
Weight Monitoring with Linear Temporal Logic:
Complexity and Decidability

Extended Version (2014-06-30) ∗

Christel Baier Joachim Klein Sascha Klüppelholz Sascha Wunderlich
Institute for Theoretical Computer Science
Technische Universität Dresden, Germany

{baier,klein,klueppel,wunder}@tcs.inf.tu-dresden.de

Abstract
Many important performance and reliability measures can be formal-
ized as the accumulated values of weight functions. In this paper, we
introduce an extension of linear time logic including past (LTL) with
new operators that impose constraints on the accumulated weight
along path fragments. The fragments are characterized by regular
conditions formalized by deterministic finite automata (monitor
DFA). This new logic covers properties expressible by several re-
cently proposed formalisms. We study the model-checking problem
for weighted transition systems, Markov chains and Markov deci-
sion processes with rational weights. While the general problem is
undecidable, we provide algorithms and sharp complexity bounds
for several sublogics that arise by restricting the monitoring DFA.

Categories and Subject Descriptors F.4.1 [Mathematical logic
and formal languages]: Mathematical logic—Temporal logic

General Terms Theory

Keywords LTL, MDP, Markov chain, transition system, accumula-
tion, weights, rewards, model checking, finite automata, monitor

1. Introduction
In many application scenarios weight accumulation occurs rather
naturally. One example is the total win or loss of a share at the stock
market over one day. However, not only fixed periods of time are
of interest. Formalizing more general time spans is often necessary,
for example in between certain events, e.g., when considering the
average CPU load within a specific computation phase. Many
performance and reliability measures can be formalized using

∗ The authors are supported by the DFG through the collaborative research
centre HAEC (SFB 912), the cluster of excellence cfAED (center for
Advancing Electronics Dresden), the Graduiertenkolleg 1763 (QuantLA),
and the DFG/NWO-project ROCKS, the ESF young researcher groups
IMData (100098198) and SREX (100111037), and the EU-FP-7 grant
295261 (MEALS).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CSL-LICS 2014, July 14–18, 2014, Vienna, Austria.
Copyright c© 2014 ACM 978-1-4503-2886-9. . . $15.00.
http://dx.doi.org/10.1145/2603088.2603162

automata models with weight functions for the states or transitions.
Resource requirements (e.g., bandwidth, energy consumption) and
other quantitative system properties (e.g., the number of service-
level violations) are then formally modeled as accumulated weights
of path fragments.

Various models, logics and specification formalisms for weighted
structures and accumulated weights have been proposed in the
literature. For the analysis of Markovian models, the traditional
approaches mainly concentrate on branching time logics with cost-
or reward-bounded temporal modalities and state formulas for
reasoning about total expected costs or long-run averages, see
e.g. [2, 4, 16, 19]. This work has mainly focused on non-negative
weight functions, called reward functions. In the case of models with
two or more weight functions, the properties that can be specified
in such branching-time logics are mostly Boolean combinations
of formulas, each of them referring to a single reward function.
Although nested state formulas can impose constraints for different
weight functions, these logics are not adequate to express, e.g., a
reachability constraint with bounds for the accumulated value of
two reward functions. Approaches for multi-objective reasoning
in Markovian models with nondeterminism (MDPs) [11, 18, 19]
focus on the task to synthesize schedulers satisfying multiple
constraints on the probabilities of ω-regular events or expected
(total) accumulated rewards.

There is a recent trend to study logics and algorithms for
reasoning about properties on the accumulated values of multiple
weight function that might have both positive and negative values.
Such weight functions appear naturally when modeling, e.g., the
amount of available energy in a battery or the market trend of stocks
that might vary (increase or decrease) over time. Conditions on
the relation between the accumulated values of different weight
functions can be useful, e.g., for the analysis of load balancing
algorithms for multi-core systems that might trigger a migration in
case the load of one core is two times larger than the average load
of the cores. Another example is constraints on the cost/utility ratio.
Ratio objectives for weighted MDPs have been studied for example
in [29] where the goal is to synthesize a scheduler for a given
weighted MDP that maximizes or minimizes the average ratio payoff
of two integer weight functions. Quantitative objectives for efficient
synthesis have also been proposed in [6, 12]. An extension of linear
time and branching time logic with prefix-accumulation assertions,
which sum the weights from the start of the computation, is proposed
in [7]. Similarily, variants with assertions on the long-run (mean-
payoff) accumulation are considered in [7, 17, 27]. Decidability
results for special property types ψ ∧ ϕ where ψ is a condition
on the accumulated value of a single weight function and ϕ an
ω-regular path property have been established for various types of

weighted game structures, e.g., for energy and mean-payoff games
in [1, 9, 10].

We introduce a temporal logical framework based on linear temporal
logic (LTL) with the standard future and past temporal modalities
and two new operators A and A. The latter impose constraints on
the accumulated weight of path fragments π satisfying a given regu-
lar condition formalized by a deterministic finite automaton (DFA)
A, possibly under side constraints formalized by nested formulas
for the first and the last position of π. Formulas are interpreted over
the paths of weighted structures. We consider finite-state Markov
decision processes with multiple weight functions, briefly called
WMDPs. MDPs are a standard mathematical model with nondeter-
ministic and probabilistic choices. For linear-time specifications, the
probabilistic model-checking (PMC) problem for MDPs denotes the
task to compute the maximal or minimal probabilities of a specifica-
tion, where extrema are taken when ranging over all resolutions of
the nondeterministic choices. Weighted transition systems (WTSs)
and weighted Markov chains (WMCs) can be seen as degenerated
WMDPs without nondeterminism or probabilism, respectively.

Four different classes of automata are considered here. Window
DFA simply impose a restriction on the length of words. They can
be used to formalize, e.g., constraints on the load of a processor
in the past few clock cycles or the chart-development of a stock
within one day. The fixed window properties studied in [13] for
non-probabilistic game structures are expressible in our logic with
window DFA. More flexibility is provided by the class of acyclic
DFA. They can serve as monitors for the weights accumulated
along path fragments whose traces belong to a finite set of words,
e.g., formalizing finitely many request-response patterns between
processes. Obviously, the full class of DFA is even more expressive
and can express conditions on the total weight accumulated along
any regular pattern. As a special case we also consider DFA
formalizing reachability conditions. These can be used to reason
about the cost accumulated until a certain event occurs. The resulting
logic is indeed very expressive and covers the core features of several
other logics that have been studied in the literature [7, 27]. For a
detailed discussion on related formalisms we refer to Section 3.4.

Contribution. Besides the presentation of the syntax and semantics
of linear temporal logic with weight assertions, our main contribu-
tion is to study the impact of different types of weight assertions
and classes of DFA on the decidability of the PMC problem and to
provide sharp complexity bounds for decidable fragments.

For the class of acyclic (and window) DFA we show in Section
4 that the PMC problem for WMDPs is solvable using a reduction
to the standard PMC problem for unweighted MDPs. The reduction
is, however, exponential in the size of the acyclic DFA occurring
in the given formula. We then study the complexity of several
simple patterns of formulas with weight assertions and establish
NP- or coNP-hardness for the model-checking problem in WTSs
and WMCs.

The border between decidability and undecidability will be
addressed in Section 5. For the full class of DFA, we immediately get
undecidability of the model-checking problem by the undecidability
results presented in [7] for temporal logic with assertions on the
weights accumulated along prefixes of infinite paths. We strengthen
this result by proving that the model-checking problem is even
undecidable for propositional logic with weight assertions obtained
by DFA imposing reachability conditions. This is surprising given
that [7] proves decidability for Boolean combinations of the CTL-
modality ∃♦ and prefix-accumulation assertions. Furthermore, we
discuss the impact of weight functions versus non-negative reward
functions, multiple versus single weight functions and the type of
weight constraints. Omitted proofs and further technical details can
be found in the appendix.

2. Preliminaries
Throughout the paper we assume the reader is familiar with temporal
logics, automata over finite and infinite words and Markovian
models. We provide a brief summary of the relevant concepts for
Markov decision processes. Further details can be found, e.g., in
[3, 14, 16, 25].

Markov decision processes (MDPs). An MDP is a tupleM =
(S,Act , P,AP, L), where S is a finite set of states, Act a finite set
of actions, P : S × Act × S → [0, 1], AP is a finite set of atomic
propositions and L : S → 2AP a labeling function. We require that
the values P (s, act , s′) are rational and

∑
s′∈S P (s, act , s′) ∈

{0, 1} for all states s ∈ S and actions act ∈ Act. The triples
(s, act , s′) with P (s, act , s′) > 0 are called steps. Action act is
said to be enabled in state s if P (s, act , s′) > 0 for some state s′.
Act(s) denotes the set of actions that are enabled in s ∈ S. To avoid
terminal behaviors, we require that Act(s) 6= ∅ for all states s.

A pointed MDP is an MDP with a distinguished initial state sinit .
Intuitively, the computation starts in s0 = sinit . If after i steps the
current state is si thenM selects nondeterministically one of the
enabled actions act i ∈ Act(si), followed by an internal probabilis-
tic choice to move to one of the states si+1 where P (si, act i, si+1)
is positive.

Paths in an MDPM can be seen as sample runs that are obtained
in this way. Formally, the paths are finite or infinite sequences where
states and actions alternate:

ζ = s0 act0 s1 act1 . . . ∈ (S ×Act)∗S ∪ (S ×Act)ω

with act i ∈ Act(si) and P (si, act i, si+1) > 0 for all i. The trace
of ζ is obtained by ignoring the actions and taking the projection
to the state labels. If 0 6 h 6 k then ζ[h . . . k] denotes the path
fragment starting in the (h+1)-st state and ending in the (k+1)-st
state. Thus, if ζ is as above then:

trace(ζ) = L(s0) L(s1) L(s2) . . . ∈
(
2AP
)∗ ∪ (2AP

)ω
ζ[h . . . k] = sh acth sh+1 acth+1 . . . actk−1 sk

In particular, ζ[k] is the (k+1)-st state in ζ. We write first(ζ) to
denote the first state of ζ. If π is a finite path, then last(π) denotes
its last state and |π|, the length of π, stands for the number of steps
that are taken in π. IPaths and FPaths stand for the set of all
infinite resp. finite paths.

Schedulers and induced probability space. Reasoning about
probabilities for path properties in MDPs requires the selection
of an initial state and the resolution of the nondeterministic choices
between the possible transitions. The latter is formalized via sched-
ulers, also called policies or adversaries, which take as input a finite
path and select an action to be executed. A (deterministic) scheduler
is a function S : FPaths → Act such that S(π) ∈ Act

(
last(π)

)
for all finite paths π. Given an initial state s, the behavior ofM
under S is purely probabilistic. Standard concepts of measure and
probability theory can be applied to define a sigma-algebra and a
probability measure PrSM,s for measurable sets of the infinite paths,
also called (path) events or path properties. For further details, we
refer to standard text books such as [25].

Weighted MDPs (WMDP). A weight function forM is a function
wgt : S × Act → Q. We extend wgt to a function that assigns to
each finite path its accumulated weight.

wgt(s0 act0 s1 act2 . . . actn−1 sn) =
n−1∑
j=0

wgt(sj , actj)

The logic introduced in Section 3 will be interpreted over weighted
MDPs (WMDPs), i.e., tuples (S,Act , P,AP, L,wgt) consisting of
an MDP and a d-tuple wgt = (wgt1, . . . ,wgtd) of weight functions.
Non-negative weight functions wgt : S × Act → Q>0 are called

reward functions. wgt is called positive if wgt(s, act) > 0 for all
s ∈ S and act ∈ Act(s).

Weighted Markov chains (WMC). Markov chains (MC) can
be seen as special instances of MDPs where the action set is a
singleton. Thus, the behavior of MCs is purely probabilistic. The
action set will be dropped when talking about Markov chains. We
write MCs as tuples (S, P,AP, L) and P (s, s′) for the transition
probabilities. Paths in Markov chains are just state sequences and
weight functions are functions of the type wgt : S → Q. Intuitively,
wgt(s) stands for the costs resp. the reward earned when leaving
s. Thus, the weight of finite paths is given by wgt(s0 s1 . . . sn) =
wgt(s0)+wgt(s1)+. . .+wgt(sn−1). The concept of schedulers is
irrelevant for MCs and we write PrM,s for the probability measure
induced byM when s is viewed as the initial state.

Weighted transition systems (WTS). A WMDP where the values
of the transition probabilities are 0 or 1 can be seen as a weighted
transition system, briefly called WTS. We write s

act−→ s′ if
P (s, act , s′) = 1.

With abuse of notations, the abbreviations WMDP, WMC and
WTS are often used for pointed structures.

Deterministic finite automata (DFA). The logic introduced in the
next section will use DFA serving as monitors for the accumulated
weights in a WMDP. In this context, each DFA is given by a tuple
A = (Q, δ, qinit , F) whereQ is a finite set of states, δ : Q×2AP →
Q a partial transition function, qinit ∈ Q the initial state and F ⊆ Q
a set of final states. We write L(A) for the accepted language.

If φ is a propositional formula over AP then A[. . . φ] denotes
the minimal DFA where L(A[. . . φ]) consists of all finite words
A1 A2 . . .An over 2AP with An |= φ. Similarly, A[φ . . .] and
A[φ1 . . . φ2] denote minimal DFA accepting precisely the words
A1 A2 . . .An with A1 |= φ and the words A1 A2 . . .An with
A1 |= φ1 and An |= φ2.

For ` ∈ N, ` > 1, letA6` andA=` denote minimal DFA for the
languages consisting of all words over the alphabet 2AP of length at
most `+1 resp. of length precisely `+1.

3. LTL with monitored weight assertions
Linear temporal logic with monitored weight assertions extends
standard LTL by two new modalities and that impose linear
constraints on the accumulated weights along finite paths that meet
a regular condition given by a DFA.

3.1 Syntax
A signature Sig for the linear temporal logic with monitored
weight constraints consists of finitely many weight symbols
wgt1, . . . ,wgtd, a finite set AP of atomic propositions and a class
AUT consisting of DFA over the alphabet 2AP. We consider here
the following classes AUT:

Window: the class of DFA A=` and A6` for ` > 1

Acyc: the class of acyclic DFA
Reach: the class of DFA of the form A[. . . φ]

All: the full class of DFA

For all classes, we require additionally that all DFA A ∈ AUT are
minimal and that the accepted language L(A) is nonempty and does
not contain the empty word ε. The assumption thatA is minimal and
L(A) is nonempty implies that all states q ∈ Q can reach F . The
requirement that A does not accept the empty word ε is equivalent
to the requirement that qinit /∈ F . For each DFA A ∈ Acyc its
language L(A) is finite and the length of the longest run is the
length of a longest word in L(A). The accepted language of each
DFA A[. . . φ] ∈ Reach can be seen as a reachability condition ♦φ.

A basic weight constraint over Sig is a constraint of the form
expr ./ c. Here, ./ is one of the four comparison operators <,
>, 6 or >, c ∈ Q and expr is a weight expression of the form

expr =
d∑
i=1

ai · wgti with coefficients ai ∈ Q.

A weight constraint is a Boolean combination of basic weight
constraints. The class WC of weight constraints is closed under
negation, and so is the class of basic weight constraints as, e.g.,
¬(expr 6 c) is equivalent to expr > c.

A weight expression is called simple if it has the form wgti for
some i ∈ {1, . . . d}. Simple basic weight constraints have the form
wgti ./ c. A weight constraint constr is said to be simple if all
its weight expressions are simple. Obviously, for d=1 all weight
constraints are equivalent to simple ones.

The logic LTL[, : AUT] extends LTL by two new modalities
and to formalize constraints on the accumulated weight of

path fragments. For the LTL fragment we use standard temporal
modalities U (until) and S (since). The previous and next operators
are omitted from the basis syntax since they are derivable (see
Remark 2). The abstract syntax of LTL[, : AUT]-formulas is
defined as follows:

ϕ ::= tt | a | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 Sϕ2 | ϕ1 Uϕ2 |
A (ϕ1; constr;ϕ2) | A (ϕ1; constr;ϕ2)

where a ∈ AP, A ∈ AUT, constr ∈ WC and ϕ1 and ϕ2 are
again LTL[, : AUT]-formulas. We refer to A (ϕ1; constr;ϕ2)
as (generalized) weight assertion. We simply write A constr for
A(tt; constr; tt) and refer to formulas of this type as pure weight

assertions. Formulas of the form A(expr ./ c), are called basic
weight assertions. Generalized, pure and basic weight assertions
using the -modality are defined accordingly.

While A is a past operator, A imposes a constraint on the
future behavior. Intuitively, A (ϕ1; constr;ϕ2) asserts that for the
current position k of a path ζ, there is a path fragment π = ζ[h . . . k]
ending in the current position accepted by A such that π satisfies
constr and the precondition ϕ1 holds in the h-th position of ζ
as well as the postcondition ϕ2 in its k-th position. Similarly,
A (ϕ1; constr;ϕ2) imposes a constraint on the weights that will

be accumulated along some path fragment that is accepted by A,
satisfying the precondition ϕ1 and the postcondition ϕ2 in the
position of their first and last state respectively. Thus, A can be
viewed as a monitor that observes the traces ofM. For example, A
can be used to formalize requirements on the accumulated weights
between sending a request and receiving a response.

Length of formulas. The length of an LTL[, : AUT]-formula
ϕ is defined as the number of occurrences of logical operators
¬, ∧, S and U plus the length of all generalized weight as-
sertions that appear in ϕ. The length of A (ϕ1; constr;ϕ2) or
A (ϕ1; constr;ϕ2) is the number of states in A plus the sum of

the lengths of the precondition ϕ1, the postcondition ϕ2 and the
constraint constr. The latter is defined as the sum of the lengths of
the binary encodings of the coefficients a1, . . . , ad and the constant
c in the basic weight constraints (a1·wgt1 + . . . + ad·wgtd) ./ c
of constr.

Derived operators. As usual we can derive all operators from
propositional logic (disjunction ∨, implication→, etc.). The tem-
poral modalities ♦ (eventually), � (always) and R (release) can be
derived as in standard LTL by ♦ϕ def

= ttUϕ, �ϕ def
= ¬♦¬ϕ and

ϕ1 Rϕ2
def
= ¬(¬ϕ1 U¬ϕ2).

(ζ, k) |= a iff a ∈ L
(
ζ[k]

)
(ζ, k) |= tt

(ζ, k) |= ¬ϕ iff (ζ, k) 6|= ϕ

(ζ, k) |= ϕ1 ∧ ϕ2 iff (ζ, k) |= ϕ1 and (ζ, k) |= ϕ2

(ζ, k) |= ϕ1 Uϕ2 iff there exists h > k such that (ζ, h) |= ϕ2 and (ζ, i) |= ϕ1 for k 6 i < h

(ζ, k) |= ϕ1 Sϕ2 iff there exists h 6 k such that (ζ, h) |= ϕ2 and (ζ, i) |= ϕ1 for k > i > h

(ζ, k) |= A (ϕ1; constr;ϕ2) iff there exists h 6 k s.t. trace(ζ[h . . . k]) ∈ L(A), ζ[h . . . k] |= constr
and (ζ, h) |= ϕ1 and (ζ, k) |= ϕ2

(ζ, k) |= A (ϕ1; constr;ϕ2) iff there exists h > k s.t. trace(ζ[k . . . h]) ∈ L(A), ζ[k . . . h] |= constr
and (ζ, k) |= ϕ1 and (ζ, h) |= ϕ2

Figure 1. Semantics of LTL[, : AUT] over infinite paths ζ and position k ∈ N

We can also ask whether all path fragments accepted by a monitor
automaton fulfill some weight constraint instead of just one. The
formula

�Aconstr
def
= ¬ A ¬constr

states that each suffix of the current system history accepted by A
fulfills constr. Similarly,

�Aconstr
def
= ¬ A ¬constr

asserts that each future behavior accepted by A satisfies constr.

Sublogics. We write PL[: AUT] for propositional logic where
the atoms are future pure weight assertions, i.e., formulas of
PL[: AUT] are Boolean combinations of formulas of the type
A constr. Note that the analogous logic PL[: AUT] is pointless

as it is as expressive as propositional logic. LTLsimple[, : AUT]
denotes LTL[, : AUT] restricted to simple weight constraints.

3.2 Semantics
Formulas of the logic LTL[, : AUT] can be interpreted over
structures consisting of directed graphs with a d-dimensional weight
function and node-labels in AP. Here, we deal with an MDP-
semantic of LTL[, : AUT] and interpret formulas over the
infinite paths of a WMDP M = (S,Act , P,AP,L,wgt) with
wgt = (wgt1, . . . ,wgtd) as in Section 2. Weight expressions are
evaluated over the finite paths inM in the expected way. Given
a basic weight constraint expr ./ c and a finite path π inM we
define:

π |= expr ./ c iff Jexpr, πK ./ c

where Jexpr, πK denotes the value of the weight expression expr
when interpreting the weight symbols wgti with the accumulated
weight of π under weight function wgt i:

Jexpr, πK def
=

d∑
i=1

ai · wgt i(π) for expr =
d∑
i=1

ai · wgti

The satisfaction relation |= for finite paths and weight constraints
(i.e., Boolean combination of basic weight constraints) is now
defined in the obvious way. The interpretation of LTL[, : AUT]-
formulas in the WMDP M is defined over pairs (ζ, k) where
ζ = s0 act0 s1 act1 s2 act2 . . . is an infinite path inM and k ∈ N
as shown in Figure 1. Thus, (ζ, k) |= A constr iff there exists
h 6 k with trace(ζ[h . . . k]) ∈ L(A) and ζ[h . . . k] |= constr.
Similarly, (ζ, k) |= �Aconstr iff for each h 6 k we have:
trace(ζ[h . . . k]) /∈ L(A) or ζ[h . . . k] |= constr. The semantics
of future pure weight assertions is analogous. To reason about the
probabilities for properties specified in LTL[, : AUT] we lift the
semantics to infinite paths:

ζ |= ϕ iff (ζ, 0) |= ϕ

Remark 1 (Distributivity) Weight constraints can be arbitrary
Boolean combinations of basic weight constraints. For disjunc-
tive weight constraints we can rely on the distributivity law for
existential quantification and disjunction and obtain:

A(ϕ1; constr1 ∨ constr2;ϕ2

)
≡ A (ϕ1; constr1;ϕ2) ∨ A (ϕ1; constr2;ϕ2)

where ≡ denotes the equivalence of formulas. By duality, we
get the equivalence of the formulas �Aconstr1 ∧ constr2 and
�Aconstr1 ∧ �Aconstr2. The analogous statements hold for
and �. �

Remark 2 (Pre-/postconditions, past vs. future) The postcondi-
tion in past weight assertions and the precondition in future weight
assertions impose a constraint on the current position. Hence:

A (ϕ1; constr;ϕ2) ≡ A(ϕ1; constr; tt) ∧ ϕ2

A (ϕ1; constr;ϕ2) ≡ A(tt; constr;ϕ2) ∧ ϕ1

In combination with an eventually operator, the semantics of and
coincide. That is,

♦ A (ϕ1; constr;ϕ2) ≡ ♦ A (ϕ1; constr;ϕ2) .

Note that for each infinite path ζ:

ζ |= ♦ A (ϕ1; constr;ϕ2)

iff ζ |= ♦ A (ϕ1; constr;ϕ2)

iff there exists h, k ∈ N with h 6 k such that
(1) trace(ζ[h . . . k]) ∈ L(A)
(2) ζ[h . . . k] |= constr
(3) (ζ, h) |= ϕ1

(4) (ζ, k) |= ϕ2

By duality, ��A constr ≡ ��A constr. �

Remark 3 (Window weight assertions, next and previous) Step-
bounded properties can be expressed using the automata class
Window. The DFA A6` and A=` can be seen as monitors that
observe paths up to length ` or of length precisely `. In what follows,
6` and =` are used as brief notations for A6` and A=` respec-

tively, and called (past) window weight operators. Future window
weight operators are defined accordingly. The standard next and
previous operators are definable using generalized window weight
assertions:

©ϕ
def
= =1(tt; true;ϕ)

The previous operator	ϕ is obtained by =1(ϕ; true; tt). �

Remark 4 (Existential vs. universal window weight assertions)
Existential and universal pure future window weight assertions agree

for precise window length, i.e., =` constr ≡ �=`constr, as we
have for all path-position pairs (ζ, k):

(ζ, k) |= =` constr iff (ζ, k) |= �=`constr

iff ζ[k . . . k+`] |= constr

In contrast, the formulas =` constr and �=`constr are not equiv-
alent since for k < ` and each infinite path ζ we have (ζ, k) |=
�=`constr, while (ζ, k) 6|= =` constr.

However, if k > ` then for each infinite path ζ:

(ζ, k) |= =` constr iff (ζ, k) |= �=`constr

iff ζ[k−` . . . k] |= constr

In combination with prefix-independent temporal modalities the
effect of � and collapses, e.g.:

�♦ =` constr ≡ �♦ �=` constr

♦� =` constr ≡ ♦� �=` constr

�

Remark 5 (Step- and weight-bounded until and release) Inter-
preted over a structure with a single weight function wgt , the
formula aU6`

./c b is a variant of aU b with step bound ` and weight
constraint wgt ./ c. Formally, if ` > 1 then (ζ, k) |= aU6`

./c b iff
there exists k 6 h 6 k + l with wgt(ζ[k . . . h]) ./ c such that
b ∈ L(ζ[h]) and a ∈ L(ζ[i]) for k 6 i < h. LetA[aU6` b] ∈ Acyc
be a DFA for the language consisting of the words A1 A2 . . .An
over 2AP such that n 6 `+1, a ∈ Ai for 0 6 i < n and b ∈ An.
Then:

aU6`
./c b ≡ A[aU6` b](wgt ./ c)

and by duality we get:

aR6`
./c b ≡ �A[¬aU6` ¬b]¬(wgt ./ c).

�

Interpretation over WMDP, WMC, WTS. Our main inter-
est is in reasoning about the probabilities of LTL[, : AUT]-
specifications ϕ in weighted Markovian models. If (M, s) is a
WMC then:

PrM,s(ϕ)
def
= PrM,s

{
ζ ∈ IPaths : ζ |= ϕ

}
Similarly, if (M, s) is a WMDP and S a scheduler for M then
PrSM,s(ϕ) denotes the probability for ϕ under scheduler S and for
starting state s. As usual, we define:

Prmax
M,s(ϕ)

def
= sup

S
PrSM,s(ϕ), Prmin

M,s(ϕ)
def
= inf

S
PrSM,s(ϕ)

where S ranges over all schedulers for M. When interpreting
LTL[, : AUT]-formulas over WTS, we use CTL-like notations
such as s |= ∃ϕ to indicate the existence of an infinite path ζ starting
in state s with ζ |= ϕ.

Notation 6 (Model-checking problem) To discuss the complexity
and decidability we will study decision variants of the model-
checking problem for LTL[, : AUT] interpreted over WMDP,
WMC or WTS. For WMDP the notion model-checking problem
will be used to refer to one of the four problems asking whether (a),
(b), (c) or (d) holds, where

(a) Prmax
M,sinit

(ϕ) > 0

(b) Prmax
M,sinit

(ϕ) = 1

(c) Prmin
M,sinit

(ϕ) > 0

(d) Prmin
M,sinit

(ϕ) = 1

(a) and (d) are trivially interreducible since

Prmin
M,sinit (ϕ) = 1− Prmax

M,sinit (¬ϕ).

The analogous statement holds for problems (b) and (c). We refer
to (a) as the positive model-checking problem and to (b) as the
almost-sure model-checking problem. For WMC all four problems
collapse from a computational point of view since the concept
of schedulers is irrelevant. For WTS, the task of the existential
model-checking problem is to decide whether sinit |= ∃ϕ for a
given formula ϕ, while the universal model-checking problem asks
whether sinit |= ∀ϕ. �

Remark 7 (Integer vs. rational weights) We introduced weight
functions in MDPs as functions of the type wgt : S × Act → Q.
When using LTL[, : AUT] as a specification formalism for fi-
nite WMDPs, however, integer-valued weight functions are equally
expressive. Further details are in the appendix, Remark 22. �

Remark 8 (Transformations of weight functions) Using the idea
of [7], each basic weight constraints expr ./ c where expr =
a1 · wgt1 + . . . + ad · wgtd can be replaced with a simple basic
weight constraint wgt ./ c where wgt is a fresh weight symbol
representing a new weight function wgt : S × Act → Q where
wgt(s, act) =

∑d
i=1 aiwgt(s, act). See appendix, Remark 23. �

3.3 Examples
To illustrate the expressiveness and usefulness of our formalism
we provide a number of examples from different domains. In what
follows, we use some shorthand notations for weight constraints with
obvious meanings. For instance, wgt = c is short for (wgt 6 c) ∧
(wgt > c) and c1 6 wgt 6 c2 means (wgt > c1) ∧ (wgt 6 c2).

The following formula specifies global bounds on the load,
measured in the number of incoming requests to a system within a
given monitor A, is between cmin and cmax.

��A[begin...end] (cmin 6 load 6 cmax)

The property that whenever there is a request to the system, the
utility of the system exceeds a certain threshold c within monitor A
is asserted by the following formula.

�
(
request → �A(utility > c)

)
Similarly, the formula

�(request→ 6`(utility > c))

can be used to specify that after each request a utility value of at
least c is guaranteed within ` or fewer steps.

The following example formalizes a resilience property, in
which we require that whenever in the last ten rounds of some
protocol, the accumulated number of errors a certain component
produced exceeded five, the component will receive no load until
the replacement procedure (formalized by A) is complete.

=10(error > 5)→ �A(load = 0)

Using two (or more) different weight functions allows, e.g., to reason
about the load balancing of two (or more) subsystems.

�
(A(|load1 − load2| 6 c)

)
The formula above states that globally, within a given monitor A
the load difference must not exceed a certain threshold c.

With two weight functions one can also express properties related
to the tradeoff between cost and utility. E.g., the following formula
might state that whenever the system consumes a certain amount
of energy ce for processing a query then the accumulated utility
exceeds some utility threshold cu:

�
(A(energy > ce)→ A(utility > cu)

)
Nesting of formulas allows, e.g., expressing properties of the
following type. For this, let Ainit formalize an initialization process
and Awork a working phase.

Then the formula:
Ainit (tt; energy < ce;

Awork (utility > cu))

stands for the requirements that there is an initialization process
which uses not more than ce energy and is followed by a working
phase which in turn gains at least utility cu.

Assertions on the ratio of two weight functions can be expressed
using weight expressions. For example, the following formula
expresses that the monitored ratio of utility and energy exceeds
some threshold c:

�
(
�A(utility

energy
> c)

)
where util

energy
> c is a short form notation for the weight expression

utility − c · energy > 0.

3.4 Variants and related logics
Average. Up to now the semantics of weight expressions over finite
paths is based on the accumulated weight given by the sum of all
state-action pairs along the given finite path. Alternatively one might
deal with the average defined by

avg[wgt](π) = wgt(π)/|π|

if |π| > 0. Let LTLavg[, : AUT] denote the extension of
LTL[, : AUT] where basic weight constraints either have the
form expr ./ c as before or avgexpr ./ c where

avgexpr =
d∑
i=1

ai · avg[wgti] with ai ∈ Q

is an average weight expression. The symbol avg[wgti] indicates
that the weight function represented by wgti will be interpreted
by the average weight of finite paths. To ensure that the aver-
age weight of all finite paths π with trace(π) ∈ L(A) is well-
defined, we impose the side constraint that for all subformulas
A (ϕ1; constr;ϕ2) and A (ϕ1; constr;ϕ2), where constr con-

tains an average weight constraint, the DFA A does not accept
words of length 1. Following the idea described in [7], average
weight expressions can be transformed into sum weight expressions
of the form wgt ./ 0. This transformation is applicable for our
purposes as well. Details on the transformation can be found in the
appendix, Remark 24. This yields that the (probabilistic) model-
checking problem for LTLavg[, : AUT]-formulas is reducible
to the one for LTL[, : AUT].

Indeed several authors considered logics or specific properties
that are in the spirit of or even expressible in LTLavg[, : AUT]
for some automata class AUT.

Fixed window properties. The (direct) fixed window proper-
ties studied in [13] for non-probabilistic weighted game struc-
tures have the form 6`(avg[wgt] > c), � 6`(avg[wgt] >
c) and ♦� =`(avg[wgt] > c). Thus, they are expressible in
LTLavg[, : Window].

Temporal logic with prefix accumulation. The concept of prefix-
accumulation assertions as introduced by Boker et al [7] for
weighted Kripke structures and branching-time and linear-time tem-
poral logics is very much in the spirit of the logic LTLavg[, : All].
The differences between weighted Kripke structures and WTSs in
our sense are mostly of a syntactic nature. Rephrased for our no-
tations, prefix-accumulation assertions as in [7] can be defined as
LTLavg[, : All]-formulas:

assert[constr]
def
= A[init...] constr

We suppose here that init is an atomic proposition that characterizes
the initial state. Thus, with this side assumption, LTL with prefix-
accumulation assertions as in [7] is a sublogic of LTLavg[, : All].

Given a DFA A ∈ All imposing a regular constraint that is not
LTL-definable, we cannot expect to get an LTL formula with prefix-
accumulation assertions that is equivalent to A constr. However,
the LTL[, : Reach]-formula A[...φ] constr is equivalent to the
formula ♦(φ ∧ assert[constr]). Thus, e.g., LTL[, : Reach] can
be seen as a sublogic of LTL with prefix-accumulation assertions.
[7] also considers a variant of prefix accumulation “controlled” by
some regular expression. This approach, however, departs from the
regular conditions imposed by the DFA A in generalized or pure
weight assertions. The purpose of regular conditions in controlled
prefix accumulation as in [7] relies on an alternative definition of the
weight of finite paths (where the weights of certain transitions can be
ignored), while the operators A and A impose conditions on the
standard weight of finite paths satisfying a given regular constraint.

Mean-payoff, long-run averages. Several authors studied game
structures or logics with mean-payoff objectives. The latter are typi-
cally defined as requirements on the limit superior or limit inferior
of the accumulated weight along the prefixes of a given infinite
path. Such requirements can be formalized in LTLavg[, : All]
by formulas of the form

♦� A[init...](avgexpr ./ c) or ♦� A[init...](avgexpr ./ c)

Again, up to some minor syntactic differences, this yields an em-
bedding of the extension of LTL with mean-payoff assertions of
[7] into LTLavg[, : All]. [27] proposes a further extension where
expressions might be polynomial and might refer to so-called charac-
teristic properties. For the latter, our logic provides no corresponding
concept. However, the switch from (linear) weight expressions to
polynomial weight expressions would be possible for our framework
as well. The decidability results presented for LTL[, : Acyc] in
Section 4 would not be affected as we just require that weight con-
straints can be evaluated efficiently over a given d-tuple of values.
Since mean-payoff assertions are prefix-independent properties, the
logic presented in [27] is incomparable to our logic concerning ex-
pressiveness. Neither [7] nor [27] considers probabilistic structures.
WMDPs or weighted game structures with mean-payoff objectives
have been considered by several authors, see, e.g., [8, 9]. Extensions
of temporal logics with formulas for weight constraints in WMDPs
are mostly restricted to branching-time logics such as PRCTL with
reward-bounded until and release modalities (see Remark 5) or
state conditions on the expected total reward [2, 16, 19]. An excep-
tion is the logic introduced in [17] with state formulas asserting
that Prmin

M⊗A,sinit (ψ → ϕ) = 1 where ψ = �♦ =1(wgt2 > 0),
ϕ = ♦� A[init...](wgt1/wgt2 > c) and A is a DFA (so-called ex-
periment) that runs in parallel to the WMDPM. wgt1,wgt2 stand
for reward functions in A lifted to the productM⊗A. Intuitively,
wgt2 counts the number of successful experiments and wgt1 the
total outcome of successful experiments. This particular concept of
experiments is not expressible in our logic, but inspired our work.

4. Model checking against
LTL[, : Acyc]-specifications

We now address the probabilistic model-checking (PMC) problem
for LTL[, : Acyc], where we are given a LTL[, : Acyc]-
formula ϕ, a WMDP M = (S,Act , P,AP,L,wgt) and a state
sinit ∈ S and the task is to compute Prmax

M,s(ϕ) or Prmin
M,s(ϕ).

We first present a general approach that relies on a reduction to
the task of computing extremal probabilities for LTL formulas in
(unweighted) MDPs (Section 4.1). This approach is computationally
expensive and relies on a product construction. It inherently uses
a refined powerset construction for the automata appearing in
subformulas A (ϕ1; constr;ϕ2) or A (ϕ1; constr;ϕ2) to store
the relevant information on the possible runs in A and the weight

for the suffixes of the current history in M. We then discuss in
Section 4.2 the time complexity of the model-checking problem
for LTL[, : Acyc] and sublogics and show that no efficient
algorithms can be expected that run in time polynomial in the size
of the automata A. Efficient model-checking algorithms for special
patterns of LTL[, : Acyc]-formulas are presented in Section 4.3.

4.1 Reduction to the LTL-PMC problem
The goal is to provide a reduction from the LTL[, : Acyc]-PMC
problem to the LTL-PMC problem. Given an LTL[, : Acyc]-
formula ϕ and a WMDP M = (S,Act , P,AP,L,wgt) where
wgt = (wgt1, . . . ,wgtd), the idea is to replace all weight assertions
A (ϕ1; constr;ϕ2) and A (ϕ1; constr;ϕ2) with an until or since

formula, while adding information on the possible runs in A for
the path fragments in M. This is done by enhancing each state
s with a partial function f for each occurring automaton A. The
function tracks all the states q the automaton A can possibly be in
after reading the trace of a path fragment ending in s, along with a
vector w̄ of the accumulated weights along this fragment.

Let A1, . . . ,Am be the DFA that occur as parameters of weight
assertions in ϕ. Recall that Ai are supposed to be minimal acyclic
DFA over the alphabet 2AP. Let `i be the number of states in a
longest run in Ai. Then, the length of each word accepted by Ai is
at most `i−1. In particular, the maximal length of a path π inM
where trace(π) is accepted by Ai is `i−2. (Recall that the length
|π| of a finite path π is the number of transitions taken in π. Thus,
trace(π) consists of |π|+1 symbols.) We are going to construct an
(unweighted) MDP

M̃ = Monitor(M,A1, . . . ,Am) = (S̃,Act , P̃ , ÃP, L̃)

whose states have the form s̃ = 〈s, f1, . . . , fm〉 where s ∈ S and
fi is a partial function from {0, 1, . . . , `i} to pairs (q, w) where q
is a state in Ai and w ∈ Qd such that fi(k) = ⊥ (undefined) for at
least one k. The set of all these tuples is, of course, infinite. Below
we provide the definition of the state space S̃ of M̃ which ensures
that M̃ has only finitely many states. See Remark 9.

The actions that are enabled in state s̃ = 〈s, f1, . . . , fm〉 of
M̃ are precisely the actions in Act(s). The transition probability
function P̃ of M̃ is defined as follows. Suppose that act ∈ Act(s).
Then:

P̃ (〈s, f1, . . . , fm〉, act , 〈s′, f ′1, . . . , f ′m〉) = P (s, act , s′)

where f ′i is the unique (act , s′)-successor of 〈s, fi〉 in Ai that
is defined as follows. Let us now fix some i ∈ {1, . . . ,m} and
supposeAi = (Q, δ, qinit , F). Then, fi : {0, 1, . . . , `i} → Q×Qd
is a partial function such that fi(k) = ⊥ for at least one k.
The (act , s′)-successor of 〈s, fi〉 in Ai is the partial function
f ′i : {0, 1, . . . , `i} → Q×Qd where for 0 6 k 6 `i:

• If fi(k) = (q, w) where q ∈ Q and q 6= qinit then
f ′i(k) =

(
δ(q, L(s′)), w+wgt(s, act)

)
.

• If k is the smallest index such that fi(k) = ⊥ then
f ′i(k) =

(
δ(qinit , L(s′)), 0

)
.

• In all other cases: fi(k) = ⊥.

Here, we identify the tuples (⊥, w) with ⊥. Furthermore, we
define the initial function fsi by fsi (0) = (δ(qinit ,L(s)), 0) and
fsi (k) = ⊥ for k ∈ {1, . . . , `i}.

In all other cases, P̃ (·) = 0. The state space S̃ of M̃ is the
smallest set that contains the states s̃ def

= 〈s, fs1 , . . . , fsm〉 for all
s ∈ S and that is closed under the steps induced by the transition
probability function P̃ .

Remark 9 (Size of the state space) The set S̃ is indeed finite.
Specifically, for ` = max{`1, . . . , `m} we have∣∣ S̃ ∣∣ < |S|` · |Act |`−1 · 2m·(`+1)·log(`+1).

This bound is obtained by the observation that S̃ can be writ-
ten as the union of sets S̃π , where π is a path fragment of
length at most `−2 in M and all states in S̃π have the form
〈last(π), f1, . . . , fm〉 where {fi(0), . . . , fi(`i)} \ {⊥} consists
of the pairs (δ(qinit , trace(π′)), wgt(π)) for some prefix π′ of π.
This yields

|S̃π| 6 (`+1)! < 2m·(`+1)·log(`+1).

The factor |S|` · |Act |`−1 is an upper bound for the number of path
fragments of length `−2. �

The set ÃP of atomic propositions in M̃ consists of:

• the atomic propositions in AP that appear in ϕ,
• fresh symbols initi(k), runi(k) and goali(k) for
i = 1, . . . ,m and k ∈ {0, 1, . . . , `i}

The labeling function L̃ : S̃ → 2ÃP is then defined by the following
conditions. Let s̃ = 〈s, f1, . . . , fm〉 ∈ S̃. Then AP∩ L̃(s̃) = AP∩
L(s). For i ∈ {1, . . . ,m} the semantics of Ai(ϕ1; constr;ϕ2) or
Ai(ϕ1; constr;ϕ2) will be encoded using the atomic propositions

initi(k), runi(k) and goali(k). The requirements for the labeling
function is as follows where we suppose that Ai = (Q, δ, qinit , F):

initi(k) ∈ L̃(s̃) iff fi(k) = (δ(qinit , L(s)), 0)

runi(k) ∈ L̃(s̃) iff fi(k) 6= ⊥

goali(k) ∈ L̃(s̃) iff fi(k) = (q, w) for some q ∈ F
and constr[wgt/w]

We use constr[wgt/w] to denote the variable-free arithmetic con-
dition resulting from constr by replacing the weight symbols
wgtk in the weight expressions of constr with the values wk for
k = 1, . . . , d. Thus, constr[wgt/w] can be treated as a truth value.

Let ϕ̃ be the LTL formula that results from ϕ by replac-
ing the subformulas ψ+ = Ai(ϕ1; constr;ϕ2) and ψ− =
Ai(ϕ1; constr;ϕ2) with:

ψ̃+
def
=
∨

06k6`i

(
ϕ1 ∧ initi(k) ∧ (runi(k) U(goali(k) ∧ ϕ2))

)
ψ̃−

def
=
∨

06k6`i

(
ϕ2 ∧ goali(k) ∧ (runi(k) S(initi(k) ∧ ϕ1))

)
Theorem 10 (Soundness) For each state s inM:

Prmin
M,s(ϕ) = Prmin

M̃,s̃
(ϕ̃) and Prmax

M,sinit
(ϕ) = Prmax

M̃,s̃
(ϕ̃)

where s̃ = 〈s, fs1 , . . . , fsm〉.

The proof is presented in appendix D.
Thus, we can rely on well-known model-checking techniques for
MDPs and LTL. Most prominent is the automata-based approach
that transforms the LTL formula into a deterministic ω-automaton
D and then analyzes the end components of the product of the given
MDP and D (see, e.g., [3, 15]). The worst-case time complexity
of this approach is dominated by the generation of a deterministic
automaton for the LTL formula and runs in time polynomial in the
size of the MDP and double exponential in the length of the LTL
formula.

In our case, the size of the generated MDP M̃ is polynomial
in the size of M, but (single) exponential in the length of the
longest runs in the automata of subformulas A (ϕ1; constr;ϕ2) or

A (ϕ1; constr;ϕ2) (see Remark 9). Thus, the time complexity of
our algorithm is double exponential, too.

4.2 Complexity
We now discuss the complexity of the model-checking problem
for LTL[, : Acyc] and its sublogic LTL[, : Window] over
WMDPs, WMCs and WTSs (see Notation 6).

The model-checking problem for standard LTL is known to
be 2EXPTIME-complete for MDPs and PSPACE-complete for
Markov chains and transition systems [15, 26, 28]. Obviously, the
lower bounds carry over to any logic that extends LTL. Nonde-
terministic polynomially space-bounded algorithms for the model-
checking problem for LTL[, : Acyc] in WMCs and WTSs arise
by adapting the approaches of [26] and [28]. Hence:

Theorem 11 The model-checking problem for LTL[, : Acyc]
and LTL[, : Window] is 2EXPTIME-complete for WMDPs
and PSPACE-complete for WMCs and WTSs.

With the reduction presented in the previous section, the prob-
abilistic analysis has to be carried out with the MDP M̃ =
Monitor(M, . . .) whose size grows exponentially in the sizes
of (more precisely, the length of longest runs in) the automata
A ∈ AUT that appear as parameters of the modalities A and
A. However, we cannot expect much more efficient algorithms for

the LTL[, : Acyc]-PMC problem since even simple patterns of
PL[: Window]-formulas interpreted over WTSs and WMCs can
encode NP-hard problems as shown in the proof of the following
theorem.

Theorem 12 (NP/coNP-completeness for WTSs) For WTSs the
problem “does sinit |= Φi hold?” is NP-complete for formulas of
the type Φ1, Φ2, Φ3 and coNP-complete for Φ4, Φ5 and Φ6 where:

Φ1 = ∃ =` constr Φ4 = ∀ =` constr

Φ2 = ∃♦ =` constr Φ5 = ∀♦ =` constr

Φ3 = ∃�♦ =` constr Φ6 = ∀�♦ =` constr

The same holds when =` is replaced with 6`.

The hardness results in Theorem 12 can be shown using reductions
from the subset sum problem and its complement. See appendix,
Theorem 27. The coNP-hardness proof for 6` uses two positive
reward functions. In the remaining cases, the hardness already holds
for a WTS with a single positive integer-valued reward function
and when constr is a simple basic weight constraint wgt = c or
its negation. Analogous results are obtained for Markov chains,
extending the NP-hardness result of [24] for the quantitative PMC
decision problem and reward-bounded reachability:

Theorem 13 (NP/coNP-completeness for WMCs) For WMCs the
problems to decide whether

PrM,sinit

(
=` constr

)
> 0

PrM,sinit

(
♦ =` constr

)
> 0 PrM,sinit

(
♦ =` constr

)
= 1

PrM,sinit

(
�♦ =` constr

)
> 0 PrM,sinit

(
�♦ =` constr

)
= 1

are NP-complete. NP-hardness even holds with a single positive
integer-valued reward function and if constr has the form wgt = c.
The problem “does PrM,sinit

(
=` constr

)
= 1 hold?” is coNP-

complete. The same holds when =` is replaced with 6`.

For the proof, see the appendix, Theorem 29.
So far we presented hardness results for simple patterns of formulas
with monitors A ∈Window, partly with simple weight assertions

and single positive reward functions. But even for Boolean combi-
nations of simple window weight assertations, the model-checking
problem is computationally hard.

Theorem 14 For PL[: Acyc] and PL[: Window], the positive
model-checking problem for WMDPs and WMCs and the existential
model-checking problem for WTSs are NP-complete. Hardness
already holds for a single positive integer-valued reward function.

For the proof, see the appendix, Theorem 30.

4.3 Special algorithms for selected formula patterns
As a consequence of Theorem 12, the task to compute
Prmax
M,sinit

(♦ A constr) for WMDPs with a single reward func-
tions is computationally hard if constr is a conjunctive weight
constraint wgt = c (which is (wgt 6 c) ∧ (wgt > c)). However,
the analogous problem for simple basic weight constraints wgt ./ c
can be solved efficiently, even for WMDP with a (possibly negative)
weight function.

Proposition 15 For WMDPs with a single weight function, the
problems

“does Prmax
M,sinit

(
♦ A(wgt ./ c)

)
> 0 hold?”

“does Prmin
M,sinit

(
��A (wgt ./ c)

)
= 1 hold?”

are in P.

Proof. It suffices to consider the problem to decide whether the
probability of ♦ A(wgt ./ c) is positive as:

Prmin
M,sinit

(
��A (wgt ./ c)

)
= 1−Prmax

M,sinit

(
♦ A(wgt 6./ c)

)
We define Graph[M⊗A] as a weighted directed graph with the
vertices 〈s, q〉 ∈ S ×Q and the following edge relation E:

(〈s, q〉, 〈s′, q′〉) ∈ E
iff P (s, act , s′) > 0 for some act ∈ Act(s)

and q′ = δ(q, s′) 6= ⊥

The weight of the edge from vertex 〈s, q〉 to vertex 〈s′, q′〉 is

min
{

wgt(s, act) : P (s, act , s′) > 0
}
.

We may apply standard polynomial-time shortest path algorithms
(e.g., the algorithms by Bellman-Ford or Floyd) to compute the
lengths `min(s) and `max(s) of shortest and longest paths from
〈s, qinit〉 to some state 〈t, p〉 with p ∈ F in Graph[M⊗A]. Here,
the notion of length is to be understood in terms of accumulated
weight. (Longest paths are obtained by shortest path algorithms for
the weighted graph that results from Graph[M⊗A] by multiplying
all weights by −1.) Here, we deal with `min(s) = +∞ if no state
in S × F is reachable from 〈s, qinit〉 and `min(s) = −∞ if some
cycle with negative weight is reachable from 〈s, qinit〉. Similarly,
we have `max(s) ∈ Q ∪ {−∞,+∞} with the same conditions for
−∞ and +∞.

Let C ∈ {6, <} and B ∈ {>, >}. The statement fol-
lows from the fact that there is a scheduler S for M where
PrSM,sinit

(♦ A(wgtC c)) is positive if and only if there exists a
state s inM that is reachable from sinit with `min(s)C c. Similarly,
there is a scheduler S forM where PrSM,sinit

(♦ A(wgtB c)) is
positive if and only if there exists a state s inM that is reachable
from sinit with `max(s)B c. �

According to Theorem 13, the computation of
PrM,sinit (�♦

A constr) is hard in WMCs, even in the 1-
dimensional case. The problem becomes considerably simpler
for basic weight constraints:

General Non-negative weight functions,
simple weight constraints

PL[: Acyc]
PL[: Window]

NP-complete (Thm. 14)

LTL[, : Acyc]
LTL[, : Window]

WTS, WMC: PSPACE-complete (Thm. 11)
WMDP: 2EXPTIME-complete (Thm. 11)

PL[: Reach]
PL[: All]

undecidable (Thm. 17,20) decidable

LTL[, : Reach]
LTL[, : All]

undecidable decidable (Thm. 18)

Table 1. Decidability and complexity of the model-checking problem.

Proposition 16 For WMCs with a single weight function, the prob-
abilities

PrM,sinit (�♦
A(wgt ./ c))

PrM,sinit (♦� �
A (wgt ./ c))

can be computed in polynomial time.

The proof relies on the computation of the bottom strongly con-
nected components that are good according to the weight constraint
wgt ./ c, i.e. those BSCCs T for which there is no finite path π
in T with trace(π) ∈ L(A) and wgt(π 6./ c). Checking whether
a BSCC is good can be done using shortest path algorithms. The
proof is presented in the appendix, Proposition 32.

5. Unbounded weight assertions
So far, we studied the model-checking problem for LTL[, : Acyc]
where the operators A and A are parametrized by acyclic DFA,
i.e., their accepted languages are finite. Dropping this assumption
leads to undecidability. This is an immediate consequence of the
undecidability results by [7] for LTL with prefix-accumulation as-
sertions which can be seen as a sublogic of LTL[, : All]; see
Section 3.4.

More interesting is the observation that undecidability even
holds for the logic PL[: Reach], i.e., propositional logic where
the atoms are pure weight assertions A[...φ] constr where φ is
an ordinary propositional formula with atoms in AP. Recall that
the path conditions specified by the automata A[. . . φ] ∈ Reach
are reachability constraints ♦φ. Given the fact that Boker et al
[7] prove decidability for the branching-time logic obtained by
adding the CTL-modality ∃♦ and prefix-accumulation assertions
to propositional logic, this result appears surprising to us. Using a
reduction from the Post correspondence problem, we get:

Theorem 17 (Undecidability for PL[: Reach]) The model-
checking problem for PL[: Reach] over WTSs and WMCs is
undecidable.

The proof can be found in the appendix, Theorem 33.
By Theorem 17, there is no chance to design algorithms for the

computation of (maximal or minimal) probabilities for the events
specified as formulas of PL[: Reach] (or more expressive logics
such as LTL[, : Reach] and LTL[, : All]) in WMCs and
WMDPs. We now discuss the case of non-negative structures where
all weight functions are non-negative.

Recall that simple weight constraints are Boolean combina-
tions of simple basic weight constraints wgti ./ c and that
LTLsimple[, : All] is the sublogic of LTL[, : All] where all
weight constraints are simple.

Theorem 18 The LTLsimple[, : All]-PMC problem is decidable
for non-negative WMDPs.

The proof can be found in the appendix, Theroem 35. It relies on an
adaption of the algorithm presented in Section 4.1 using a threshold
technique that avoids the expansion of pairs fi(k) = (q, w) where
the values of w are larger than the largest constant in the weight
constraints of the given formula. To treat 0-weight cycles we use
the fact that as soon as fi(k) = fi(k

′) then we can release one
argument k or k′ and reuse it for fresh runs. The full proof is in the
appendix, Theorem 35.
For d = 1, all weight constraints are equivalent to simple ones:

Corollary 19 The LTL[, : All]-PMC problem is decidable for
WMDPs with a single non-negative weight function.

In the multi-dimensional case the requirement that the basic weight
expressions are simple cannot be dropped as we have:

Theorem 20 The model-checking problem for PL[: Reach] and
non-negative WTSs is undecidable. Likewise, the model-checking
problem for PL[: Reach] and non-negative WMCs is undecidable.

The full proof is presented in the appendix, Theorem 36.

6. Conclusions
We established sharp complexity bounds and investigated the border
of decidability for the model-checking problem of our new logics.
Our main results are depicted in table 4.2, where we distinguish
between the general case with arbitrary (rational) weight functions
and weight assertions and the case of simple weight assertions with
non-negative weight functions. Note that the second column is only
applicable if both of these restrictions apply. The given results refer
to the positive model-checking problem for WMCs and WMDPs and
the existential one for WTSs. The results for the automata class Acyc
also hold for the automata class Window. Similarly, the results for
Reach also hold for All. The decidability results in the table written
in italic are a direct consequence of some result in boldface.

Even though the stated complexity bounds seem to make a
practical application unfeasible, there are many techniques to make
LTL model checking for MDPs applicable to real-world scenarios.
An evaluation of the methods used in some popular model-checking
tools can be found, e.g., in [23] for PRISM, in [21] for MRMC and
in [5] for ProbDiVinE.

Acknowledgements We are grateful to the operating systems
group, especially to Hermann Härtig and Marcus Völp, for pro-
viding inspiration for this work through real-world problems. We
would also like to thank Marcus Daum, Clemens Dubslaff, Daniel
Krähmann, Linda Leuschner, Steffen Märcker and David Müller for
fruitful discussions within our group.

References
[1] P. A. Abdulla, R. Mayr, A. Sangnier, and J. Sproston. Solving

parity games on integer vectors. In 24th International Conference
on Concurrency Theory (CONCUR), volume 8052 of Lecture Notes in
Computer Science, pages 106–120. Springer, 2013.

[2] S. Andova, H. Hermanns, and J.-P. Katoen. Discrete-time rewards
model-checked. In First International Workshop on Formal Modeling
and Analysis of Timed Systems Workshop (FORMATS), volume 2791
of Lecture Notes in Computer Science, pages 88–104. Springer, 2003.

[3] C. Baier and J.-P. Katoen. Principles of Model Checking. MIT Press,
2008.

[4] C. Baier, L. Cloth, B. R. Haverkort, H. Hermanns, and J.-P. Katoen.
Performability assessment by model checking of Markov reward
models. Formal Methods in System Design, 36(1):1–36, 2010.

[5] J. Barnat, L. Brim, I. Cema, M. Ceska, and J. Tumova. ProbDiVinE: A
parallel qualitative ltl model checker. 4th International Conference on
Quantitative Evaluation of SysTems (QEST), pages 215–216, 2007.

[6] R. Bloem, K. Chatterjee, T. Henzinger, and B. Jobstmann. Better quality
in synthesis through quantitative objectives. In 21st International
Conference on Computer Aided Verification (CAV), volume 5643 of
Lecture Notes in Computer Science, pages 140–156. Springer, 2009. .

[7] U. Boker, K. Chatterjee, T. A. Henzinger, and O. Kupferman. Tem-
poral specifications with accumulative values. In 26th Annual IEEE
Symposium on Logic in Computer Science (LICS), pages 43–52. IEEE
Computer Society, 2011.

[8] T. Brázdil, V. Brozek, K. Chatterjee, V. Forejt, and A. Kucera. Two
views on multiple mean-payoff objectives in Markov decision processes.
In 26th Annual IEEE Symposium on Logic in Computer Science (LICS),
pages 33–42. IEEE Computer Society, 2011. ISBN 978-0-7695-4412-0.

[9] K. Chatterjee and L. Doyen. Energy and mean-payoff parity Markov
decision processes. In 36th International Symposium on Mathematical
Foundations of Computer Science (MFCS), volume 6907 of Lecture
Notes in Computer Science, pages 206–218. Springer, 2011.

[10] K. Chatterjee and L. Doyen. Energy parity games. Theoretical
Computer Science, 458:49–60, 2012.

[11] K. Chatterjee, R. Majumdar, and T. A. Henzinger. Markov decision
processes with multiple objectives. In 23rd Annual Symposium on
Theoretical Aspects of Computer Science (STACS), volume 3884 of
Lecture Notes in Computer Science, pages 325–336. Springer, 2006.
ISBN 978-3-540-32301-3. .

[12] K. Chatterjee, T. Henzinger, B. Jobstmann, and R. Singh. Measuring
and synthesizing systems in probabilistic environments. In 22nd Inter-
national Conference on Computer Aided Verification (CAV), volume
6174 of Lecture Notes in Computer Science, pages 380–395. Springer,
2010. .

[13] K. Chatterjee, L. Doyen, M. Randour, and J.-F. Raskin. Looking at
mean-payoff and total-payoff through windows. In 11th International
Symposium on Automated Technology for Verification and Analysis
(ATVA), pages 118–132, 2013.

[14] E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press,
2000.

[15] C. Courcoubetis and M. Yannakakis. The complexity of probabilistic
verification. Journal of the ACM, 42(4):857–907, 1995.

[16] L. de Alfaro. Formal Verification of Probabilistic Systems. PhD thesis,
Stanford University, Department of Computer Science, 1997.

[17] L. de Alfaro. How to specify and verify the long-run average behavior
of probabilistic systems. In 13th Annual IEEE Symposium on Logic
in Computer Science (LICS), pages 454–465. IEEE Computer Society,
1998.

[18] K. Etessami, M. Kwiatkowska, M. Vardi, and M. Yannakakis. Multi-
objective model checking of Markov decision processes. Logical
Methods in Computer Science, 4(4), 2008.

[19] V. Forejt, M. Kwiatkowska, G. Norman, and D. Parker. Automated
verification techniques for probabilistic systems. In 11th International
School on Formal Methods for the Design of Computer, Communica-

tion and Software Systems (SFM), volume 6659 of Lecture Notes in
Computer Science, pages 53–113. Springer, 2011.

[20] B. Haverkort. Performance of Computer Communication Systems: A
Model-Based Approach. Wiley, 1998.

[21] J.-P. Katoen, I. Zapreev, E. Hahn, H. Hermanns, and D. Jansen. The
ins and outs of the probabilistic model checker MRMC. Performance
Evaluation, 68(2):90–104, 2011.

[22] V. Kulkarni. Modeling and Analysis of Stochastic Systems. Chapman
& Hall, 1995.

[23] M. Kwiatkowska, G. Norman, and D. Parker. Advances and challenges
of probabilistic model checking. In 48th Annual Allerton Conference
on Communication, Control and Computing, pages 1691–1698. IEEE
Press, 2010.

[24] F. Laroussinie and J. Sproston. Model checking durational probabilistic
systems. In 8th International Conference on Foundations of Software
Science and Computational Structures (FOSSACS), volume 3441 of
Lecture Notes in Computer Science, pages 140–154. Springer, 2005.

[25] M. Puterman. Markov Decision Processes: Discrete Stochastic Dy-
namic Programming. John Wiley & Sons, 1994.

[26] A. P. Sistla and E. M. Clarke. The complexity of propositional linear
temporal logic. Journal of the ACM, 32(3):733–749, 1985.

[27] T. Tomita, S. Hiura, S. Hagihara, and N. Yonezaki. A temporal logic
with mean-payoff constraints. In 14th International Conference on For-
mal Engineering Methods. Formal Methods and Software Engineering
(ICFEM), volume 7635 of Lecture Notes in Computer Science, pages
249–265. Springer, 2012.

[28] M. Vardi and P. Wolper. An automata-theoretic approach to automatic
program verification (preliminary report). In 1st Symposium on Logic
in Computer Science (LICS), pages 332–344. IEEE Computer Society
Press, 1986.

[29] C. von Essen and B. Jobstmann. Synthesizing systems with optimal
average-case behavior for ratio objectives. In International Workshop
on Interactions, Games and Protocols (iWIGP), volume 50 of EPTCS,
pages 17–32, 2011.

A. Additional notations
We write IPaths(s) for the set of infinite paths ζ with first(ζ) = s,
while FPaths(s) denotes the set of finite paths starting in s.

If ζ is an infinite path then pref (ζ, k) = ζ[0 . . . k] is the prefix of
ζ consisting of the first k steps, ending in state ζ[k] = sk. Similarly,
suff (ζ, k) denotes the suffix of ζ, starting in ζ[k] = sk.

Given a scheduler S : FPaths → Act for an MDPM a finite
S-path is any path π = s0 act0 . . . actn−1 sn in M that arises
when the nondeterministic choices inM are resolved using S, i.e.,
S
(
pref (π, k−1)

)
= actk for all 1 6 k 6 n. Infinite S-paths are

defined accordingly. Given some scheduler S and state s (viewed as
the initial state), the behavior ofM under S is purely probabilistic
and can be formalized by a tree-like (infinite-state) Markov chain
MS

s . One can think of the states in MS
s as the finite S-paths

starting in state s, where the probability to move from some finite
path π to π act s′ is simply P (last(π), act , s′). Using standard
concepts of measure and probability theory, a sigma-algebra and
a probability measure PrSM,s for measurable sets of the infinite
paths in the Markov chainMS

s , also called (path) events or path
properties, is defined and can be transferred to infinite S-paths in
M starting in s. For further details, we refer to standard text books
such as [20, 22, 25].

Sub-MDPs, end components. We use the notion sub-MDP ofM
for any pair (T,A) where T ⊆ S and A : T → 2Act such that for
all t ∈ T :

(1) A(t) ⊆ Act(t) and

(2) if act ∈ A(t) and P (t, act , t′) > 0 then t′ ∈ T .

An end component [16] ofM is a sub-MDP (T,A) ofM where
A(t) is nonempty for all t ∈ T and the underlying directed graph
with node set T and the edge relation t → t′ iff P (t, act , t′) > 0
for some act ∈ A(t) is strongly connected. An end component is
said to be maximal if it is not contained in any other end component.

B. Remarks on the semantics
Remark 21 (Universal generalized weight assertions)
In Section 3 we introduced the operators � and � only for pure
weight constraints. This was simply because LTL[, : AUT] does
not directly support the complementation of triples (ϕ1; constr;ϕ2).
Their semantics is a conjunction “precondition ϕ1 and weight con-
straint constr and postcondition ϕ2”. Generalized universal weight
assertions could have been defined using triples [ϕ1 ◦ constr ◦ ϕ2]
with a disjunctive meaning “precondition ϕ1 or weight constraint
constr or postcondition ϕ2”:

�A[ϕ1 ◦ constr ◦ ϕ2]
def
= ¬�A (¬ϕ1;¬constr;¬ϕ2)

with the following semantics over path-position pairs:

(ζ, k) |= �A[ϕ1 ◦ constr ◦ ϕ2]

iff for each h ∈ N with h > k with trace(ζ[k . . . h]) ∈ L(A) we
have:

ζ[k . . . h] |= constr
or (ζ, k) |= ϕ1

or (ζ, h) |= ϕ2

An analogous definition could have been provided for universal
generalized past weight assertions �A[ϕ1 ◦ constr ◦ ϕ2]. �

Remark 22 (Integer vs. rational weights; see Remark 7) We in-
troduced weight functions in MDPs as functions of the type wgt :
S × Act → Q. When using LTL[, : AUT] as a specification
formalism for (finite) WMDPs, however, integer-valued weight func-
tions are equally expressive. Let us briefly explain why. WithN ∈ N

being the least common multiple of the denominators of all weights
wgt i(s, act), we replace the rational weight function wgt i of the
given WMDPM with the integer weight function wgt ′i = N ·wgt i.
Using wgt ′i as interpretation of the weight symbol wgti in the given
signature Sig, we can then replace each basic weight constraint
expr ./ c with expr ./ N · c. Since for each finite path π we have:

a1 · wgt1(π) + . . .+ ad · wgtd(π) ./ c

iff a1 · wgt ′1(π) + . . .+ ad · wgt ′d(π) ./ N · c

this transformation is justified. �

Remark 23 (Transformation; see Remark 8) Instead of the ex-
plicit representation of the accumulated weight for d weight func-
tions one can combine wgt1, . . . ,wgtd into one weight function
for each basic weight expression. This idea has been suggested by
Boker et al. [7] for temporal logics with prefix-accumulation asser-
tions and is applicable here as well. For example, if we are given an
LTL[, : AUT]-formula ϕ that contains a basic weight constraint
expr ./ c where expr = a1 · wgt1 + . . .+ ad · wgtd then one can
introduce a new weight function wgt : S ×Act → Q given by

wgt(s, act) =
d∑
i=1

ai · wgt i(s, act)

and replace the original basic weight expression expr ./ c in ϕ with
wgt ./ c where wgt is a fresh weight symbol. Let ϕ′ be the resulting
formula over the extended signature with the weight symbol wgt
andM′ the WMDP resulting fromM by adding wgt . Then:

Prmin
M,sinit

(ϕ) = Prmin
M′,sinit (ϕ

′)

Prmax
M,sinit

(ϕ) = Prmax
M′,sinit (ϕ

′)

If all weight constraints in ϕ have the form expr ./ c for the same
weight expression expr, then ϕ′ does not contain any weight con-
straint for wgt1, . . . ,wgtd. Hence, in this case the model-checking
problem for LTL[, : AUT]-formulas ϕ over signatures with mul-
tiple weight symbols wgt1, . . . ,wgtd is reducible to the model-
checking problem for LTL[, : AUT]-formulas over the signature
with a single weight symbol wgt. �

C. From average to sum expressions
Remark 24 As described in [7] for temporal logic with prefix-
accumulation assertions, average expressions can be transformed
into sum expressions of the form wgt ./ 0. We briefly recall this
transformation where, for simplicity, we suppose that we are given
an LTLavg[, : AUT]-formula ϕ with a single average weight
constraint avgexpr ./ c (see Section 3.4). We extend the signature
by a fresh weight symbol wgt′ = wgtd+1. Given a WMDP

M = (S,Act , P,AP, L,wgt)

where wgt = (wgt1, . . . ,wgtd) provides the meanings for
wgt1, . . . ,wgtd, we switch fromM to the WMDP structure

M′ = (S,Act , P,AP, L,wgt ,wgt ′)

that interpretes wgt′ by

wgt ′ : S ×Act → Q, wgt ′(s, act) =
d∑
i=1

ai · wgt i − c

Obviously,M andM′ have the same paths and for each finite path
π inM we have:

π |=M avgexpr ./ c iff π |=M′ wgt′ ./ 0

Let ϕ′ be the LTL[, : AUT]-formula that results from ϕ by
replacing the average weight expression avgexpr ./ c with wgt′ ./
0. Then:

Prmin
M,s(ϕ) = Prmin

M′,s(ϕ
′)

Prmax
M,s(ϕ) = Prmax

M′,s(ϕ
′)

The same technique is applicable if the given LTLavg[, : AUT]-
formula ϕ contains two or more average weight constraints. �

D. Proof of Theorem 10
Theorem 25 (Soundness of the reduction; see Thm. 10) For each
state s inM:

Prmin
M,s(ϕ) = Prmin

M̃,s̃
(ϕ̃) and Prmax

M,sinit
(ϕ) = Prmax

M̃,s̃
(ϕ̃)

where s̃ = 〈s, fs1 , . . . , fsm〉.

Proof. M̃ can be seen as a refinement ofM where the states in
M are augmented with information on the potential states of the
monitors Ai and the accumulated weight of the path fragment
observed by the monitors. The behavior of M is, however, not
affected by synchronizing with A1, . . . ,Am. Note that precisely
the actions act ∈ Act(s) are enabled in all states 〈s, f〉 of M̃ and
that P̃ (〈s, f〉, act , 〈s′, f ′〉) equals P (s, act , s′). Thus, all states
〈s, f〉 in M̃ can be seen as copies of state s inM. (Formally, state
s inM is strongly bisimilar to all states 〈s, f〉 of M̃ when only the
atomic propositions in AP are assumed to be observable.) Hence,
for each (finite or infinite) path π̃ in M̃, the projection π̃|M is a
path inM where π̃|M arises from π̃ by dropping all fi from any
state 〈s, f1, . . . , fm〉 in π̃. Vice versa, if π = s0 act0 s1 act1 . . .
is a path inM with s0 = sinit then π can be lifted to a path

lift(π)
def
= 〈s0, f0〉 act0 〈s1, f1〉 act1 . . .

in M̃ where

f0 = 〈fs01 , . . . , fs0m 〉 fh+1 = 〈fh+1,1, . . . , fh+1,m〉

with fh+1,i the (acth, sh+1)-successor of 〈sh, fh,i〉. Moreover, we
have:

π̃ = lift(π̃|M)

If ζ is an infinite path inM and k ∈ N and i ∈ {1, . . . ,m} then:

(ζ, h) |= Ai(ϕ1; constr;ϕ2)

iff there exists k ∈ {0, 1, . . . , `i} such that

(lift(ζ), h) |=
{
ϕ1 ∧ initi(k) ∧
(runi(k) U(goali(k) ∧ ϕ2))

and

(ζ, h) |= Ai(ϕ1; constr;ϕ2)

iff there exists k ∈ {0, 1, . . . , `i} such that

(lift(ζ), h) |=
{
ϕ2 ∧ goali(k) ∧
(runi(k) S(initi(k) ∧ ϕ1))

This yields:
ζ |= ϕ iff lift(ϕ) |= ϕ̃

Using the fact that exactly the same actions are enabled in state s of
M and all its copies 〈s, f〉 in M̃, the correspondence between paths
inM and in M̃ can be lifted to schedulers. Let S be a scheduler
forM. The induced lift(S) is defined as follows. If π̃ is a finite
path in M̃ then:

lift(S)(π̃) = S
(
π̃|M

)
Then, the lift(S)-paths starting in s̃ = 〈s, fs〉 are precisely the
liftings of the S-paths starting in s. This yields:

PrSM,s(ϕ) = Pr
lift(S)

M̃,s̃
(ϕ̃)

Vice versa, if S̃ is a scheduler for M̃ then a corresponding scheduler
S = S̃|M is obtained by:

S(π) = S̃
(

lift(π)
)

Obviously, we then have lift(S) = S̃ and therefore:

PrSM,s(ϕ) = PrS̃M̃,s̃
(ϕ̃)

The established scheduler-correspondence yields the claim. �

E. A heuristic for the 1-dimensional case
LetM be a WMDP with a single weight function ,i.e., for d = 1,
in which case we write wgt rather than wgt1. In this case, a simple
threshold heuristic can be integrated in the algorithm for the PMC-
problem for the logic LTL[, : Acyc] presented in Section 4.1.

Remark 26 (Threshold heuristic) Suppose we are given an
LTL[, : Acyc]-formula with a single basic weight constraint,
say the task is to compute the probability for the formula ϕ =
♦ A(wgt < c). We apply a standard shortest-path algorithm to
Graph[M⊗A] as in proposition 15 and use the information on the
weights of shortest paths to reduce the state space ofM′. Given
a state 〈s, f〉 in M̃ = Monitor(M,A) and a pair f(k) = (q, w)
where the weights of all (shortest) paths from 〈s, q〉 to all states
〈t, p〉 with p ∈ F are at least c−w, then the expansion of (q, w) is
irrelevant. That is, for the successors 〈s′, f ′〉 of state 〈s, f〉 we can
put f ′(k) = ⊥. �

F. Proofs for the complexity-theoretic results
Theorem 27 (NP/coNP-completeness for WTSs; see Thm. 12)
For WTSs the problem “does sinit |= Φi hold?” is NP-complete
for formulas of the type Φ1, Φ2, Φ3 and coNP-complete for Φ4, Φ5

and Φ6 where:

Φ1 = ∃ =` constr Φ4 = ∀ =` constr

Φ2 = ∃♦ =` constr Φ5 = ∀♦ =` constr

Φ3 = ∃�♦ =` constr Φ6 = ∀�♦ =` constr

The same holds when =` is replaced with 6`.

Proof. We first address the formulas of the form Φ1, Φ2 and Φ3.
Membership to NP is easy to prove since we can deal with a naïve
guess-and-check approach where we first guess nondeterministically
a finite path π in the given WTS T with initial state sinit and then
check whether π yields a witness for the formula. More precisely:

Φ1: We simply guess a path π in T from sinit of length ` and check
whether constr[wgt/wgt(π)].

Φ2: We guess a state s0 and a path π of length ` from s0 and check
whether the following conditions (a) and (b) are satisfied:
(a) s0 is reachable from sinit in T
(b) The weight constraint holds for wgt(s0 s1 . . . , sn).

Φ3: We guess s0 and a path π as for part (2) and check conditions
(a) and (b) and additionally
(c) s0 is reachable from last(π) in T .

For Φ1, Φ2 and Φ3 with =` being replaced with 6`, the same
guess-and-check approach is applicable by guessing paths π of
length |π| 6 `.

The NP-hardness proofs are provided using polynomial reduc-
tions from the subset sum problem (SUBSUM). For SUBSUM, we
are given a finite sequence x1, . . . , xk, c of positive natural num-
bers and the task is to decide whether there exists an index-set
I ⊆ {1, . . . , k} such that

∑
i∈I xi = c.

Recall that the simple weight constraint wgt = c is a short form
notation for (wgt 6 c) ∧ (wgt > c). Similarly, we write wgt 6= c
shortly for (wgt < c) ∨ (wgt > c).

We now construct a WTS T with initial state sinit of size O(k)
with a single weight function wgt with values x1, . . . , xk such that
for j ∈ {1, 2, 3}:

sinit |= Φj iff SUBSUM is solvable for x1, . . . , xk, c

where Φ1,Φ2,Φ3 are as above (or their variants with 6`) with
constr being the simple weight constraint wgt = c and ` = k. This
yields the NP-hardness statement for Φ1, Φ2 and Φ3. The same
WTS T will be used to prove the coNP-hardness statements. For
j ∈ {4, 5, 6} we will have:

sinit 6|= Φj iff SUBSUM is solvable for x1, . . . , xk, c

For the =`-variant, constr is wgt 6= c, while for the 6`-variant,
we will use a second weight function wgt ′ and use the weight
constraint (wgt 6= c) ∧ (wgt′ = k).

Construction of the WTS. Let T = (S,Act ,→,AP, L,wgt) be the
WTS with state space

S = {sinit} ∪ {yes1, . . . , yesk,no1, . . . ,nok},

action set Act = {yes1, . . . , yesk,no1, . . . ,nok} and transitions

sinit
yes1−→ yes1 sinit

no1−→ no1

si
yesi+1−→ yesi+1 si

noi+1−→ noi+1

for si ∈ {yesi,noi} and i < k, as well as transitions

sk
yes1−→ yes1 sk

no1−→ no1

for sk ∈ {yesk,nok}. Thus, all incoming transitions of state s are
labeled by the action name s. Intuitively, yesi means “yes, i ∈ I”,
while noi means “no, i /∈ I”. This intuitive meaning is formalized
by the weight function given by:

wgt(yesi, yesi) = xi for 1 6 i 6 k

and wgt(·) = 0 in all other cases. Clearly, the size of T is
polynomial in the size of the input of SUBSUM.

There is a natural correspondence between the finite paths in
T up to length k and the subsets of {1, . . . , k}. Let π be a finite
path in T of length at most k. For every 1 6 i 6 k, there is at
most one occurrence of an action indexed by i in π i.e., at most
one occurrence of either yesi or noi. We define Iπ as the following
index set:

Iπ =
{
i ∈ {1, . . . , k} : yesi occurs in π

}
Then:

wgt(π) = cI where cI
def
=
∑
i∈Iπ

xi

Given an index-set I ⊆ {1, . . . , k}, let πsI be the path in T of length
k that starts in state s constructed according to the choices provided
by I , i.e., if the successors of the current state are yesi and noi then
action yesi is chosen if i ∈ I and action noi is chosen if i /∈ I .
Then:

wgt(πsI) = cI

We obtain an infinite path ζsinitI from I with

ζsinitI |= � =k(wgt = cI)

as follows. Let sk be the last state of πsinitI . We construct ζsinitI by
starting with πsinitI and then appending infinitely often πskI while
merging the last and first states of the paths. As the weights along

any fragment of ζsinitI of length k are a permutation of the weights
of πsinitI = ζsinitI [0 . . . k], we obtain ζsinitI |= � =k

(
wgt = cI

)
.

NP-hardness for Φ1. We show that sinit |= ∃ =k(wgt = c) iff
there is some I ⊆ {1, . . . , k} such that cI = c.

Suppose first that sinit |= ∃ =k(wgt = c). Then, there exists an
infinite path ζ starting in sinit with wgt(π) = c for π = ζ[0 . . . k].
Then, Iπ is a solution to the given instance of SUBSUM.

Vice versa, let I ⊆ {1, . . . , k} be an index set such that cI = c.
Then:

ζsinitI |= =k(wgt = c)

Hence, sinit |= ∃ =k(wgt = c).
NP-hardness for the variant of Φ1 with 6k follows by the fact

that sinit |= ∃ 6k(wgt = c) if and only if sinit |= ∃ =k(wgt =
c).

NP-hardness for Φ2 and Φ3 is obtained by showing that:

there exists an index set I with cI = c

iff sinit |= ∃♦ =k(wgt = c)

iff sinit |= ∃�♦ =k(wgt = c)

Let ζ be an infinite path starting in sinit that satisfies ♦ =k(wgt =
c) or �♦ =k(wgt = c). Then, there exists some (smallest) index
h such that wgt(π) = c for π = ζ[h . . . h+ k], yielding a solution
Iπ for the instance x1, . . . , xk, c for SUBSUM.

Vice versa, given an index set I with cI = c, we consider
the infinite path ζsinitI as constructed above. As c = cI and
ζsinitI |= � =k(wgt = c), we have:

ζsinitI |= ♦ =k(wgt = c) ∧ �♦ =k(wgt = c).

For the variants of Φ2 and Φ3 with 6k similar arguments with the
modifications as for Φ1 apply.

coNP-hardness for Φ4, Φ5 and Φ6 and =`. We reduce the
complement of SUBSUM to the problem that asks whether

sinit |= ∀ =k(wgt 6= c)

sinit |= ∀♦ =k(wgt 6= c)

sinit |= ∀�♦ =k(wgt 6= c).

If sinit 6|= ∀ =k(wgt 6= c), there is an infinite path ζ starting
in sinit with ζ 6|= =k(wgt 6= c). Then wgt(π) = c for π =
ζ[0 . . . k], yielding a solution Iπ for the instance x1, . . . , xk, c of
SUBSUM.

If sinit 6|= ∀♦ =k(wgt 6= c) or sinit 6|= ∀�♦ =k(wgt 6= c),
then there is an infinite path ζ starting in sinit and an index h such
that:

suff (ζ, h) |= �¬ =k(wgt 6= c)

Recall that suff (ζ, h) denotes the suffix of ζ that starts in the (h+1)-
st state of ζ. Then, in particular, suff (ζ, h) |= ¬ =k(wgt 6= c)
and wgt(π) = c for π = ζ[h . . . h+ k]. yielding a solution Iπ .

In the other direction, we show that given a solution I of
the SUBSUM instance, ζsinitI serves as a counterexample to each
of the three formulas. As ζsinitI |= =k(wgt = c) we have
sinit 6|= ∀ =k(wgt 6= c). Furthermore, by construction of ζsinitI

we have ζsinitI |= � =k(wgt = c), as the weights along any
fragment of ζsinitI of length k are a permutation of the weights of
π = ζsinitI [0 . . . k] and wgt(π) = c. Thus, sinit 6|= ∀♦ =k(wgt 6=
c) and sinit 6|= ∀�♦ =k(wgt 6= c).

coNP-hardness for Φ4, Φ5 and Φ6 and 6`. To show coNP-
hardness for the variants of Φ4, Φ5 and Φ6 with 6`, we introduce
a second weight function wgt ′ in T with wgt ′(s, act) = 1 for all

s ∈ S and act ∈ Act . That is, wgt ′ simply serves as a step counter.
We now reduce the complement of SUBSUM to the problem that
asks whether

sinit |= ∀ 6k((wgt 6= c) ∧ (wgt′ = k)
)

sinit |= ∀♦ 6k((wgt 6= c) ∧ (wgt′ = k)
)

sinit |= ∀�♦ 6k((wgt 6= c) ∧ (wgt′ = k)
)

If ζ is an infinite path of T then:

ζ |= =k(wgt 6= c)

iff ζ |= 6k((wgt 6= c) ∧ (wgt′ = k)
)

Thus, the arguments presented above for the variant =` can be
adapted. �

Remark 28 (Hardness results for WMDP) When interpreting a
WTS T as a WMDP then we have PrST ,sinit (ϕ) ∈ {0, 1} for all
schedulers S and all LTL[, : AUT]-formulas ϕ and:

Prmax
T ,sinit (ϕ) > 0 iff Prmax

T ,sinit (ϕ) = 1 iff sinit |= ∃ϕ
Prmin
T ,sinit (ϕ) > 0 iff Prmin

T ,sinit (ϕ) = 1 iff sinit |= ∀ϕ

Hence, by Theorem 12, the problems to decide whether

Prmax
M,sinit (ϕ) > 0, or Prmax

M,sinit (ϕ) = 1

are NP-hard, when ϕ is an LTL[, : Window]-formula or an
LTL[, : Acyc]-formula. Similarly, the analogous problems for
Prmin rather than Prmax are coNP-hard. �

Theorem 29 (NP/coNP-completeness for WMCs; see Thm. 13)
For WMCs the problems to decide whether

(1) PrM,sinit

(
=` constr

)
> 0

(2) PrM,sinit

(
♦ =` constr

)
> 0

(3) PrM,sinit

(
�♦ =` constr

)
> 0

(4) PrM,sinit

(
♦ =` constr

)
= 1

(5) PrM,sinit

(
�♦ =` constr

)
= 1

are NP-complete. NP-hardness even holds with a single positive
integer-valued reward function and if constr has the form wgt = c.
The problem “does PrM,sinit

(
=` constr

)
= 1 hold?” is coNP-

complete. The same holds when =` is replaced with 6`.

Proof. Similarly to the proof of Theorem 27, we provide a polyno-
mial reduction from SUBSUM, the problem where we are given a
finite sequence x1, . . . , xk, c of natural numbers and the task is to
decide whether there exists an index-set I ⊆ {1, . . . , k} such that∑
i∈I

xi = c.

The construction differs marginally in the details from the one in
the proof of 27 due to the differences in the syntax and semantics of
the weight function for WMCs and WTSs.

LetM = (S, P,wgt) be the WMC with state space

S = {sinit} ∪ {yes1, . . . , yesk,no1, . . . ,nok} ∪ {sstop}

As in the proof of Theorem 27, yesi means “yes, i ∈ I”, while
noi means “no, i /∈ I”. This intuitive meaning is formalized by the
weight function given by:

wgt(yesi) = xi for 1 6 i 6 k

and wgt(·) = 0 in all other cases. The transition probabilities are
given by:

P (sinit , yes1) = P (sinit ,no1) = 1
2

P (yesk, sstop) = P (nok, sstop) = 1

P (yesi, yesi+1) = P (yesi,noi+1) = 1
2

P (noi, yesi+1) = P (noi,noi+1) = 1
2

for 1 6 i < k. Furthermore, we have P (sstop , sinit) = 1 and
P (·) = 0 in all other cases. Thus, each path from sinit to sstop has
the form

πI = sinit s1 s2 . . . sk sstop where si = yesi : if i ∈ I
noi : if i /∈ I

and wgt(πI) = cI where cI =
∑
i∈I

xi.

Obviously, the size ofM is polynomial in k and for ` def
= k+1

we have:

PrM,sinit

(
=`(wgt = c)

)
> 0

iff sinit |= ∃ =`(wgt = c)

iff there exists I ⊆ {1, . . . , k} such that wgt(πI) = c

This yields that PrM,sinit

(
=`(wgt = c)

)
is positive if and only if

there exists a subset I of {1, . . . , k} such that
∑
i∈I

xi = c. Obviously,

the transformation is polynomial. NP-hardness of problems (2), (3),
(4) and (5) follow by the observation thatM is strongly connected.
Hence, almost all paths ofM contain all finite paths infinitely often
as path fragments.

Membership to NP is clear for problems (1), (2), (3), (4) and
(5) since we can guess a path π in M of length ` and check in
polynomial time whether it meets the weight constraint imposed by
constr. For problem (1), we need first(π) = sinit .

The complement of SUBSUM is polynomially reducible to the
problem “does PrM,sinit (

=` constr) = 1 hold?”. Indeed, for the
transformation above we have:

PrM,sinit

(
=`(wgt 6= c)

)
= 1

iff sinit |= ∀ =`(wgt 6= c)

iff there is no I ⊆ {1, . . . , k} such that wgt(πI) = c

This yields that the problem to decide whether =` constr holds
almost surely in a given WMC is coNP-hard. Membership to coNP
is obvious since we can guess a path π from sinit of length ` and
check whether π 6|= constr.

For the variant of the problem where =` is replaced by 6`,
similar arguments as in the proof of Theorem 27 apply, yielding the
NP-completeness of (1)-(5). To show the coNP-hardness for the
problem “does PrM,sinit (

6` constr) = 1 hold?”, we introduce a
second weight function wgt ′ in T with wgt ′(s) = 1 for all s ∈ S
and reduce the complement of SUBSUM to

PrM,sinit

(6`(wgt = c ∧ wgt′ = `)
)

= 1

with ` def
= k + 1. �

Theorem 30 (See Thm. 14)
For PL[: Acyc] and PL[: Window], the positive model-checking
problem for WMDPs and WMCs and the existential model-checking
problem for WTSs are NP-complete. Hardness already holds for a
single positive integer-valued reward function.

Proof. The problem to decide Prmax
M,sinit

(ϕ) > 0 is in NP since it
is solvable by the following guess-and-check method. Let ` be the
maximal number of states in the automata A ∈ Acyc that appear
in subformulas A constr of ϕ. Then, the truth value of ϕ for a

given infinite path ζ only depends on the prefix ζ[0 . . . `−2]. Note
that trace(ζ[0 . . . `−2]) consists of `−1 letters and its run in a DFA
consist of (at most) ` states. Hence, if π is a finite path of length
`−2 then either ζ |= ϕ for all infinite paths ζ with ζ[0 . . . `−2] = π
or there is no infinite path ζ with ζ |= ϕ and ζ[0 . . . `−2] = π.

Thanks to this observation, we can use the following polyno-
mially time-bounded guess-&-check method for deciding the exis-
tential model-checking problem for PL[: Acyc]. We guess non-
deterministically a finite path π inM with first(π) = sinit and
|π| = `−2. Then, we can evaluate deterministically in polynomial
time whether π is a prefix of an infinite ζ satisfying ϕ. For this, we
can use the fact that if π is a prefix of ζ then ζ |= A constr if
and only if there is a prefix π′ of π with trace(π′) ∈ L(A) and
π′ |= constr.

We now prove the NP-hardness for WTSs and PL[: Acyc]. In
Theorem 27 we saw that the problem to decide where

sinit |= ∃ =k(wgt = c)

in a WTS with a single integer-valued weight function is NP-hard.
Clearly, we have:

sinit |= ∃ =k(wgt = c)

iff sinit |= ∃ =k
(
(wgt 6 c) ∧ (wgt > c)

)
iff sinit |= ∃

(
(=k(wgt 6 c) ∧ (=k wgt > c)

)
The formula =k(wgt 6 c) ∧ (=k wgt > c) is a formula of
PL[: Acyc] and PL[: Window]. This yields the NP-hardness
of PL[: Acyc] and PL[: Window]. The hardness of the posi-
tive model-checking problem for WMCs is obtained by the same
arguments applied to case (1) of Theorem 29. �

Remark 31 Thanks to Remark 2, for the cases Φ2, Φ3, Φ5 and Φ6

of Theorem 12 and parts (2), (3), (4) and (5) of Theorem 13 we can
replace with . This, however, does not hold for the cases Φ1 and
Φ4 of Theorem 12 and part (1) of Theorem 13 since ζ |= A constr
iff (ζ, 0) |= A constr iff the word consisting of the symbol L(ζ[0])
is not accepted by A or constr[wgt/0]. Thus, the model-checking
problem for the formulas of the type A constr is trivial, even in
WMDPs. �

Proposition 32 (See Proposition 16) For WMCs with a single
weight function, the probabilities PrM,sinit (�♦

A(wgt ./ c))
and PrM,sinit (♦��

A (wgt ./ c)) can be computed in polynomial
time.

Proof. In what follows, let:

ϕ♦�� = ♦��A (wgt ./ c)

ϕ�♦ = �♦ A (wgt ./ c)

To compute PrM,sinit (ϕ♦��) and PrM,sinit (ϕ�♦) where we can
rely on the fact that almost surely a bottom strongly connected
component (BSCC) T will be reached and all states visited infinitely
often. Given that the language of A is finite there is an upper bound
` ∈ N on the length of the words in L(A) (namely the length of a
longest run inA from qinit to some final state). Obviously, the same
bound ` applies to the maximal length of path fragments π such
that trace(π) ∈ L(A). We say that a BSCC T ofM is good for
ϕ♦�� if there is no finite path π in T with trace(π) ∈ L(A) and
wgt(π) 6./ c. We then have:

(a) If T is good for ϕ♦�� then Prt
(
��A (wgt ./ c)

)
= 1 for all

states t ∈ T .
(b) If T is not good for ϕ♦�� then Prt

(
��A (wgt ./ c)

)
= 0 for

all states t ∈ T .

Part (a) is obvious. Part (b) follows from the fact that each finite
paths in T appears infinitely often in almost all paths starting in
some state t ∈ T . As a consequence,

PrM,sinit

(
♦� �A (wgt ./ c)

)
= PrM,sinit

(
♦goodBSCC

)
and

PrM,sinit

(
�♦ A(wgt ./ c)

)
= 1− PrM,sinit

(
♦� �A ¬(wgt ./ c)

)
where goodBSCC is the union of all BSCC that are good for ϕ♦��.

Checking whether a BSCC is good can be done using shortest
path algorithms either in Graph[M ⊗ A] or in the modified
weighted graph obtained from Graph[M⊗A] by multiplying all
weights with −1, depending on whether ./ c is an upper or a lower
bound. �

G. Unbounded weight assertions
Theorem 33 (Undecidability for PL[: Reach]; see Thm. 17)
The model-checking problem for PL[: Reach] over WTSs and
WMCs is undecidable.

Proof. We provide a reduction from the Post correspondence prob-
lem (PCP) to the problem where we are given a WTS T with initial
state sinit and a PL[: Reach]-formula ϕ and the task is to check
whether sinit |= ∃ϕ. As PCP is known to be undecidable, this yields
the proof for the undecidability of the model-checking problem for
PL[: Reach] over WTSs.

The input of the PCP is a sequence of k > 2 pairs

(u0, v0), (u1, v1), . . . , (uk−1, vk−1)

consisting of finite, nonempty words over some alphabet Σ. The
task is to check whether there exists a sequence i1, i2, . . . , in of
indices ih ∈ {0, 1, . . . , k−1} with n > 2 such that:

ui1 ui2 . . . uin = vi1 vi2 . . . vin

We construct a WTS T that results from the parallel composition

T = Words ‖Gadget [u] ‖Gadget [v]

of an unweighted transition system Words that serves to “generate”
pairs of finite words over Σ of the form

(ui1 ui2 . . . uin , vj1 vj2 . . . vjm)

where ui1 ui2 . . . uin = vj1 vj2 . . . vjm

and two WTSs Gadget [u] and Gadget [v] with the “main” weight
functions useq and vseq , respectively, where the current values of
the accumulated weight have the intuitive meaning:

useq =̂ in · kn−1 + in−1 · kn−2 + . . . + i2 · k + i1

vseq =̂ jm · km−1 + jm−1 · km−2 + . . . + j2 · k + j1

Then, useq = vseq if and only if the index sequences i1, i2, . . . , in
and j1, j2, . . . , jm agree. In addition to the weight function useq ,
the WTS Gadget [u] has a weight function ufactor representing
the factor kn of the next index i = in+1 and an auxiliary weight
function ucounter that serves to realize the assignments:

useq := useq + ufactor · i, ufactor := k · ufactor

Gadget [v] has analogous additional weight functions vfactor and
vcounter .

Signature. Altogether T has six weight functions that will be used
as meanings for the following weight symbols in the signature for
PL[: Reach]:

useq, vseq, ufactor, vfactor, ucounter, vcounter

The set AP of atomic propositions will be the names of the local
states of the two gadgets Gadget [u] and Gadget [v] plus an atomic
proposition goal.

Transition system for the word-pairs. Let `u and `v be the
maximal length of the u-words resp. v-words in the given input
sequence for PCP. That is:

`u = max
{
|u0|, |u1|, . . . , |uk−1|

}
`v = max

{
|v0|, |v1|, . . . , |vk−1|

}
The transition system Words has the state space

W = Σ6`u × Σ6`v × {normal ,wait} ∪ {init , fail}

where Σ6` denotes the set of words over Σ of length at most `.
The components normal and wait are called modes of Words . In
what follows, we use simplifying notations for the states in nor-
mal mode by dropping the component normal from the states
(α1 α2 . . . αν , β1 β2 . . . βµ,normal). That is, states in normal
mode will be written simply as pairs (α1 α2 . . . αν , β1 β2 . . . βµ)
of words over Σ with ν 6 `u and µ 6 `v . Intuitively, if
(α1 α2 . . . αν , β1 β2 . . . βµ) is a state in Words then α1α2 . . . αν
is a prefix of the next generated subword uin+1 of the u-string
and β1β2 . . . βµ a prefix of the next generated subword vjm+1 of
the v-string. States in waiting mode have the same meaning, but
generating the next symbol is disabled, since Words is waiting for
a synchronization with one of the gadgets. There are two special
states in Words , the initial state winit = init and the failure state
fail , which indicates that Words failed to generate a word pair
(ui1 . . . , uin , vj1 . . . , vjm).

The action set of Words consists of the symbols in Σ (which
represents generating the next symbol in the current u-string and v-
string), the actions ustart i, vstart i, ustopi, vstopi for 0 6 i < k
that are used to synchronize with the gadgets and a special action τ
for the fail-state.

The transition relation of Words is defined by the following
SOS-rules, where ε denotes the empty word:

σ ∈ Σ

init
σ−→ (σ, σ)

ν < `u, µ < `v, σ ∈ Σ

(α1 . . . αν , β1 . . . βµ)
σ−→ (α1 . . . αν σ, β1 . . . βµ σ)

ν = `u, σ ∈ Σ

(α1 . . . αν , β1 . . . βµ)
σ−→ fail

µ = `v, σ ∈ Σ

(α1 . . . αν , β1 . . . βµ)
σ−→ fail

α1 . . . αν = ui, 0 6 i < k

(α1 . . . αν , β1 . . . βµ)
ustarti−→ (ε, β1 . . . βµ, wait)

β1 . . . βµ = vj , 0 6 j < k

(α1 . . . αν , β1 . . . βµ)
vstartj−→ (α1 . . . αν , ε, wait)

and the following axioms:

(ε, β1 . . . βµ, wait)
ustopi−→ (ε, β1 . . . βµ)

(α1 . . . αν , ε, wait)
vstopj−→ (α1 . . . αν , ε)

fail
τ−→ fail

The WTSs for the gadgets. We now explain the structure of
Gadget [u]. All states of Gadget [u] have the form gu∗ where ∗ stands
for some subscript (index). In what follows, we simply write g∗
instead of gu∗ . The starting state is ginit . The action set of Gadget [u]
consists of the actions:

• ustart i and ustopi to be synchronized with Words ,
• a special action symbol silent = silentu for silent transitions

that have no effect on the weights, i.e., wgt(g∗, silent) = 0 for
all weight functions wgt and states g∗ of Gadget [u]

• action start = startu used for the initial assignment ufactor :=
1

• action reset = resetu used to clear the counter which corre-
sponds to the assignment ucounter := 0

• actions add i = addui for i ∈ {0, 1, . . . , k−1} used to realize
the assignment useq := useq + ufactor · i

• actions incr = incru, clear = clearu and swap = swapu

used to realize the assignment ufactor := k · ufactor

We simply write g −→ g′ rather than g silent−→ g′. All actions except
for ustart i and ustopi are internal actions, not to be synchronized
with Words or Gadget [v]. To distinguish the internal actions of
Gadget [u] from those in Gadget [v], the names of the internal
actions are parametrized by u. For better readability, we drop this
parametrization in the following description of the behavior of
Gadget [u]. Gadget [u] operates in several modes:

Mode 0: Initialization. The initialization phase consists of the as-
signment ufactor := 1, realized by the transition

ginit
start−→ g1

and by setting ufactor(ginit , start) = 1.

Mode 1: Synchronize with the TS for the word-pairs. The “compu-
tation” of Gadget [u] is invoked by synchronizing with Words
over one of the actions ustart i where i ∈ {1, . . . , k} by means
of the transition:

g1
ustarti−→ g2,i

Mode 2: Reset counter. The assignment ucounter := 0 is realized
by the transitions

g2,i −→ g2,i,loop ,

g2,i,loop
reset−→ g2,i,loop ,

g2,i,loop −→ g3,i

where ucounter(g2,i,loop , reset) = −1 with the side-constraint:

ψu2,i = �A[...g3,i](ucounter = 0)

Mode 3: Assignment for the encoding of the index sequence for
the u-word. We mimick the effect of the assignment useq :=
useq + ufactor · i by the transitions

g3,i −→ g3,i,loop

g3,i,loop
addi−→ g3,i,loop

g3,i,loop −→ g4,i

where ucounter(g3,i,loop , add i) = 1 and useq(g3,i,loop , add i) =
i with the side-constraint:

ψu3,i = �A[...g4,i](ucounter = ufactor)

Mode 4: Reset counter. As in mode 2, the purpose of mode 4 is
to realize the assignment ucounter := 0 by means of the

transitions

g4,i −→ g4,i,loop

g4,i,loop
reset−→ g4,i,loop

g4,i,loop −→ g5,i

where ucounter(g4,i,loop , reset) = −1 with the side-constraint:

ψu4,i = �A[...g5,i](ucounter = 0)

Mode 5: Shift. The assignment ufactor := k · ufactor has
the same effect as the following sequence of instructions:

1. increment ucounter until ucounter = k · ufactor ;
2. clear ufactor by setting ufactor := 0;
3. swap the values of ucounter and ufactor

The

third instruction (swap) can be realized by performing simul-
taneously the assignments ucounter := ucounter − 1 and
ufactor := ufactor + 1 until ucounter = 0. In Gadget [u],
the three instructions are simulated by the transitions:

g5,i −→ g5,i,loop

g5,i,loop
incr−→ g5,i,loop

g5,i,loop −→ g6,i

g6,i −→ g6,i,loop

g6,i,loop
clear−→ g6,i,loop

g6,i,loop −→ g7,i

g7,i −→ g7,i,loop

g7,i,loop
swap−→ g7,i,loop

g7,i,loop −→ g8,i

where

ucounter(g5,i,loop , incr) = 1

ufactor(g6,i,loop , clear) = −1

ucounter(g7,i,loop , swap) = −1

ufactor(g7,i,loop , swap) = 1

with the side-constraints:

ψu5,i = �A[...g6,i](ucounter = k · ufactor)

ψu6,i = �A[...g7,i](ufactor = 0)

ψu7,i = �A[...g8,i](ucounter = 0)

Mode 6: Return. In its last mode, the gadget moves back to mode 1
by the transition q8,i

ustopi−→ q1.

So far, we defined the values of the weight functions only in selected
cases. In all remaining cases, the values of the weight functions are
0. The WTS Gadget [v] for the v-words is defined analogously.

The composite WTS. The WTS T arises by the parallel composi-
tion of the transition system Words and the two gadgets Gadget [u]
and Gadget [v]. Thus, the states in T have the form

s = 〈w, gux , gvy 〉
where w ∈W is a state of Words , gux is a state of Gadget [u] and
gvy a state of Gadget [v]. The initial state of T is:

sinit = 〈init , guinit , g
v
init〉

In addition, T contains states of the form 〈fail , gux , g
v
y〉.

The action set of T is the union of the action sets of Words
and the two gadgets. The actions ustart i, ustopi with i ∈
{0, 1, . . . , k−1} are performed synchronously in Words and

Gadget [u]. Similarly, Words synchronizes with Gadget [v] over
the actions vstartj and vstopj for j ∈ {0, 1, . . . , k−1}. All other
actions of the three systems are executed in an interleaved way.

As stated above, T is equipped with six weight functions
ucounter , vcounter , ufactor , vfactor , useq and vseq that arise
by the liftings of the corresponding weight functions in the two
gadgets. Suppose s = 〈w, gux , gvy〉 is a state of T , then for example:

• If gux = guinit then
ufactor(s, startu) = 1 and wgt(s, startu) = 0 for the other
five weight functions.

• If gux = gu7,i,loop then
ufactor(s, swapu) = 1 and ucounter(s, swapu) = −1. For
the other four weight functions, we have wgt(s, swapu) = 0.

The set AP of atomic propositions of T are the names of the states
in the gadgets plus the special proposition goal that characterizes the
states where the Words-component is (ε, ε). The labeling function
L is defined by the following conditions:

gux ∈ L(s) iff s has the form 〈w, gux , gvy〉
guy ∈ L(s) iff s has the form 〈w, gux , gvy〉

goal ∈ L(s) iff s has the form 〈(ε, ε), gu1 , gv1 〉

Formula. The PL[: Reach]-formula ϕ is defined as follows:

ϕ = A[...goal](useq = vseq) ∧ ψu ∧ ψv

where for ξ ∈ {u, v}:

ψξ =
∧

06i<k

(
ψξ2,i ∧ ψξ3,i ∧ ψξ4,i

∧ ψξ5,i ∧ ψξ6,i ∧ ψξ7,i

)
Soundness. We now have to show that sinit |= ∃ϕ if and only if the
given instance (u0, v0), (u1, v1), . . . , (uk−1, vk−1) for PCP has a
solution.
“=⇒”: Let the infinite path ζ = s0 act0 s1 act1 . . . be a witness
for sinit |= ∃ϕ, i.e., s0 = sinit and ζ |= ϕ. We have to show
that there is then a corresponding sequence i1, . . . , in such that
ui1ui2 . . . uin = vi1vi2 . . . vin .

As ζ satisfies ϕ, in particular ζ |= A[...goal](useq = vseq).
Thus there exists a (smallest) index n such that sn |= goal and
useq(ζ[0 . . . n]) = vseq(ζ[0 . . . n]). Let π = ζ[0 . . . n]. W.l.o.g.,
we assume that the first two actions in π are the initializing actions of
Gadget [u] and Gadget [v], i.e., act0 = startu and act1 = startv
and thus s2 = 〈init , gu1 , g

v
1 〉. If this is not the case, we can move

these actions to the beginning of ζ without affecting the satisfaction
of ϕ.

Due to the structure of T , we can partition the sequence of
actions act2 . . . actn into subsequences, each consisting of a finite
number of symbol actions σ ∈ Σ of Words and followed by a
sequence ustart i . . . ustopi consisting of Gadget [u]-actions for
some i or a sequence vstartj . . . vstopj consisting of Gadget [v]-
actions for some j, or both. As the ustart i and vstartj actions
switch Words into the wait mode, interleaving is suspended until
the next occurrence of ustopi (vstopj , respectively). As the local
state of Words of the goal state has the form (ε, ε), at least one
ustart i . . . ustopi sequence and one vstartj . . . vstopj sequence
has to occur, as this is the only way for the words to become empty.
In particular, the last action in π has either the form ustopi or
vstopj .

Let w be the sequence of Σ-actions in π and let i1, . . . , im
be the sequence of indices i of the ustopi actions in π. Then, by
construction, w = ui1ui2 . . . uim . Similarily, let j1, . . . , jm′ be the
sequence of indices j of the vstopj actions in π. Then again, by

construction, w = vj1vj2 . . . vjm′ . It remains to show that m = m′

and i1 = j1, i2 = j2, . . . , im = jm′ .
Let πn be the prefix of π up to the n-th occurrence of an ustop-

action. As above, the index of this action is denoted by in. We
consider the evaluation of the accumulated weights along these
prefixes, as enforced by satisfaction of ψu. For n = 1, we have
useq(π1) = i1 and ufactor(π1) = k, while for n > 1 we have

useq(πn+1) = useq(πn) + in+1 · kn

ufactor(πn+1) = k · ufactor(πn) = kn+1

Applying the same arguments to vseq and vfactor , we obtain

useq(π) = im · km−1 + im−1 · km−2 + . . .+ i2 · k + i1

vseq(π) = jm′ · km
′−1 + jm′−1 · km

′−2 + . . .+ j2 · k+ j1

On the other hand, by the construction of π, we have useq(π) =
vseq(π). As all the i and j are elements of {0, . . . , k−1} it follows
that m = m′ and i1 = j1, i2 = j2, . . . , im = jm. Thus, i1, . . . , im
is a solution for the given PCP instance.

“⇐=”: Let i1, . . . , im be a solution of the given PCP instance, with
w = ui1ui2 . . . uim . We construct an initial, infinite path ζ of T
such that ζ |= ϕ, thus serving as a witness for sinit |= ∃ϕ. As the
sequence of actions uniquely determines the successor states in T ,
we only specify the sequence of actions act0act1 . . . of ζ. The ini-
tial actions act0 = startu and act1 = startv initialize Gadget [u]
and Gadget [v], respectively. Let act0 . . . actn be the sequence of
actions already chosen and let πn = s0 act0 . . . actn sn be the
corresponding path in T . Action actn+1 is then chosen as follows:

1. If actn = ustart i for some i, choose the sequence of
Gadget [u]-actions ending with ustopi that lead back to g1,
while ensuring that ψu is satisfied for the resulting path.

2. Else, if actn = vstartj for some j, choose the sequence of
Gadget [v]-actions ending with vstopj that lead back to g1,
while ensuring that ψv is satisfied for the resulting path.

3. Else, if the sequence of Σ-actions in act0 . . . actn equals
ui1 . . . uim′ for some m′, chose ustart im′ .

4. Else, if the sequence of Σ-actions in act0 . . . actn equals
vi1 . . . vim′ for some m′, chose vstart im′ .

5. Else, let n be the number of Σ-actions in act0 . . . actn. If
|w| > n, choose the n+ 1-th symbol of w.

6. Else, finish.

This construction terminates, as the length of w is finite. Let
π be the constructed finite path. By construction, the last state of
π is labeled with goal, i.e., sn = 〈(ε, ε), gu1 , gv1 〉 and useq(π) =
vseq(π). We can extend π to an infinite path ζ by choosing some
arbitrary action σ ∈ Σ as long as the fail state has not been reached.
From then on, we always choose the τ action. By construction,
ζ |= A[...goal](useq = vseq). Additionally, ζ |= ψu, as during
construction of π care is taken to ensure satisfaction. After π, none
of the states/labels monitored by ψu are reached and thus ψu is
satisfied as well for all prefixes of ζ. The same arguments apply to
the satisfaction of ψv . Thus, ζ |= ϕ and sinit |= ∃ϕ.

Proof sketch for the undecidability over WMCs. To show
the undecidability of the qualitative model-checking problem for
PL[: Reach] and WMCs, we can use fairly the same construction
as above and resolve all nondeterministic choices in the constructed
WTS T by uniform distributions. Some care is needed to ensure
that the weights can be attached to states (rather than state-action
pairs). This problem is of technical nature only, since for each
transition s act−→ s′ in T we can introduce an auxiliary state sact
with wgtM(sact) = wgtT (s, act) and PM(sact , s

′) = 1. For the
resulting Markov chainM we then have: PrM,sinit (ϕ) > 0 if and

only if the given instance (u0, v0), (u1, v1), . . . , (uk−1, vk−1) for
PCP is solvable. �

Remark 34 The model-checking problem for the logic PL[: All]
is trivially decidable, since Boolean combinations of -formulas can
be seen as conditions on the labeling of the initial state. However,
the model-checking problem for the logic PL[♦ : InitReach]
consisting of Boolean combinations of formulas of the form
♦ A[φ1...φ2] constr is undecidable, too. Here, if φ1 and φ2 are
propositional formulas with atoms in AP then A[φ1 . . . φ2] denotes
the minimal DFA for the language consisting of all finite words
over the alphabet 2AP starting with a symbol A where A |= φ1 and
ending with a symbol B where B |= φ2. Let A[φ . . .] be a short
form notation for A[φ . . . true].

Indeed, in the proof of Theorem 33 for WTSs and WMCs, we can
replace PL[: Reach] with PL[♦ : InitReach]. We then simply
replace

• the formulas ψξh,i = �A[...g]constr with

ψξh,i = ��A[ginit ...] constr

• the formula A[...goal](useq = vseq) with

♦ A[ginit ...goal](useq = vseq)

The construction of the WTS and WMC from the given instance of
the PCP remains unchanged. �

A WMDPM = (S,Act , P,AP, L,wgt1, . . . ,wgtd) is called non-
negative if wgt i(s, act) > 0 for all state-action pairs (s, α) and
i = 1, . . . , d.

Theorem 35 (See Thm. 18)
The LTLsimple[, : All]-PMC problem is decidable for non-
negative WMDPs.

Proof. Let ϕ be an LTLsimple[, : All]-formula,

M = (S,Act , P,AP, L,wgt1, . . . ,wgtd)

a non-negative WMDP and sinit ∈ S. By Remark 7, we can safely
assume that wgt i(s, act) ∈ N for all state-action pairs.

We now describe how to modify the construction as in Section
4.1 to provide a reduction to the LTL-PMC problem. Again, the
states of the constructed MDP M̃ have the form

s̃ = 〈s, f1, . . . , fm〉

where s is a state inM and with one function fi per automaton Ai
occurring in some subformula of ϕ of the form Ai (ϕ1; constr;ϕ2)
or Ai (ϕ1; constr;ϕ2). As ϕ is an LTLsimple[, : All]-formula,
the constr are boolean combinations of simple weight constraints
wgtj ./ c. For each weight function wgtj , let cmax

j be the largest c
that occurs in any of the weight constraints wgtj ./ c referencing
wgtj . Any value above this threshold cmax

j can not be distinguished
by the weight constraints referencing wgtj in ϕ and can thus be
abstracted by a single symbol >. Let

Wj = {0, 1, . . . , cmax
j

}
∪ {>}

be the weight values relevant in ϕ for weight function wgtj and let

QWi = Qi ×W1 × . . .Wd

be the set of tuples (q, w) encoding a state of Ai and accumulated
values for the weight functions wgt1, . . . ,wgtd.

In contrast to the construction in Section 4.1, we can no longer
rely on the fact that the runs in the DFA have a finite length. Instead,
we merge runs that are in the same state q and have the same
accumulated weights w. Formally, the function fi corresponding to

Ai is now a partial function of the type

fi :
{

0, 1, . . . , |QWi|+ 2
}
→ QWi

with f(k) = ⊥ for at least one k.
The successors f ′i(k) for (act , s′) are computed as before, with

the following differences. Any accumulated value above cmax
j is

abstracted to >. Furthermore, if fi(k) = fi(h) for some h < k,
then f ′i(k) = ⊥, i.e., among all runs with the same state and
accumulated weights, only the one with the smallest index h
remains. The other runs are merged with the run tracked by fi(h).
This ensures that there is always at least one “free” index k with
fi(k) = ⊥.

Formally, the (act , s′)-successor of 〈s, fi〉 in Ai is obtained for
k ∈

{
0, 1, . . . , |QWi|+ 2

}
by the following procedurce:

• If fi(k) = (q, w) and fi(k) = fi(h) for some h < k, then
f ′i(k) = ⊥.

• Else, if fi(k) = (q, w) where q ∈ Q and q 6= qinit then
f ′i(k) =

(
δ(q,L(s′)), w+wgt(s, act)

)
. Here, if the result of

the addition for element wj is larger than the corresponding
threshold cmax

j then the result is replaced by >.
• If k is the smallest index such that fi(k) = ⊥ then f ′i(k) =(
δ(qinit , L(s′)), 0

)
.

• In all other cases: f ′i(k) = ⊥.

The initial functions are obtained analogously to the construction in
Section 4.1.

To keep track of the merges, we introduce additional atomic
propositions mergei(k, h) with the intuitive meaning “run k is
merged with run h in fi”. Thus, a state s̃ = 〈s, f1, . . . , fm〉 is
labeled by atomic proposition mergei(k, h) iff fi(k) = fi(h) 6= ⊥
and there is no j < h such that fi(j) = fi(h).

The condition for labeling function L̃ with respect to the atomic
proposition goali is the same as in Section 4.1 with the obvious
evaluation of wgtj ./ c according to the value of the corresponding
element in fi. In contrast to the normal construction, we now not
only have to ensure a sequence from init via run to goal, but have
to deal with the possibility of multiple merges along the way. Let
Mi ⊆ {0, . . . , |QWi| + 2}+ be the set of nonempty sequences
consisting of arguments of fi such that:

kn < kn−1 < . . . < k1 for all σ = k1 . . . kn ∈Mi

Intuitively, each pair of subsequent symbols in such a word σ
corrensponds to a merge from kh to kh+1.

For each merge sequence σ = k1 . . . kn ∈ Mi, we define an
LTL formula with cascades of until formulas, that tracks a run in fi
along the merges specified by σ.

ϕi(k1 . . . kn)
def
=

runi(k1) U
(
mergei(k1, k2) ∧©ϕi(k2 . . . kn)

)
and

ϕi(kn) = runi(kn) U goali(kn)

We then replace each subformula of the form ψ+ = Ai constr by
the formula

ψ̃+ =
∨

k1...kn∈Mi

initi(k1) ∧ ϕi(k1 . . . kn)

For ψ+ = Ai(ϕ1; constr;ϕ2) we additionally replace in ψ̃+ oc-
curences of initi(k) with ϕ1∧initi(k) and goali(k) with goali(k)∧
ϕ2. For the subformulas of the form ψ− = Ai(ϕ1; constr;ϕ2),
we adapt the construction of ψ+ in the obvious way, analogous to
the construction in Section 4.1. �

Theorem 36 (See Thm. 20) The model-checking problem for
PL[: Reach] and non-negative WTSs is undecidable. Likewise,

the model-checking problem for PL[: Reach] and non-negative
WMCs is undecidable.

Proof. We provide a reduction from the model-checking problems
for PL[: Reach] studied in Theorem 17. Let

T = (S,Act ,−→,AP, L,wgt1, . . . ,wgtd)

be a WTS with weight functions wgt i : S × Act → Q and
distinguished state sinit ∈ S and let ϕ be a PL[: Reach] formula.
We define a new non-negative WTS:

T̃ = (S,Act ,−→,AP, L,wgt+1 , . . . ,wgt+d ,wgt−1 , . . . ,wgt−d)

where wgt+i , wgt−i : S ×Act → Q>0 are defined as follows.

• If wgt i(s, act) > 0 then wgt+i (s, act) = wgt i(s, act).
• If wgt i(s, act) < 0 then wgt−i (s, act) = −wgt i(s, act).
• In all other cases:

wgt+i (s, act) = 0 and wgt−i (s, act) = 0.

We do an analogous transformation on the formula-level. That
is, we modify the given signature by replacing the weight sym-
bols wgt1, . . . ,wgtd with 2d weight symbols wgt+1 , . . . ,wgt

+
d ,

wgt−1 , . . . ,wgt
−
d . Let ϕ̃ be the PL[: Reach] formula over the

modified signature that arises from ϕ by replacing each weight
expression

∑d
i=1 ai · wgtd in ϕ with

d∑
i=1

ai · wgt+d −
d∑
i=1

ai · wgt−d

Obviously, we have:

sinit |=T ∃ϕ iff sinit |=T̃ ∃ϕ̃
The reduction for WMCs is analogous. �

	Introduction
	Preliminaries
	LTL with monitored weight assertions
	Syntax
	Semantics
	Examples
	Variants and related logics

	Model checking against LTL[diamondplus,diamondminus:Acyc]-specifications
	Reduction to the LTL-PMC problem
	Complexity
	Special algorithms for selected formula patterns

	Unbounded weight assertions
	Conclusions
	Additional notations
	Remarks on the semantics
	From average to sum expressions
	Proof of Theorem 10
	A heuristic for the 1-dimensional case
	Proofs for the complexity-theoretic results
	Unbounded weight assertions

