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Abstract. Fault-tolerance techniques are widely used to improve the re-
siliency of hardware/software systems. An important step for the deploy-
ment of such techniques in a concrete setting is to find reasonable config-
urations balancing the tradeoff between resiliency and energy. The paper
reports on a case study where we employ probabilistic model checking
to synthesize values for tunable system parameters of a redo-based fault-
tolerance mechanism. We consider discrete parameters of a finite range
(as the number of redos) as well as continuous parameters to encode the
error detection rates of the underlying control- and data-flow checkers.
To tackle the state-explosion problem, we exploit structural properties of
redo-based protocols. The parameter synthesis approach combines prob-
abilistic model checking for Markov chains with parametric transition
probabilities and reward values and computer-algebra techniques to de-
termine parameter valuations that minimize the expected overhead given
constraints on the utility, depending on a given error probability.

1 Introduction
The paper reports on a case study that addresses the synthesis problem for redo-
based fault-tolerance mechanisms. We assume environmental parameters that
are part of the input (e.g., error probabilities and energy costs) and configurable
parameters (e.g., detection probabilities and the number of redos). The latter are
controllable and hence part of the output. The goal is to search for configurations
(i.e., values for the tunable parameters) that allow balancing the tradeoff between
resiliency, energy and performance.
The considered fault-tolerance mechanism is inspired by the hardware-assisted
fault-tolerance protocol HAFT [1]. HAFT enables error1 detection and correc-
tion for a finite sequence of instructions (in the further named application), that

? The authors are supported by the DFG through the Collaborative Research Cen-
ter SFB 912 – HAEC, the Excellence Initiative by the German Federal and State
Governments (cluster of excellence cfAED and Institutional Strategy), the Research
Training Groups QuantLA (GRK 1763) and RoSI (GRK 1907), the DFG-project
BA-1679/11-1, and the DFG-project BA-1679/12-1.

1 Following the taxonomy of [2], we use the term “fault” to describe bit-flips. Errors
are caused by faults that affected the applications run. Failures in our sense are
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is affected by bit-flips. The operating principle of HAFT at the relevant abstrac-
tion level is as follows: The fault-tolerance technique partitions the application
into transactions, and performs error detection and correction transaction-wise.
Error detection is enabled by replicating instructions, and comparing for dif-
ferences. Replicated instructions can also be affected by errors, and thus might
cause error correction to be invoked although the application would have been
correct when not using error detection. An erroneous transaction is corrected
by redoing the transaction. Also during a redo errors can occur and further
redos might be necessary. If after a pre-defined number of redos still an error
is detected, the application is aborted. Error detection and correction cause
overhead costs. As a measure, we take the number of instructions executed for
error handling. This measure correlates with the energy consumption for error
detection and correction, since the additional energy consumption only comes
from additional instruction execution. In this paper we build on Markov chains
with parameters for transition probabilities and rewards as underlying semantic
model. The discrete protocol parameters, e.g., the number of redos and trans-
action length, induce a family of parametric Markov chains that yield the basis
for finding reasonable configurations. Finding optimal solutions in uncountably
infinite parameter sets is in general undecidable [3], [4]. We restrict ourselves to
families with finitely many members, as the set of reasonable transaction lengths
as well as the number of redos can safely be assumed to be finite as well.
Our primary configuration objective is resilience: the probability of terminat-
ing without an undetected error shall be very high. Aborting the application is
preferred to terminating with a wrong result, thus, the conditional probability
of aborting in case of not terminating correctly shall be high. As a subordi-
nate objective, the energy consumption has to be low. This opens the following
synthesis problems: 1) What is a good transaction length? Long transactions
increase the probability of a transaction to be erroneous and increase the over-
head in redos, while short transactions cause error detection to be performed
very often and thus increase the overall costs for error detection. 2) What is
an optimal number of maximal redos? Redos enable error correction and thus
application recovering, but during a redo there is an additional chance of having
undetected errors and causing the application to terminate with a wrong result.
3) How many instructions shall be replicated? Increasing this amount increases
the chance of detecting an error, but also increases the overhead and the chance
of some replica being affected by an error.

Challenges. To address this synthesis problem, we apply variants of prob-
abilistic model checking [5], [6] that take as input parametric Markov chains
as described above. These variants yield rational functions for probabilities of
reaching some goal state and expected accumulated rewards. We will refer to
this variants as parametric probabilistic model checking (PPMC). PPMC yields
rational functions, describing system characteristics, instead of single values. The
rational functions can then be analyzed for optimality. This comes with several

caused by errors that could not be detected by the fault-tolerance mechanism and
thus lead to a wrong computation of the application.
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challenges. 1) An application typically consists of billions of instructions, realistic
transaction lengths range from several hundred instructions to the extremal case
of handling the whole application as one transaction. We need to include both,
the details of a transaction, and the execution of millions of transactions, in the
model. This results in very large models, which is in contrast to PPMC requir-
ing models to be small. 2) Only the detection probabilities but not the maximal
number of redos and the transaction length can be handled as parameters. For
the latter, PPMC needs to be invoked once for each considered configuration,
which is especially problematic due to the large model sizes. 3) The error proba-
bility crucially depends on the hardware and the application scenario. Moreover,
tiny error probabilities2 can lead to numerical instability when treated in a non-
parametric fashion. Thus, environmental and tunable parameters are part of the
model, but PPMC hardly scales for larger models with multiple parameters [5].

Contribution. In this paper, we report on a case study for the synthesis prob-
lem for fault-tolerance mechanisms and show how to overcome the mentioned
challenges. The main idea is to exploit the regularity of our model with repeating
transaction blocks. Hence, we apply PPMC to families of very small sub-models,
modeling only one transaction, but detailed and still parametric in the full set
of probability and reward parameters. With this we obtain rational functions for
probabilities of successful error detection and aborting as well as energy over-
head for each transaction. We present a new, suited factorization approach that
allows to combine the transaction-level results and obtain rational functions for
the whole application. Our approach allows handling the transaction length as
a parameter and PPMC has to be invoked only once for each considered num-
ber of maximal redos. Finally, we exemplarily utilize the rational functions to
find sweet spots in the tradeoff between resiliency and energy. Here, a surprising
result is, that for reasonable error probabilities, increasing the maximal number
of redos to more than just one, degrades the resiliency while only introducing
additional overhead costs.

2 Related Work
Parameter synthesis for probabilistic systems using formal methods has been
done widely before. In, e.g., [10] parametric model checking is applied to syn-
thesize optimal values for transition probabilities in Markov models, as we do
for the amount of instructions to be replicated. Rate parameters are synthesized
in [11] in a CTMC modelling stochastic biochemical networks, and in [12] for a
real-time storage system that is affected by randomly occurring bit-flips. In [13],
a parameter synthesis approach is presented and applied to repair systems by
tuning transition probabilities. Some instances of adaptive systems with config-
urable transition probabilities are configured in [14], using stochastic methods
like Monte Carlo Sampling and particle swarm optimization. None of these works

2 [7] gives an error rate of 0.066 FIT (failures in time, the expected number of failures
in 109 hours) per Mbit. This corresponds to having an error in a single instruction
within an hour with probability about 4 · 10−15. Other error rate estimates from [8]
and [9] give error probabilities of 3.7 · 10−15 and 2.7 · 10−15.
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addresses the parameter synthesis problem for redo-based fault-tolerance mech-
anisms and exploits the regularity of the model structure to address the imposed
scalability challenges. Furthermore, our approach also spans parameters that af-
fect the structure of the Markov model and thus cannot be handled easily with
standard parametric model-checking techniques.

3 Preliminaries
We will provide a brief summary of the relevant concepts for Markov chains.
For more details, we refer to, e.g., [15]. A discrete-time Markov chain (DTMC)
is a tuple M = (S, P ) with a finite set of states S and transition probabilities
P : S × S → [0, 1] ∩ Q such that for all s ∈ S :

∑
t∈S P (s, t) ∈ {0, 1}. A path in

M is a finite or infinite sequence of states π = s0s1 . . . such that P (si, si+1) > 0
for all i ≥ 0. We denote the set of all paths in M by PathsM. For a finite path
π = s0s1 . . . sn we write P (π) =

∏n−1
i=0 P (si, si+1). A path π is maximal if it is

infinite or π is finite and
∑
t∈S P (sn, t) = 0.

Let G ⊆ S and s0 ∈ S. The probability of eventually reaching some state in G
from s0, denoted by Prs0(♦G), is derived using the standard definition of the
induced probability distribution on the set of measurable sets of maximal paths.
The event ♦G is called a reachability property.

A reward function rew : S → Q≥0, assigns each state a non-negative value (e.g.,
energy consumed in that state). The accumulated reward induced by rew is a
random variable AccRew : PathsM → R assigning each path in M the sum of
its state rewards, i.e. AccRew(s0s1 . . . sn) =

∑n
i=0 rew(si), Let G ⊆ S be a set of

states such that Prs0(♦G) = 1. The expected accumulated reward until reaching
G from s0, denoted by Es0( G), is the expectation value of AccRew in M re-
stricted to the set of paths ending inG, i.e., Es0( G) =

∑
π∈Π P (π) ·AccRew(π),

where Π = {s0 . . . sn ∈ PathsM | sn ∈ G, si 6∈ G for 0 ≤ i < n}.
For G ⊆ S and Prs0(♦G) > 0 the conditional expected accumulated reward until
reaching G from s0 under the condition of reaching G is, with Π as above:

Es0( G | ♦G) =
∑
π∈Π

P (π) ·AccRew(π)

Prs0(♦G)
.

4 Redo-Based Fault-Tolerance Model
In this section, we introduce the fault-tolerance model. A detailed description
can be found in the Appendix A.1. The model contains adjustable attributes for,
e.g., the error probability. It consists of components for the underlying hardware,
the application, and the fault-tolerance protocol. The latter contains a control-
flow checker (CFC), a data-flow checker (DFC), and a transaction redo manager
(TRM) implementing the redo/abort-schema.

Application. An application performs a fixed number of instructions inst num,
each instruction is prone to errors (see paragraph “Errors and Failures” be-
low). The instruction flow is partitioned into transactions, each consisting of
ta len instructions. The number of transactions to be performed is ta num =
inst num/ta len. We assume three types of instructions: control-flow instruc-
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tions, where errors affect only the control-flow (e.g., jump), data-flow instruc-
tions, where errors affect the data-flow (e.g. add), and transaction management
instructions, implementing the transaction mechanism (e.g., begin-of-transaction
and end-of-transaction instructions). Errors in the latter do only affect the con-
trol flow. Errors in the data-flow also affect and thus falsify the control-flow.
The ratio of control-flow and data-flow instructions can be set via the attribute
cf df ratio. The amount of transaction management instructions is controlled by
the attribute tmi num. The application starts in a location “start transaction“,
performs a transaction and then reaches a “wait” location. Eventually, it either
receives an ABORT or a COMMIT from the TRM. An ABORT indicates that an
error could not be corrected. Then, the application switches to location “abort”.
Receiving COMMIT causes the application to complete the transaction. If all
instructions are executed, it terminates, reaching location “done”. Otherwise, it
increases a counter ta counter and starts a new transaction.

Error detection. The TRM initially waits for the application to complete a
transaction. Then, it invokes both, CFC and DFC in parallel, and waits for the
results. The DFC checks all data-flow instructions for errors. The CFC checks
all instructions for errors, since all instructions affect the control flow. For each
data-flow-corrupted transaction there is a chance p detn DFC of the DFC to
detect this error. For each transaction with correct data-flow, there is a chance
of p fp DFC to detect an error anyway, i.e., to have a false positive. Analogous
attributes p detn CFC and p fp CFC are defined for the CFC.

Error correction. After checking, the checkers report their results to the TRM,
which switches to location “answers received”. If one of the checkers detected
an error, a redo is invoked by the TRM, i.e., the transaction is re-executed and
a redo-counter redo counter is increased. The re-executed transaction can again
be corrupted, thus, error detection is invoked and might result in a further redo.
This is repeated until the preset attribute max redos is reached by the redo
counter. Then, the TRM sends an ABORT signal to the application. If in the
original transaction or in one of its re-executions no error is detected, the TRM
sends a COMMIT-signal to the application.

Errors and failures. The hardware model tracks the state of the applications
internal memory. When starting the application, the hardware location is “cor-
rect”. Each instruction can be corrupted with probability p e, which causes the
location to switch to “error”. When being erroneous, and a redo is invoked by
the TRM, the location switches back to “correct”. When being erroneous and
no redo is invoked, the location is changed to “failure”. A failure increases the
chance of a subsequent error in an instruction to p e incr . Once the application
has a failure in its internal memory, it will persist until the application either
terminates (with this failure) or is aborted due to another error.

Transaction outcomes. After performing, checking, correcting, and commit-
ting or aborting a transaction, there are four possible outcomes. 1. The hardware
state is “correct” and the application received a commit, i.e., is in a location
“transaction completed” (short: cc). This outcome is reached if either no error
occurred and also no error was detected, or if an error occurred, was detected
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and could be corrected. 2. The hardware is “correct” but the application was
aborted (short: ca), arising, if no error occurred in the original transaction, but
a false positive triggered redos, and redos failed. 3. If an error occurred in the
original application but could not be detected, the hardware model ends up in
location “failure” and the application receives a commit, completing the trans-
action (short: fc). 4. If the hardware after some transaction ends in the previous
mentioned outcome fc and in some transaction afterwards an abort signal is
sent, then the hardware model is in location “failure” and the application is in
location abort (short: fa).

5 State-Space Reduction and Factorization
Semantics and structure of the model. The fault-tolerance model is a
Markov decision process (MDP) (see, e.g., [16]), i.e., a discrete-time Markov
chain (DTMC) enhanced with nondeterminism. In an MDP there can be several
distributions per state. The non-determinism is resolved by a strategy. Each
strategy S induces a DTMC and thus, together with a starting state s0 ∈ S, a
probability distribution PrSs0 on the set of measurable sets of paths in the induced
DTMC. The MDP M for our model serves as operational model whose states
are tuples consisting of the local states of all components. The initial state s0 is
the state where the hardware is “correct”, the application’s location is “start”
and all other modules wait for being invoked. All counters (i.e.,redo counter ,
ta counter) are set to 0 and variables indicating redos to false. For each state,
the outgoing transitions arise from all possible synchronous and asynchronous
transitions enabled in the components.

Reduction to Markov Chain The nondeterminism in M solely arises from
interleaving execution of the CFC and DFC. None of the individual components
of the model contains nondeterministic choices. Since no variables or locations
outside CFC and DFC change during execution of CFC and DFC and no tran-
sitions in the CFC and DFC make use of the internal state of the respective
other checker component, the state of the MDP after error detection does not
depend on the chosen interleaving. Furthermore, none of our configuration cri-
teria in Section 6 distinguishes between states in the non-deterministic part of
the MDP, i.e., states that model the error detection process. Thus, we can rely
on results that have been established in the context of partial-order reduction
for MDPs [17]–[19]: for the chosen configuration criteria it is irrelevant which
interleaving is chosen and we can replaceM with, e.g., the DTMC in which first
the CFC performs error detection and then the DFC checks the data-flow.

Factorization. The model size increases significantly when increasing ta num
(i.e., by decreasing the transaction length). Furthermore, even for small mod-
els, PPMC performs badly on our model. When choosing max redos = 1 and
ta num = 5, the model consists of only 876 states, but computation times of
simple probabilistic properties are unfeasible large3. Realistic applications con-

3 Computing the probability of correct termination single threaded on a 2.5Ghz In-
tel Core Processor did not finish within 2 hours, for ta num = 5. The model was
parametrized in the detection probabilities and the error probabilities.
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sist of many more transactions, e.g., in Section 6 we will analyze a model with
ta num = 1010.
We will use the structure of the model to simplify the model checking process.
For technical reasons, we slightly modify the model: instead of terminating in
abort states, we stepwise increase the transaction counter up to its maximum
value (without changing other variable values). This gives us a DTMC with a
regular structure with repeating phases (Figure 1). One phase represents one

t1 t2 t3 tn

cc cc cc cc

ca ca ca ca

fc fc fc fc

fa fa fa fa

S1 S2 S3 Sn

…

S0
cc

ca

fc

fa

Fig. 1. The structure of the DTMC on transaction level. Each arrow indi-
cates the execution of one transaction, including error detection and correc-
tion. The outcome of each transaction is one of the states in {(correct,commit)
(cc),(correct,abort)(ca),(failure,commit)(fc),(failure,abort)(fa)}. Light-grey states in
S0 mark states that are not reachable.

transaction and after each phase there are four possible outcomes cc, ca, fc, and
fa (cf. Section 4). Internal details of each phase such as program execution, error
detection and correction are omitted here.
For the rest of this section we fix ta num = n. We denote the set of outcome states
after the i-th transaction by Si = {(cc, i), (ca, i), (fc, i), (fa, i)} (cf. Figure 1), and
identify the initial state with s0 = (cc, 0) ∈ S0, since the hardware is “correct”,
the application is not aborted and no transaction is performed yet. Note that
for all 0 ≤ i < n the probabilities of reaching state t ∈ Si+1 from s ∈ Si do not
depend on the counter value i. Thus, we can choose an arbitrary 0 ≤ i < n and
define a probability matrix P = (Prs(♦t))s∈Si,t∈Si+1

. P is a 4 × 4-matrix that
describes the probabilistic effects of a single transaction. Note that the matrix
elements are rational functions. The probability of reaching outcome goal ∈ Sn
(thus, after the n-th transaction) can be computed by Prs0(♦goal) = (Pn)s0,goal.

Lemma 1. Let rew be a reward structure with rew(sn) = 0 for all sn ∈ Sn,
E = (Es( t|♦t))s∈Si,t∈Si+1

for some arbitrary 0 ≤ i < n, and let pe be a 1 × 4

vector with pe =
(∑

t∈Si+1
Ps,t · Es,t

)
s∈Si

. Then we have

Es0( Sn) =

(
n∑
k=1

P k−1 · pe

)
s0.

The proof relies on Bayesian decomposition for expectation values and can be
found in the Appendix A.2. The matrices P and E and the vector pe can be
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computed with existing PPMC implementations on very small models (modeling
only one transaction). Thus, we can compute rational functions for both, reach-
ability properties and expected accumulated rewards by combining PPMC (on
very small models) and a computer algebra system. Furthermore, the structures
of the small models do not depend on ta num and ta len, thus ta len can be
treated as a parameter.

6 Configuration
In this section, we exemplarily configure an instance of our fault-tolerance model
with respect to the configuration parameters p detn CFC , p detn DFC , ta len
and max redos. During model checking we handle p detn CFC , p detn DFC and
ta len as parameters, and, using the factorization approach from Section 5, com-
pute rational functions for each max redos ∈ {0, 1, 2, 3}. We also handle the er-
ror probability p e as parameter, and exemplarily configure the fault-tolerance
model for all p e ∈ {10−8, 10−10, 10−15}. The models, rational functions, and
additional files can be downloaded4.
Fault-tolerance setting. The model instance is mainly inspired by HAFT [1],
i.e., instructions in our model correspond to instructions on CPU level, and er-
ror detection is enabled by duplicating instructions. The amount of duplicated
instructions is configurable and represents the detection probability, e.g., repli-
cating 80% of all data-flow instructions means p detn DFC = 0.8. Replicating all
instructions gives error detection probabilities of 1, i.e., we neglect the probabil-
ity of the same error occurring in both, an original instruction and its replication,
which would cause the error to be undetectable. Furthermore we assume that
transaction management instructions are not replicated.
Model attributes. We fix the following model attributes: The application runs
for exactly 1012 (inst num) instructions, 10% (cf df ratio) being control-flow in-
structions, and two (tmi num) transaction management instructions (“begin of
transaction” and “end of transaction”) are inserted per transaction. The in-

creased error probability is defined as p e incr = (p e)
8
10 . False positives are

errors that occur in replicated instructions or in transaction management in-
structions, i.e., with cf df ratio = 0.1 we have:

p fp CFC = 1−
(

(1− p e)ta len·0.1·p detn CFC · (1− p e)ta len·0.9·p detn DFC

· (1− p e)tmi num
)

and

p fp DFC = 1−
(

(1− p e)ta len·0.9·p detn DFC
)
.

Reward structures. In the analysis we focus on the expected energy-overhead
for error detection and correction. For this we introduce a reward structure that
assigns one energy unit each time an instruction is executed for error detection
or correction. Formally, we define a reward structure assigning states where
the TRM is in location “answers received” the following reward for the energy
overhead, depending on whether a transaction or one of its redos was executed:
if redo counter = 0: ta len · p detn CFC + ta len · 0.9 · p detn DFC + tmi num,

if redo counter > 0: ta len · p detn CFC + ta len · 0.9 · p detn DFC + tmi num + ta len.

4 https://wwwtcs.inf.tu-dresden.de/ALGI/PUB/EPEW18
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Configuration criteria. The goal of this section is to exemplarily find good
parameter values that optimize the chosen protocol instance with respect to the
following criteria: 1) the probability of terminating correctly should be at least
0.9995, 2) the conditional probability of aborting, in case of not terminating
correctly, should be greater than 0.15, and 3) from all configurations meeting
the conditions above, one with least energy overhead should be chosen.
Finding optimal configuration. Using probabilistic model checking, we com-
pute parametric matrices P and E (as defined in Section 5). For this we use
the parametric model checker Storm [20]. The matrices are parameterized over
the error probability, detection probabilities, and the transaction length. As P
and E depend on the number of redos, this causes separate runs of Storm for
max redos ∈ {0, 1, 2, 3}. To systematically explore the design space, we first fix
the error probabilities and replace the parameters with constants within P and
E, as these values can be assumed to be given. We will consider three sce-
narios with p e ∈ {10−10, 10−12, 10−15}. For each max redos ∈ {0, 1, 2, 3} we
then consider a discrete number of combinations for the detection probabilities
(p detn DFC, p detn DFC ∈ {0, 0.001, 0.1, 0.5, 0.75, 0.9, 0.95, 0.99, 0.999}) and
transaction length (ta len ∈ {100, 200, 500, 1000, 2000, 5000, 104, 106, 1010, 1012})
to fill decision tables (or plot the respective rational function). For this step we
applied the Python-based computer algebra system SymPy [21]5.
The maximal number of redos. We start with analyzing the effect of the
maximal number of redos. Without any fault-tolerance mechanism6, the proba-
bility of terminating correctly is 3 · 10−83 for p e = 10−10, 0.15 for p e = 10−12,
and for p e = 10−15 it is 0.998. Figure 2 shows the probability of terminat-
ing correctly, when varying max redos. For all chosen error probabilities and
detection probabilities, performing a single redo pays off drastically. For exam-
ple, when the transaction length is 1000 and the detection probabilities both
are set to 0.9, allowing a single redo increases the probability of terminating
correctly from 0.027 to 0.827, when p e = 10−12. When performing error de-
tection without redo-based correction, increasing detection probabilities cause
the probability of terminating correctly to shrink, since more instructions are
replicated and thus more replicas can be affected by errors. Allowing redos ne-
glect this effect. Also for all transaction lengths, except for the extremal case
where the whole application is a single transaction, allowing redos increases the
probability of terminating correctly significantly. Allowing more than one redo
does only marginally increase the probability of terminating correctly, except for
transaction lengths above 1010. Fig.3 shows that each redo decreases the chance
of aborting in case of not terminating correctly (Criteria 2). For two redos, this
chance is almost zero for all configurations except for extremely large transaction

5 Computing the matrices took 50 seconds for max redos = 0, 173 seconds for
max redos = 1, 140 minutes for max redos = 2, and about one day and 3 hours
for max redos = 3. Evaluating the rational functions to set up decision tables using
SymPy [21] took less then a second per evaluation point for max redos = 0 and
about 3 seconds per point for max redos = 3.

6 Due to the nature of PPMC, these values need to be computed in a separate run.
Applying the factorization approach of Section 5, this took less than three seconds.
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p e = 10−10 p e = 10−12 p e = 10−15

P
r
(♦
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rr

e
c
t)

)

0 1 2 3

maximal number of redos
10-165

10-153

10-141

10-129

10-117

10-105

10-93

10-81

10-69

10-57

10-45

10-33

10-21

10-9

dp CFC: 0.1, dp DFC: 0.1

dp CFC: 0.1, dp DFC: 0.5

dp CFC: 0.1, dp DFC: 0.9

dp CFC: 0.1, dp DFC: 0.99

dp CFC: 0.5, dp DFC: 0.1

dp CFC: 0.5, dp DFC: 0.5

dp CFC: 0.5, dp DFC: 0.9

dp CFC: 0.5, dp DFC: 0.99

dp CFC: 0.9, dp DFC: 0.1

dp CFC: 0.9, dp DFC: 0.5

dp CFC: 0.9, dp DFC: 0.9

dp CFC: 0.9, dp DFC: 0.99

0 1 2 3

maximal number of redos
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

dp CFC: 0.1, dp DFC: 0.1

dp CFC: 0.1, dp DFC: 0.5

dp CFC: 0.1, dp DFC: 0.9

dp CFC: 0.1, dp DFC: 0.99

dp CFC: 0.5, dp DFC: 0.1

dp CFC: 0.5, dp DFC: 0.5

dp CFC: 0.5, dp DFC: 0.9

dp CFC: 0.5, dp DFC: 0.99

dp CFC: 0.9, dp DFC: 0.1
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dp CFC: 0.9, dp DFC: 0.9

dp CFC: 0.9, dp DFC: 0.99

0 1 2 3

maximal number of redos
0.9960

0.9965

0.9970

0.9975

0.9980

0.9985

0.9990

0.9995

1.0000

dp CFC: 0.1, dp DFC: 0.1

dp CFC: 0.1, dp DFC: 0.5

dp CFC: 0.1, dp DFC: 0.9

dp CFC: 0.1, dp DFC: 0.99

dp CFC: 0.5, dp DFC: 0.1

dp CFC: 0.5, dp DFC: 0.5

dp CFC: 0.5, dp DFC: 0.9

dp CFC: 0.5, dp DFC: 0.99

dp CFC: 0.9, dp DFC: 0.1

dp CFC: 0.9, dp DFC: 0.5

dp CFC: 0.9, dp DFC: 0.9

dp CFC: 0.9, dp DFC: 0.99
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maximal number of redos
10-160

10-149

10-138

10-127

10-116

10-105
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10-83

10-72

10-61

10-50

10-39

10-28

10-17 transaction length: 1 ∗102
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Fig. 2. Probability of terminating correctly in dependence on the maximal number of
redos. First row: ranging detection probabilities, ta len = 1000. Second row: ranging
transaction length, p detn CFC = p detn DFC = 0.9. From left to right: error proba-
bility 10−10, 10−12, 10−15. Note that y-scales in the left column are in log scale.
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lengths and small error probabilities. The correlation of the energy overhead and
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Fig. 4. Expected overhead in dependence of the maximal number of redos. First row:
ranging detection probabilities. Second row: ranging transaction length. From left to
right: error probability 10−10, 10−12, 10−15.

the maximal number of redos is depicted in Fig.4. For low error probabilities,
the overhead is only marginally affected by the maximal number of redos, since,
when errors are unlikely and thus error correction is invoked only seldom, the
overhead is mainly defined by the number of replicated instructions executed
for error detection. For higher error probabilities, expectably more errors occur
and thus more error correction needs to be performed. So the overhead increases,
when allowing more redos. Thus, choosing to perform at most one redo increases
the probability of correct termination. Allowing another redo does not further
increase this probability significantly, but decreases the probability of aborting
in case of not terminating correctly without decrease in the overhead. Hence,
from now on we fix max redos = 1.
Optimal transaction lengths. Fig.5 shows from top to bottom results for
the three configuration criteria. For p e = 10−10 the probability of terminating
correctly is hardly affected by varying transaction lengths below 106. Choosing
longer transaction length decreases the probability substantially. Large transac-
tion lengths do increase the probability again, when p detn DFC is small, but
short transaction lengths are in general to be preferred. For lower error proba-
bilities, the turning point moves to the right. For error probability 10−15 it is
beyond the maximal possible transaction length. The conditional probability of
aborting when not terminating correctly (Fig.5, second row) first increases with
increasing transaction lengths, then stays on a level near one for middle-large
transaction lengths and finally drops again, in the same point as the probability
of terminating correctly rises for some detection probabilities. Again, the turn-
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Fig. 5. In dependence of the transaction length for ranging detection probabilities,
max redos= 1: First row: Probability of terminating correctly. Second row: Conditional
probability of aborting in case of not terminating correctly (dc is short for done ∧
correct). Third row: Expected energy overhead. From left to right: error probability
10−10, 10−12, 10−15.

ing points move to the right when decreasing error probabilities. Regarding the
overhead, small transaction lengths cause less transactions to be erroneous and
thus less error correction to be performed. Nevertheless, very small transaction
lengths cause error detection to take place very often and thus lead to a higher
overhead. This is visible in the third row of Fig.5. For error probabilities 10−10

and 10−12, increasing the transaction length up to 1010 decreases the overhead,
but after this point, the overhead increases significantly. For error probability
10−15 the effect is barely visible. The decrease of energy overhead also arises
because the probability of aborting increases with higher transaction length (cf.
Fig.6): The higher this probability, the sooner the application is likely to be
aborted. After an abort no more overhead is produced. Thus the overhead drops
with increasing abort rates, and rises, when very large transaction lengths cause
a shrinking abort rate. For p e = 10−10, ta len = 106 is optimal under the inves-
tigated lengths. For p e = 10−10, we choose ta len = 1010, and for p e = 10−15,
errors are unlikely enough to handle the application as one transaction.

Error detection probabilities. We now fix the remaining configuration pa-
rameters, p detn CFC and p detn DFC . Fig.7 shows the effect of these param-

12



p e = 10−10 p e = 10−12 p e = 10−15

P
r
(♦

a
b

o
rt

)

102 103 104 105 106 107 108 109 1010 1011 1012

transaction length

0.0

0.2

0.4

0.6

0.8

1.0

dp CFC: 0.1, dp DFC: 0.1

dp CFC: 0.1, dp DFC: 0.5

dp CFC: 0.1, dp DFC: 0.9

dp CFC: 0.5, dp DFC: 0.1

dp CFC: 0.5, dp DFC: 0.5

dp CFC: 0.5, dp DFC: 0.9

dp CFC: 0.9, dp DFC: 0.1

dp CFC: 0.9, dp DFC: 0.5

dp CFC: 0.9, dp DFC: 0.9

102 103 104 105 106 107 108 109 1010 1011 1012

transaction length

0.0

0.2

0.4

0.6

0.8

1.0

dp CFC: 0.1, dp DFC: 0.1

dp CFC: 0.1, dp DFC: 0.5

dp CFC: 0.1, dp DFC: 0.9

dp CFC: 0.5, dp DFC: 0.1

dp CFC: 0.5, dp DFC: 0.5

dp CFC: 0.5, dp DFC: 0.9

dp CFC: 0.9, dp DFC: 0.1

dp CFC: 0.9, dp DFC: 0.5

dp CFC: 0.9, dp DFC: 0.9

102 103 104 105 106 107 108 109 1010 1011 1012

transaction length

0.000000

0.000002

0.000004

0.000006

0.000008

0.000010

0.000012

dp CFC: 0.1, dp DFC: 0.1

dp CFC: 0.1, dp DFC: 0.5

dp CFC: 0.1, dp DFC: 0.9

dp CFC: 0.5, dp DFC: 0.1

dp CFC: 0.5, dp DFC: 0.5

dp CFC: 0.5, dp DFC: 0.9

dp CFC: 0.9, dp DFC: 0.1

dp CFC: 0.9, dp DFC: 0.5

dp CFC: 0.9, dp DFC: 0.9

Fig. 6. The (unconditional) probability of aborting in dependence of the transaction
length for ranging detection probabilities, max redos= 1: From left to right: error prob-
ability 10−10, 10−12, 10−15.

eters with the previously chosen configurations for max redos and ta len. As
expected, all three values increase when increasing the detection probabilities.
Increasing only one error detection probability certainly has a visible effect on
the probability of terminating correctly, yet it is ineffective to choose one detec-
tion probability to be very low and the other one to be very high. To configure
the remaining parameters of the fault-tolerance technique, we use a decision
table, exemplarily for p e = 10−15. Table 8 shows results for max redos = 1
and ta len = 1012. All depicted lines satisfy the first two configuration criteria.
The energy overhead does not differ much, but the conditional probability of
aborting when not terminating correctly can be increased significantly when ac-
cepting a little more overhead. Thus, it would be worth choosing a configuration
that replicates some more instructions, accepting a little more overhead, e.g.,
p detn CFC = p detn DFC = 0.999.

7 Conclusion
The purpose of the paper was to illustrate how probabilistic model checking
techniques can be employed to determine parameter settings for a redo-based
fault-tolerance protocol minimizing the expected overhead subject to resilience
constraints. We dealt with discrete parameters that affect the topological struc-
ture of the state space (number of redos, transaction length) and continuous
parameters (error detection rates). This spans a large family of protocols arising
by concrete choices for the parameters. Due to the huge state spaces of these
Markov chains, the direct application of standard model checking techniques for
probability-parametric Markov chains was not feasible. Instead, we employed
a new factorization approach that exploits the repeating phases in the models
and used a combination of PPMC and computer-algebra techniques to compute
and analyze the rational functions for the relevant probabilities and expectations
in these Markov chains, and finally to extract an optimal parameter valuation.
While the factorization technique is specific for redo protocols, we argue that
the remaining steps are of exemplary character.
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Fig. 7. In dependence of the detection probabilities, for max redos= 1: First row: Prob-
ability of terminating correctly. Second row: Conditional probability of aborting in case
of not terminating correctly (dc is short for done∧ correct). Third row: Expected over-
head. From left to right: p e = 10−10 and ta len = 106, p e = 10−12 and ta len = 1010,
p e = 10−15 and ta len = 1012.

p detn CFC p detn DFC Criteria 1 Criteria 2 Criteria 3

0.95 0.99 0.99992 0.19 1.851 · 1012

0.95 0.999 0.99994 0.21 1.86 · 1012

0.99 0.95 0.99993 0.19 1.855 · 1012

0.99 0.99 0.99997 0.43 1.892 · 1012

0.99 0.999 0.99997 0.57 1.9 · 1012

0.999 0.95 0.99994 0.23 1.864 · 1012

0.999 0.99 0.99998 0.59 1.901 · 1012

0.999 0.999 0.99998 0.88 1.909 · 1012

Fig. 8. Decision table for p e = 10−15, ta len = 1012 and max redos = 1.
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A Appendix
A.1 Redo-Based Fault-Tolerance Model

We give a detailed insight in the model we set up for analysis. This model
contains adjustable attributes, which are summarized in Table 9.

component attribute explanation

Application
cf df ratio percentage of control-flow instructions of inst num
inst num total number of instructions executed by the appli-

cation, excluding replications

TRM

max redos number of transaction redos before application is
aborted

tmi num number of instructions added to implement the
transaction mechanism

ta len number of instructions per transaction
p e TRM probability of an error in the TRM

DFC
p detn DFC probability of detecting a data-flow error in the data-

flow instructions of a transaction
p fp DFC probability of a false positive in the data-flow of a

transaction

CFC

p detn CFC df probability of detecting a control-flow error in the
data-flow instructions of a transaction

p detn CFC cf probability of detecting a control-flow error in the
control-flow instruction of a transaction

p detn CFC tmi probability of detecting a control-flow error in the
transaction management instructions of a transac-
tion

p detn CFC combined probability of detecting a control-flow er-
ror in a transaction

p fp CFC df probability of false positive in control-flow of data-
flow instructions of a transaction

p fp CFC cf probability of false positive in the control-flow of
control-flow instructions of a transaction

p fp CFC tmi probability of false positive in transaction manage-
ment instructions of a transaction

p fp CFC combined probability of false positive in the control-
flow of a transaction

Hardware
p e probability of an error in a single instruction
p e incr probability of an error in a single instruction when

the hardware is in location “failure”

Fig. 9. Summary of the model attributes.

The formal model consists of components for the underlying hardware, the ap-
plication, and the fault-tolerance protocol. The latter contains sub-modules for
a control-flow checker (CFC), a data-flow checker (DFC), and the transaction
redo manager (TRM) implementing the redo/abort-schema (cf. Figure 10).
Application model. An application performs a fixed number on instructions
inst num. The instruction flow is separated into transactions, each consisting
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Application

DFC CFCTRM

fault tolerance mechanism

Hardware

Fig. 10. The structure of our model.

of ta len instructions. These attributes define the number of transactions to
be performed, ta num = inst num / ta len. We assume three distinct types of
instructions: instructions where errors affect only the control-flow (e.g., jump),
named control-flow instructions, instructions where errors affect also the data-
flow (e.g. add), named data-flow instructions and instructions introduced to
implement the transaction mechanism (e.g., begin-of-transaction and end-of-
transaction instructions), named transaction management instructions. For the
latter, errors do only affect the control flow. Since data-flow instructions also
carry control-flow information, errors in data-flow instructions can also affect
and falsify the control-flow. The ratio of control-flow and data-flow instructions
can be set via the attribute cf df ratio. The amount of transaction management
instructions is controlled by the attribute tmi num.
Transaction execution is modeled as an atomic step, named PERFORM TA (see
Figure 11), in which the local counter variable ta counter is increased. We use
an ! to denote the sender of a synchronization action, where ? is used on the
receiver side. In case of PERFORM TA, the receiver side is played by the hard-
ware component (see paragraph “hardware model” below) that synchronizes on
PERFORM TA.

start 
transaction

ta performed

done

PERFORM_TA!
ta_counter++

ABORT?

COMMIT?

abort

transaction 
completed IF ta_counter=ta_num

IF
 ta

_c
ou

nt
er

<t
a_

nu
m

Fig. 11. The program graph of the application.

After performing a transaction, the application is paused. During this pause,
error detection and correction is performed by the TRM, DFC, and CFC. After
this, the TRM sends either a COMMIT or an ABORT signal to the application,
by executing the respective action. The application synchronizes on this action,
either ending in an abort location or reaching location “transaction completed”.
In the latter case, if ta counter did not yet reach ta num, the application’s
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location is changed to “start” and the next transaction is performed. Otherwise,
location “done” is reached and the application stops.
TRM model. The TRM is the coordinative center of the fault tolerance pro-
tocol. Its attribute max redos can be set to any natural number including zero.
After each transaction performed by the application, it initiates checks on the
dataflow and the control flow, launches redos if necessary, and finally sends a
COMMIT or ABORT signal to the application. In our model, the TRM (Fig-
ure 12) invokes the DFC and CFC with the synchronous action CHECK simul-
taneously as soon as the transaction has been performed. It then waits, until

wait

checkers 
invoked

answers 
received

RESULTS?
    p_e_TRM:  redo = ¬(redo_CFC ∨ redo_DFC)
1-p_e_TRM:  redo =  (redo_CFC ∨ redo_DFC)

PERFORM_REDO!
redo=false ; rc++ 

COMMIT! 
IF ¬redo: redo=false ∧ rc’=0; 

ABORT!
IF redo ∧ (rc = mr):
redo=false ∧ rc=0

CH
EC

K!
IF

 a
pp

_l
oc

at
io

n 
   

   
 =

 ta
_p

er
fo

rm
ed

redo

REDO!
IF redo ∧ (rc < mr)

Fig. 12. The program graph of the TRM. rc is short for redo counter , mr abbreviates
max redos.

within action RESULTS the results of both checkers are collected and evaluated
in location “answer received”. The next action depends on whether an error was
detected and whether an error in the TRM has occurred. If an error was de-
tected by one of the checkers, and no error in the TRM, e.g., falsified the signal,
a redo is initiated (if the maximal number of redos is not yet exceeded). The
probability of an error in the TRM can be controlled by the attribute p e TRM.
If either no error was detected, or an error was detected, but another error in the
TRM occurred, no redo will be performed but a COMMIT signal will be sent.
Whether or not the TRM recommends a redo is recorded in the boolean variable
redo. If so, and if redo counter < max redos, the transaction will be re-executed
by the TRM. If redo counter = max redos, an ABORT signal will be sent to the
application. As for the original transaction, the redo is performed in an atomic
step, named PERFORM REDO, and redo counter is increased. After the redo,
the TRM falls back to its “wait” location, and immediately leaves it with again
invoking the checkers, since the condition “app location = ta performed” still is
satisfied. The checkers will then check the redo for errors.
DFC and CFC model. Both checkers are invoked via synchronizing on the
CHECK signal of the TRM (see Figure 13). The DFC then checks the dataflow
in one atomic step. If an error occurred in one of the data-flow instructions,
it detects this error with probability p detn DFC. If no error occurred in the
original data-flow instructions, an error might still be detected, i.e., the DFC
has a false positive with probability p fp DFC .
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wait check

DF checked

CHECK?

RESULTS!  
redo_DFC = false

DFC_check_DF 
p_dfp_DFC : redo_DFC=true

1-p_dfp_DFC : NOP

wait check

DF checked

CHECK?

CF checkedTMI checked

RE
SU

LT
S!

  
re

do
_C

FC
 =

 fa
lse

CFC_check_DF 
p_dfp_CFC_df : redo_CFC=true

1-p_dfp_CFC_df : NOP

CFC_check_CF 
p_dfp_CFC_cf : redo_CFC=true

1-p_dfp_CFC_cf : NOP

CFC_check_TMI 
p_dfp_CFC_tmi : redo_CFC=true
1-p_dfp_CFC_tmi : NOP

Fig. 13. The program graph of the DFC (left) and CFC (right). If an er-
ror occurred, p dfp DFC = p detn DFC and p dfp CFC * = p detn CFC *. Otherwise
p dfp DFC = p fp DFC and p dfp CFC * = p fp CFC *. NOP means that no variables
are changed.

To support a larger class of fault tolerance techniques, we assume the control-
flow checker to be able to check each type of instruction (control-flow, data-
flow and transaction management) separately. We assume that all control-flow
instructions are checked for errors first, followed by all data-flow instructions, and
completed by checking all transaction management instructions. In each package
errors are detected with p detn CFC df , p detn CFC cf , and p detn CFC tmi ,
respectively. Analogously, false positives occur with probabilities p fp CFC df ,
p fp CFC cf , and p fp CFC tmi .

Nevertheless, evaluation criteria used in Section 6 do not distinguish in the ac-
tions CFC check DF, CFC check CF, CFC check TMI or the states in-between.
Thus for our exemplaric evaluation in Section 6 we can use the results of [22]
(Proposition 8.7.1 on probabilistic forward simulations) and replace the sequence
of actions CFC check DF, CFC check CF, CFC check TMI by the single action
CFC check, representing the sequential execution of all three steps, see Figure 14.

wait check
CHECK?

TMI 
checked

RESULTS!  
redo_CFC = false

CFC_check 
p_dfp_CFC : redo_CFC=true

1-p_dfp_CFC : NOP

Fig. 14. The program graph of the CFC after simplifying using simulation results. If
an error occurred, p dfp CFC = 1− ((1− p detn CFC df) · (1− p detn CFC cf) · (1−
p detn CFC tmi)) otherwise p dfp CFC = 1− ((1− p fp CFC df) · (1− p fp CFC cf) ·
(1− p fp CFC tmi))
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When both checkers are finished, they synchronously send their results to the
TRM and fall back to their “wait” location.
Hardware model. The hardware model keeps track of the state of the in-
ternal memory occupied by the application. It comes with two attributes: the
probability of an error occurring in a single instruction, when the application is
correct (p e) and the increased probability of an error (p e incr) occurring in an
instruction when the application has a failure, i.e., in a former transaction an
undetectable error occurred.
The hardware is characterized by its internal status (operating normally, being
erroneous, having a failure, or having a failure and another error occurred, cf
Figure 15). Starting in location “correct” and synchronizing on both actions
PERFORM TA and PERFORM REDO, an error occurs in the transaction with
probability p e ta = 1− (1− p e)ta len, leading to location “error”. With proba-
bility 1−p e ta, the hardware stays in location “correct”, when synchronizing on
PERFORM TA or PERFORM REDO. When the hardware is in location “error”,
and the TRM initiates a REDO, it falls back to the “correct” location. Being in
location “error” and a COMMIT signal is sent, the error was not detected and
thus the location is changed to “failure”. Being in location “failure”, the same
behavior is modeled, but with increased error probabilities, and, when being in
location “failure and error”, both REDO and COMMIT change the location to
“failure”.

correct

failureerror

failure and 
error

1-p_e_ta

COMMIT? /
REDO?

RE
DO

?

PERFORM_TA? / PERFORM_REDO?

PERFORM_TA? / 
PERFORM_REDO?
p_e_ta

PERFORM_TA? / 
PERFORM_REDO?

p_e_incr_ta    

COMMIT?
PERFORM_TA? / 
PERFORM_REDO?
1-p_e_inc_ta

Fig. 15. The program graph of the hardware model.
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A.2 Proof of Lemma 1

Proof. For all 0 ≤ i < n, si ∈ Si we have

Esi( Sn) =
∑

si+1∈Si+1

Prsi(♦si+1) · Esi( Sn | ♦si+1)

=
∑

si+1∈Si+1

Prsi(♦si+1) · Esi( si+1 | ♦si+1) +
∑

si+1∈Si+1

Prsi(♦si+1) · Esi+1
( Sn).

Applying upper equation to Es0( Sn), then recursively to Esi( Sn), and using
the definition of P and E yields

Es0( Sn) =

n∑
k=1

∑
s1∈S1

· · ·
∑
sk∈Sk

k−1∏
j=0

Prsj (♦sj+1) · Esk−1
( sk | ♦sk)

=

n∑
k=1

∑
s1∈S1

· · ·
∑
sk∈Sk

k−1∏
j=0

Psj ,sj+1
· Esk−1,sk

=

n∑
k=1

∑
sk−1∈Sk−1

∑
s1∈S1

. . .
∑

sk−2∈Sk−2

k−2∏
j=0

Psj ,sj+1 ·
∑
sk∈Sk

Psk−1,sk · Esk−1,sk .

Now observe that for all 1 ≤ k ≤ n∑
s1∈S1

· · ·
∑

sk−2∈Sk−2

k−2∏
j=0

Psj ,sj+1 = (P k−1)s0,sk−1

is the probability of reaching state sk−1 from state s0. This equation and appli-
cation of the standard definition of scalar multiplication yields

Es0( Sn) =

n∑
k=1

∑
sk−1∈Sk−1

(P k−1)s0,sk−1
·
∑
sk∈Sk

Psk−1,sk · Esk−1,sk

=

n∑
k=1

∑
sk−1∈Sk−1

(
P k−1

)
s0,sk−1

· pesk−1

=

n∑
k=1

(
P k−1 · pe

)
s0

=

(
n∑
k=1

P k−1 · pe

)
s0. ut
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