be utilized and dynamically
combined into complex adaptation policies (called PMC-based strategies) to
optimize for a given long-term objective. The main question we address is then
the aspect of robustness of different, alternative PMC-based strategies. We also
want to stress the fact, that the selected method is compatible with other (formal)
methods present in a MAPE-K loop. For instance, RV can be used for monitoring
and online model checking can be used periodically and even incremental to
update the database in the background.

2 PMC-supported Decision Making

The classical MAPE-K control loop consists of a managed system operating within
an uncontrollable environment, monitoring components (M) collecting information
on the system and the environment via sensing at runtime, components to analyze
the available information (A), components that generate an adaptation plan (P)
from the output of the analysis components as well as the knowledge base (K), and
components that execute the current plan (E) via actuators on the system under
control. In this work, the system under control is typically a hardware/software
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Fig. 1: Schema of PMC-supported decision making

system whereas the environment is defined by the workload assigned to the
system. In the following, we outline a PMC-based planning approach for steering
the system adaptation as seen in Figure 1. This approach requires an offline
pre-analysis of the system for producing the knowledge base (tech. a database)
used at runtime.

2.1 Model-based Offline Analysis

Starting point of our procedure is an abstract and discrete-time operational
model of the system in question (i.e., a Markov decision process (MDP) an-
notated with costs/rewards), which combines non-deterministic choices with
probability distributions over successor states. The non-deterministic choices
encode possible reconfiguration actions and the probability distributions encode
stochastic assumptions, e.g., on the number of newly arriving tasks. Cost and
reward structures are used to annotate, e.g. energy consumption in the given
configuration. The PMC-analysis then takes the model together with a property
specification (i.e., in terms of a PCTL∗ formula (probabilistic computational tree
logic)) and computes so called schedulers, which resolve the non-deterministic
choices in order to maximize (or minimize) expected accumulated costs as well
as probabilities of temporal events. 1 In order to optimize decisions regarding
a long-term objective, which is typically a multi-objective property, the goal is
to balance the tradeoff in a way that fulfills the application specific demands.
In [11], the MDP model is annotated with the results (per state) which then
yields the basis for the decision making at runtime, on how to best achieve
the targeted long-term objective. Since this is not always practical, we focus
instead on computing optimal decisions regarding short-term objectives such as
step-bounded or reward-bounded objectives, where the analysis horizon com-
prises the next n ∈ N timesteps rather than the full depth of the model. In our
1 See [3] for details on MDPs, schedulers, and PCTL∗-model checking.
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approach, a multitude of results for short term objectives can be computed in an
offline analysis, even for larger system models with restricted analysis depth. The
exhaustive analysis of environments, system states, and reconfiguration options
results in a PMC-table containing the probabilities and costs for each possible
reconfiguration. The PMC-table is stored within a database (implementing the
knowledge base). This enables fast and flexible lookups at runtime.

2.2 Runtime Decision Making
At system runtime, it is now possible to dynamically access the precomputed
results and search for a reconfiguration action that is most promising for a
given temporal objective. We call such a policy that is formulated as query
on precomputed PMC-results a PMC-based strategy. Technically PMC-based
strategies can be implemented as database queries: given a temporal objective
Φ, a certain system state, assumptions on the environment, and optionally
additional knowledge, context information and environment predictions one can
define database queries looking for a reconfiguration policy that tries to optimize
either Φ directly (if the results for Φ have been precomputed and stored for
a matching situation into the database) or heuristically by combining other
precomputed results. Applying such a PMC-based strategy at runtime will cause
the resolution of all nondeterministic choices within the MDP (which yields a
MC) and can be understood as online construction of an MDP scheduler. As
this querying happens at runtime, one can customize and modify PMC-based
strategies dynamically according to the current situation, predicted evolution,
context information and most importantly the long-term temporal objective. With
all the results from the pre-analysis and the ability of dynamically modifying the
current reconfiguration according to changes, the hope is to steer the adaptive
HW/SW systems very efficiently, outperforming, e.g., related techniques that do
not expose such features and in particular simple heuristics such as greedy-based
strategies that are currently used due to their simplicity.

3 Robustness of PMC-supported Decision Making
In this section, we investigate the robustness of PMC-supported decision making.
In particular, the approach is evaluated to answer the following research questions.
(RQ1) How can the trade-off between conflicting objectives be resolved?
(RQ2) How robust is the decision making in case of inaccurate assumptions?
(RQ3) What impact has the analysis horizon on the quality of adaptations?
(RQ4) What is the influence of different monitoring approaches?
(RQ5) What are general guidelines for configuring a PMC-based control loop?
To address (RQ1)–(RQ5), we examine an adaptive hardware/software system,
whose abstract operational model generalizes to a larger class of producer-
consumer systems. The PMC-supported decision making is evaluated using
model-based simulation.
Adaptive system example. We have developed an abstract stochastic oper-
ational model (an MDP) for an adaptive database system [15] that processes
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incoming computational tasks (i.e. queries) over the course of a day. The number
of incoming tasks2 is stochastically distributed and depends on the time of day.
Incoming tasks are enqueued into an input buffer for delayed execution. The size
of the task buffer is limited and an overflow results in dropped tasks, which in turn
incurs an SLA-violation. The platform can be operated in various configurations
regarding: the numbers of CPUs used, their frequency levels, and the usage of
hyper-threading. Each configuration allows for processing a specific number of
tasks per time step while consuming a certain amount of energy. The platform
can be reconfigured in reaction to changing workloads or energy constraints. Our
parametrized operational model can be instantiated with different resolutions
of the time domain and e.g., different distributions for incoming tasks, buffer
sizes, configurations and their cost/utility characteristics. Beyond this and due
to the selected level of abstraction, the operational model generalizes to a class
of producer-consumer systems with alternative operational modes. The specific
values used throughout our experiments are based on the ones in [15]. The reso-
lution of the time domain was chosen such that a large number of experiments
can still be carried out in a reasonable time.
Long-term objective. Our long-term objective takes reference to the ener-
gy/utility tradeoff and are based on the two following measures3 that refer to the
probability of successfully processing tasks and the expected energy consumption.

Pr(Success) def
= Pr(“no sla vio” U (“day end” ∧ “buffer empty”)) (1)

E(Energy) def
= EEnergy(♦“day end”) (2)

Here, (1) is the probability of finishing all tasks by the end of the day without
SLA-violations, i.e., the success probability (which needs to be maximized), and
(2) quantifies the expected accumulated energy costs (which should be minimized).
PMC-based strategies. Obviously, the two measures are not independent
and even conflicting. Maximizing the probability that all tasks are processed
can be trivially achieved by running the system in the configuration with the
highest possible throughput, but this also implies maximal energy consumption.
Conversely, minimizing the energy consumption means selecting the configuration
with the least throughput or even turning off the system, resulting in multiple SLA-
violations. To resolve this conflict, we formulate PMC-based strategies, which are
gradually applied at runtime (i.e., a PMC-based strategy S then induces a Markov
chain MS). The ability of S w.r.t. balancing the energy/utility tradeoff can be
judged and quantified and with the help of Pr(Success) and E(Energy) evaluated
in MS. The strategy SUtil≥P prioritizes the first objective by considering only
those configurations where the probability of success4 (i.e. no SLA-violation
occurs) is greater or equal to P . Among the remaining configurations, the one
with the lowest energy consumption is selected. SBudget:B tries to maximize
2 This abstract number and the respective distributions could also be used to charac-

terize the computational weight of larger tasks, e.g., by the number of its subtasks.
3 Alternative measures for utility could for example address latency.
4 We simply write SUtil when the probability bound P equals 1.
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the probability success, but selects only among those configurations that stay on
energy budget B. Lastly, strategy SQuant:P relies on a multi-objective property.
The idea is to find the minimal energy consumption that keeps the probability of
success above threshold P .
Short-term objectives. Since the analysis horizon of the pre-computation is
usually limited, the PMC-based strategies are defined in terms of the following
short-term objectives to approximate the long-term objective.
(SO1) Emin

Energy(♦“horizon end”)
(SO2) Prmax(“no sla vio” U(“horizon end” ∧ “buffer empty”))
(SO3) Prmax(“no sla vio” UEnergy≤B (“horizon end” ∧ “buffer empty”))
(SO4) min e : Prmax(“no sla vio” UEnergy≤e (“horizon end” ∧ “buffer empty”))>P

Here, “horizon end” is an atomic proposition holding in all states where the end
of the analysis horizon is reached. Formulas (SO2) and (SO3) are unbounded and
bounded versions of PCTL-Until formulas, standing for the maximum probability
for reaching the end of the analysis horizon without SLA-violation. The parameter
B represents the energy budget for a single day. Formula (SO4) stands for a
quantile[2]: given a fixed probability bound P ∈ [0, 1], the quantile value represents
the minimum amount of energy needed such that the energy-bounded version of
(S02) holds with at least probability P .
The pre-analysis yields a table containing the PMC results for these objectives,
depending on the current system state and the chosen adaptation in that state.
At runtime, these results are queried according to the chosen PMC-based strategy.
The strategy SUtil first maximizes (SO2) and then minimizes (SO1), strategy
SBudget:B maximizes (SO3), and strategy SQuant:P minimizes (SO4).

3.1 Experiment Setup

In this section, we give a brief overview of modeling details and the simulation
infrastructure that was utilized for the evaluation.
Offline analysis. For the offline analysis step, we make use of a family of MDP
models that contains components for the adaptive hardware/software platform
itself, the set of stochastic environment assumptions, and additional monitoring
components that track runtime information and may trigger adaptations. Techni-
cally we rely on the tool ProFeat [7], which supports feature-based modeling of
system families and a family-based analysis. For the latter, ProFeat internally
relies on Prism, as the input language extends the Prism modelling language and
is automatically translated to standard Prism. For the experiments presented in
the following, the model consists of 10 abstract time steps, where each time step
consists of three phases. The first phase is the adjust system phase, where there is
a nondeterministic choice among all available reconfiguration actions in the MDP,
leading to successor states with respective operation modes. In the succeeding
sample workload phase, the workload (i.e., 1–6 tasks) is sampled according to a
given normal distribution D(timestep) with a given time-dependent mean and a
fixed variance. The incoming tasks are stored within an input buffer of size 12. In
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the experiments, we used ten synthetic environment assumptions with different
shapes and 100 randomly generated environment assumptions. The last phase is
the system operation, which processes as much tasks as possible within the chosen
system configuration5. The other components of the family, e.g. environments,
can be turned on and off following a set of rules, so we can analyse this family
under different environments and configurations, and with different monitors
active. The results are written to a database, where the keys are triples of the
form 〈s,m, α〉. Here, s is a state in the MDP that is part of the adjust system
phase, m stands for monitored state, and α for a reconfiguration action.
Simulation-based evaluation. Rather than executing PMC-based adaptation
on the actual system, we follow a simulation-based approach in order to evaluate
the PMC-supported decision making. We extended the Prism simulator to enable
the use of PMC-based strategies for resolving all nondeterministic choices at
certain points which are determined by an instance-specific monitoring component.
The current system state s and monitor states m are then used in a database
query to find the “best” adaptation action α w.r.t. the given PMC-strategy.
This infrastructure now allows for using the statistical model checking engine
of Prism to compute probabilities and expectations in the Markov chain that
results from applying the PMC-strategy to the runtime MDP model. We employ
this simulator to gauge the quality of the decision making in various scenarios.
For our experiments, we used the confidence interval method of Prism, with a
sample size of 3000 paths and an 0.01 confidence. This means, that in every fol-
lowing experiment, 99% of results were in Pr(Success)±0.02 and E(Energy)± 1.4
respectively.

3.2 Evaluation of PMC-based Strategies

In the first set of experiments, we compare different PMC-based strategies to
illustrate the potential of PMC-supported decision making and we examine their
ability to balance long-term objectives (RQ1). The strategies are compared
under idealized conditions, i.e., the runtime environment behavior agrees with
the environment assumptions, the analysis horizon spans the whole day, and
adaptations are triggered in every time step. As baseline for the overall adaptation
quality, we consider a commonly applied heuristic (which we call base), which
in each time step selects a configuration that uses the least amount of energy
but has still high enough throughput to process all incoming tasks immediately.
This heuristic has, e.g., been applied in the context of operating systems and the
resource management of an adaptive database system [1,15]. We first show how
much the PMC-strategies can further reduce the expected energy consumption.
This is possible since the pre-analysis provides predictions which allow us to
safely delay the processing of tasks without risking immediate SLA-violations.
Figure 2 shows the expected costs and the success probability of the different
PMC-based strategies compared to base when applied to the 100 random and 10
synthetic environments with a variance of 2.0. The strategy SUtil (or SUtil≥1.0)
5 The concrete model can be found on https://tud.link/8036

https://tud.link/8036
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Fig. 2: Comparison: of baseline strategy base against PMC-based strategies

guarantees a success probability of 1.0 while reducing the expected costs. For
the 100 random environments, the average energy saving was 11.8%. This makes
SUtil strictly more efficient than the baseline strategy. The expected energy costs
can be lowered further by also lowering the bound for the success probability.
The application of SUtil≥0.8 gains an average energy saving of 33.1%.

The SBudget:B strategy with a fixed energy budget B completely uses up the
given budget even if less energy would have been needed to guarantee a high
success probability. Thus, it is important to choose a budget that is close to the
overall expected energy consumption for a certain environment. Applying this
idea yields the strategy SBudget:dyn, where the budget is calculated for each
individual environment and set to the expected energy consumption under the
base heuristic. This leads to an average cost improvement of 13.4% compared to
base, while still providing a high success probability. The strategy SQuant:P0.99

is superior to both SUtil and SBudget:dyn, as it reduces the energy consumption
by 18.5% on average while still providing a success probability of almost 1.
Lowering the success probability bound to 0.8 leads to a further reduction of
21.88% compared to base. However, unlike the SUtil≥P strategy, lowering the
probability bound P of strategy SQuant:P does not affect the success probability
as much. In the setting with idealized assumptions, one can conclude that the
considered PMC-based strategies can reliably outperform the baseline strategy
base. In the following, the idealized assumptions are stepwise relaxed. Since
the strategies SUtil and SQuant:0.99 are the most promising of the compared
strategies, the following experiments will focus on these two strategies.
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Fig. 3: Robustness of SUtil and SQuant:0.99 under noise (increased means)

3.3 Impact of Unexpected Workloads

The focus will now be on the robustness of the PMC-based decision making when
the actual load put onto the system is higher than assumed in the preceding offline
analysis (RQ2). For each of the 110 environments, we gradually increase for each
time step the means of the distributions D(t) within the runtime environment
by 16.6%, 33.3%, 50%, and up to 66.6% of the maximal workload processable in
one time step. Figure 3 shows the effect on Pr(Success) and E(Energy) for the
PMC-based strategies SUtil and SQuant:0.99, again with baseline base.
The average energy consumption increases steadily, which is expected since
increasing the overall number of tasks requires a higher throughput. The success
probability decreases with an increasing unexpected load on the system. SUtil is
able to properly deal with an increase of up to 33.3%, without incurring higher
costs than baseline (E(Energy) is still 4.9% better compared to the baseline)
and without significantly lower success probability (the average Pr(Success) is
down to 0.94). From level 50% onward, SUtil is no longer able to properly guide
the system, since the difference between the expected number of arriving tasks
and actually arriving tasks is simply too large. On the other hand, SQuant:0.99
reacts slightly different to an unexpected load. Here, we also see a reasonable
performance up to 33.3%, but with higher cost improvements of 11.3% at load
level 33.3%. The average success probability drops down to 0.92, while the worst
probability value is 0.79. For SQuant:0.99 with load levels above 50%, costs
drop drastically whenever the success probability is getting close to zero. This is
due to the fact that SQuant:0.99 optimizes for energy consumption only in case
SLA-violations can be no longer avoided. From the above results we conclude
that in the considered setting, both PMC-based strategies can reasonably tolerate
noise levels of 30–40% of the maximum load processable in one time step.
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Fig. 4: Expected energy consumption and probability of success under increasing
noise and decreasing analysis intervals compared to idealized conditions.

3.4 Controllable Factors of the PMC-supported Decision Making

Our remaining research questions concerned the configuration of the PMC-based
control loop ((RQ3) and (RQ4)). While results under ideal conditions and under
reasonable noise looked promising, the goal is to explore the approach under
more realistic conditions. For this we carried out experiments, where (1) the
analysis horizon does not cover the full day and (2) system reconfiguration is not
happening in each timestep, but triggered by different monitors that observe the
system and the environment. Results for (1) imply that analysis horizon should
be above 40% and that (2) the monitor env. change serves best to minimize the
number of reconfiguration steps (every second timestep) and maintaining the
energy consumption and performance at a reasonable level. For the latter, the
monitor env. change triggers adaption whenever the number of incoming tasks
per timestep has changed by at least 2 since the last decision was made. 6

Insights from the individual experiments for (1) and (2) went into a combined
experimental study (cf. Figure 4) in which we investigated the robustness of the
decision making under noise with limited analysis-horizon and using dynamic
system reconfiguration (here using the monitor env. change).
Here, we see that both PMC-Strategies are still able to produce results of
reasonable quality with analysis horizon higher than 40%, and a noise up to 33%.
But it is also visible that the quality impacts add up, worsening the adaptation
and creating some outliers, where short term goals can no longer be kept.
Finally, we want to answer (RQ5), and find some guidelines for choosing analysis
horizon and monitoring. Generally, triggering adaptations in every time step
yielded always the best results. However, should the cost of adaptation be
6 Further information can be found in https://tud.link/8036

https://tud.link/8036
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not negligible, an environment-dependent monitor provides a suitable trade-off
between the number of decisions and the adaptation quality. The choice of the
PMC-based strategy depends on the overall goal, i.e., the long-term objective.
As shown in Figure 4, the SUtil prioritizes the prevention of SLA violations
at the cost of a higher energy consumption, while the SQuant:0.99 allows for a
greater reduction of energy costs at the risk of additional SLA violations. Finally,
the analysis interval length should be chosen as short as possible to decrease the
overhead of the pre-computation, but long enough to allow for the prediction of
high-load situations. In our experiments, an analysis horizon higher then 40%
was sufficient, independent from the noise level.

3.5 Performance and scalability of PMC-based decision making
All experiments have been carried out on a server with Intel(R) Xeon(R) E5-
2680 CPUs with in total 16 physical cores and 377GB of DDR3 RAM. For the
quantitative analysis as well as for the decision making at runtime, we relied on a
modified version of Prism 4.5. For all experiments 8GB of RAM were sufficient.
For the database to store and look up PMC-results we relied on SQLite 3.30.1.
Offline Analysis. The base model used consists of 672 085 reachable states,
the construction of which required less than one second using the Sparse engine
of Prism. The analysis times to compute the results for all 110 environments
per property (SO1–SO4) depends on the considered horizon. Considering the
maximal horizon, the total computation time (i.e., over all environments) for
(S01) was still less than 1s, for (S02) it was less than 2s, and for (S04) not more
than 10s. The budget considered in Formula (SO3) demands for an additional
counter variable added to the model. This leads to an increased state space
size of up to 67 618 570 states, when considering a budget of 125. Due to the
increased state space, the total computation time for (S03) was longer, but was
still less than 80s. In most cases, the database consists of 3696 rows (i.e., possible
configurations) and consumes about 1.3MB of physical storage. Including (S03)
and a monitor, this grew up to 6 054 048 rows (1.2GB) of storage.
Runtime Evaluation. The evaluation at runtime relied on statistical model
checking with 3000 simulation runs per experiment. Each run involves up to ten
decision points where database lookups happen. Each lookup to the indexed
database took about 1.1ms on average when using (SO1, SO2, SO4) and about
15ms for (SO3). In the largest setting the average lookup time grew up to 895ms.
Threats to Validity. The proposed method suits well to adaptive producer-
consumer systems whenever postponing tasks allows for operating the system
in more energy efficient computational modes. Regarding scalability of PMC-
supported decision making, it will be crucial that the database querying is fast
enough. Reducing query-time was out of scope for this paper. On one hand
the databases will easily grow and query time will increase when considering
larger system models and/or PMC-based strategies involving complex system or
environment monitors. On the other hand there is large room for improvements
not yet considered for this article. By reducing the tables to only necessary
information and using advanced database techniques, we are confident that even
for larger system models, query times can be kept within reasonable bounds.
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4 Conclusion

A goal in this paper was to show the general potential of PMC-supported decision
making at runtime and in particular to study the robustness of the PMC-based
strategies in practice. Our experiments have been carried out for an abstract
version of an adaptive database server. As a first result, we were able to keep
the time for database lookups and hence the overall delay for decision making
reasonably low. The experiments demonstrate, that there exist robust PMC-
based strategies, which operate with limited analysis horizon, under noise, and
do at the same time, keep the number of reconfiguration steps (and hence cost
for reconfiguration) within reasonable bounds. Given these promising results, a
natural next step would be to apply the PMC-decision making to the actual
adaptive system (rather than the simulation of the system). In this setting
additional challenges are to be expected, and in particular with respect to delays
and other concrete timing issues, which are due to the selected level of abstraction
(regarding time) in the abstract system model as used in the offline-analysis.
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