
Quantified Linear Temporal Logic over Probabilistic
Systems with an Application to Vacuity Checking
Jakob Piribauer !

Technische Universität Dresden, Germany

Christel Baier !

Technische Universität Dresden, Germany

Nathalie Bertrand !

Univ Rennes, Inria, CNRS, IRISA, France

Ocan Sankur !

Univ Rennes, Inria, CNRS, IRISA, France

Abstract

Quantified linear temporal logic (QLTL) is anω-regular extension of LTL allowing quantification over propo-
sitional variables. We study the model checking problem of QLTL-formulas over Markov chains and Markov
decision processes (MDPs) with respect to the number of quantifier alternations of formulas in prenex normal
form. For formulas with k−1 quantifier alternations, we prove that all qualitative and quantitative model checking
problems are k-EXPSPACE-complete over Markov chains and k+1-EXPTIME-complete over MDPs.
As an application of these results, we generalize vacuity checking for LTL specifications from the non-
probabilistic to the probabilistic setting. We show how to check whether an LTL-formula is affected by a
subformula, and also study inherent vacuity for probabilistic systems.
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1 Introduction

In the formal verification of probabilistic systems, a central problem is the model-checking problem:
Given a system model M and a specification φ, decide whether the probability PrM(φ) that φ holds
on an execution of M is 1 or whether it is positive, respectively, (qualitative model checking) or
compute the probability PrM(φ) (quantitative model checking). In case the system exhibits non-
deterministic behavior, the model-checking problems address the worst- or best-case resolution of the
non-determinism, i.e., the minimal or maximal satisfaction probability among all possible resolutions
of the non-deterministic choices. Common probabilistic system models are finite-sate Markov chains
that are purely probabilistic and Markov decision processes (MDPs) that also model non-deterministic
behavior. Specifications can be formulated in temporal logics, such as linear temporal logic (LTL) as
an important example, or be given by automata, such as non-deterministic Büchi automata (NBA).
The choice of the specification formalism is a balancing act between expressive power, succinctness,
and the complexity of the respective model-checking problems. Additionally, the formalism should
allow one to describe desired system behaviors in a way comprehensible to a human user as writing
down the specification is itself an error-prone process in practice.
Quantified linear temporal logic (QLTL), introduced by Sistla [20], is an extension of LTL with
quantification over propositional variables lifting the expressive power from star-free to allω-regular
languages. A formula of the form ∃x.φ holds on a word w if one can choose a set of positions
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at which x holds such that the word w extended with this choice satisfies φ. The quantification
hence ranges over all sets of positions, i. e., sets of natural numbers. In QLTL, LTL-formulas can
be extended with the quantification over propositions that, for example, capture hidden variables or
encode annotations of a trace. This can be useful if we want to define properties not expressible in
LTL in a context in which one often works with LTL. Examples include definitions of refinement
relations in which internal variables are quantified to express equivalence of two specifications with
respect to the observable variables [14], a necessary and sufficient condition expressed as a QLTL-
formula on the serializability of histories in concurrent database scheduling produced by a scheduler
whose behavior is expressed by an LTL-formula [13], or the QLTL-expressible existence of finite
counterexamples witnessing the unrealizability of an LTL-specification for distributed fault-tolerant
systems [8]. Furthermore, the vacuous satisfaction of a specification in a transitions system indicating
that parts of the specification are irrelevant for the satisfaction has been defined using QLTL [1]. We
transfer this definition of vacuous satisfaction to the probabilistic setting in this paper and explain the
notion of vacuity in more detail below. In all of these successful applications of QLTL to questions in
formal verification, the necessary QLTL-formulas require only few quantifier alternations; often even
a single block of quantifiers without alternation is sufficient.

The full logic, however, is not suitable for practical applications: the non-probabilistic model-checking
problem of QLTL on transition systems has non-elementary complexity [21]. The lower bounds
can be pinpointed to the different levels of quantifier alternation of formulas in prenex normal
form. Model-checking of QLTL-formulas with k−1 quantifier alternations in transition systems is
k-EXPSPACE-complete. Distinguishing whether the first block of quantifiers is existential (ΣQLTLk )
or universal (ΠQLTLk ) refines the result as for ΠQLTLk -formulas the complexity of model-checking
drops to k−1-EXPSPACE-completeness [21]. The increase of the complexity by one exponential
per quantifier alternation is theoretically intriguing on the one hand, and on the other hand leads to
reasonable complexity results for properties that can be expressed succinctly with the use of few
quantifier alternations. A similar complexity hierarchy is observed in other settings. The complexity of
model checking quantified computation tree logic (CTL) with k quantifier alternations is k-EXPTIME-
complete, and it is k+1-EXPTIME-complete for quantified CTL∗ in the tree semantics; while in
the structure semantics, these problems span the polynomial hierarchy [17]. The hardness of the
fragments of QLTL [21] was used to show that model checking strategy logic is k-EXPSPACE-hard
when restricted to k quantifier alternations.

In this paper, we study the model-checking problem of QLTL in probabilistic systems. Our main
result is that the complexity of the model-checking problems on Markov chains and MDPs match the
upper bounds obtained via straight-forward automata constructions: For Markov chains and ΣQLTLk -
and ΠQLTLk -formulas, all model-checking problems are k-EXPSPACE-complete, while for MDPs
the problems are k+1-EXPTIME-complete. These complexity results are summarized in Table 1.
As the upper bounds are easily obtained, the main contribution lies in proving the lower bounds. The
hardness proofs for Markov chains, encode a tiling problem of a k-exponentially wide rectangle with
arbitrary height. For the hardness proofs for MDPs, we encode the computation of an alternating
k-exponentially space-bounded Turing machine. The alternation can be mimicked in an MDP by
letting one player in the acceptance game of the alternating Turing machine be played randomly,
while the scheduler takes the role of the other player. We obtain the result that the complexities of
the model-checking problems for ΣQLTLk and ΠQLTLk coincide in the probabilistic setting in contrast
to the asymmetry known for the non-probabilistic setting. It is remarkable that the complexities
of ΣQLTL1 - and ΠQLTL1 -model checking in MDPs are the same as the complexity of LTL-model
checking. For each further quantifier alternation, the complexity increases by one exponential. In
contrast, we see an exponential increase in complexity already for the first block of quantifiers in
Σ
QLTL
1 and ΠQLTL1 compared to LTL-model checking in Markov chains.



transition system Markov chain MDP

LTL PSPACE [22, 24] PSPACE [7] 2-EXPTIME [7]

Π
QLTL
1 PSPACE [21] EXPSPACE 2-EXPTIME

Σ
QLTL
1 EXPSPACE [21] EXPSPACE 2-EXPTIME

Π
QLTL
k k-1-EXPSPACE [21] k-EXPSPACE k+1-EXPTIME

Σ
QLTL
k k-EXPSPACE [21] k-EXPSPACE k+1-EXPTIME

Table 1 Complexity results for the model-checking problems of fragments of QLTL. All entries state
completeness results.

On the one hand, knowledge of the precise complexities of the model-checking problems for ΣQLTLk -
and ΠQLTLk -formulas over probabilistic systems might be useful to determine the complexity of other
problems in the formal verification of probabilistic systems – in particular, by using the new lower
bounds provided in this paper for new hardness results. On the other hand, the upper bounds are
obtained via the construction of automata. It follows easily that all investigated model-checking
problems can be solved in time polynomial in the size of the model, i.e., the Markov chain or the MDP.
This means that efficient model checking for low levels of the quantifier alternation hierarchy of QLTL
might be possible in many application areas despite the high complexities of the model-checking
problems because formulas are typically small compared to the size of the models.
As an application of our main results, we extend the definition of vacuous satisfaction of a specifi-
cation from [1] to the probabilistic setting. For an illustration of vacuous satisfaction, consider the
specification: “Whenever a request is sent, it is eventually granted.” If in a system model no requests
are ever sent, the specification is satisfied and a model checker would report this result. However,
something is obviously wrong with either the specification or – in this case more likely – the system
model. We say the specification is vacuously true. The formal definition of vacuity that we generalize
to the probabilistic setting captures the fact that the truth values of the grants in the specification do
not influence the satisfaction of the specification at all. We could replace “it is eventually granted”
with any arbitrary requirement or even choose an arbitrary set of positions at which that part of the
specification should be true and the specification would still hold in the system model. We say that
this subformula does not affect the satisfaction of the specification. Perturbing the truth values in
arbitrary ways is expressed by a universal quantification over a proposition in the formal definition.
A vacuity check during the model checking process can be an invaluable help as it can detect such
severe errors in the design of the model or the specification in an early stage of the development that
would otherwise stay undetected if the model checker returns the desired result.
We provide a generalization of the definition of affection that is suitable for the probabilistic setting.
We prove that ΠQLTL1 -model checking is inter-reducible with the question whether a subformula
affects a formula in a probabilistic system. Hence, an additional vacuity check according to this
definition does not increase the complexity of model checking in MDPs. For Markov chains, however,
the additional vacuity check would lead to an exponential blow-up of the procedure as shown by
our new lower bound for ΠQLTL1 -model checking over Markov chains. Consequently, we turn our
attention to the notion of inherent vacuity introduced in [9]. This notion captures that a specification
is vacuous, i.e. not affected by some subformula, in all models. So, while disregarding the interplay
between model and specification, inherent vacuity indicates a severe error in the specification. For



all natural variants of this definition for Markov chains and MDPs that can be obtained using our
notion of affection, we obtain the result that inherent vacuity of a specification can be checked by
a (non-probabilistic) validity check of a ΠQLTL1 -formula. Therefore, inherent vacuity for Markov
chains and MDPs can be checked in polynomial space rendering the addition of a check for inherent
vacuity to the model checking procedure potentially useful and reasonable in practice.

Related Work

Closest to our main complexity hierarchy result is the complexity hierarchy result for QLTL in the
non-probabilistic setting [21]. Over probabilistic systems, the model-checking problems for Wolper’s
ETL [25], anotherω-regular extension of LTL, which uses automata operators, is investigated in [7]
and shown to lie in EXPTIME. We are not aware of any explicit investigations of QLTL or further
ω-regular extensions of LTL, such as Gabbay’s USF [10], an extension with fixed-point operators,
over probabilistic systems.
Concerning vacuity checking, various notions have been studied for non-probabilistic systems. In [3]
and [16], a notion of formula vacuity for fragments of CTL∗ is investigated in which the underlying
notion of non-affection means that a subformula can be replaced by any other formula without
affecting the truth of the formula in a model. Trace vacuity for LTL, which we generalize to the
probabilistic setting, was introduced in [1]. The authors argue that trace vacuity has advantages over
formula vacuity as it is more robust with respect to changes of the model or the specification language.
Based on this definition, the notion of inherent vacuity, which we adapt to the probabilistic setting,
was introduced in [9]. Trace vacuity has been extended to various other logics such as CTL∗ [11]
relying on a propositionally quantified version of the logic, or to the logic RELTL, an extension of
LTL with regular layers, by universally quantifying interval variables [4]. In [12], a variety of degrees
to which a formula can be vacuous is defined and analyzed in the context of CTL-model checking.
For a survey covering different approaches of vacuity checking, we refer the reader to [15].

2 Preliminaries

We suppose familiarity with basic concepts of discrete Markovian models, LTL, and ω-automata,
and only provide a brief summary of the notions and our notation. Details can be found in textbooks,
e.g., [2, 6, 19]. Furthermore, we provide definitions regarding QLTL and state basic results.

2.1 Basic definitions

Markov decision processes (MDPs)

An MDP is a tuple M= (S,Act,P,sinit,AP,L) where S is a finite state space, Act a finite set of actions,
P : S×Act×S→ [0,1]∩Q the transition probability function satisfying

∑
t∈SP(s,α,t) ∈ {0,1} for

all (s,α) ∈ S×Act, sinit ∈ S the initial state, AP a finite set of atomic propositions, and L : S→ 2AP

a labeling function. The triples (s,α,t) with P(s,α,t)> 0 are called transitions of M. The actions
enabled in s form Act(s) = {α ∈ Act :

∑
t∈SP(s,α,t) = 1}. The size of an MDP is the number of

states and actions plus the sum of the logarithmic lengths of the transition probabilities. Intuitively,
when M is at a state s, then an action α of Act(s) is selected nondeterministically; afterwards the
next state is obtained by probabilistically choosing one of the potential successor states according to
the probability distribution P(s,α, ·). Paths in MDP are alternating sequences of states and actions:
π = s0α0 s1α1 . . . where αi ∈ Act(si) and P(si,αi,si+1) > 0 for all i ⩾ 0. We write π[i...] for the
suffix starting from si. The trace of π is the word L(π) = L(s0)L(s1)L(s2) . . . over 2AP obtained by
projecting states to their labels. We do not distinguish between a path and its trace when the intended



meaning is clear from context. A scheduler for M is a function S that maps a finite path ζ to a
probability distribution over Act(last(ζ)) where last(ζ) is the last state of ζ. The function PrSM,s
denotes the probability measure induced by S, when s is the initial state. It is well-known that all
ω-regular path properties φ are measurable and there exist schedulers maximizing or minimizing
the probability for φ (see, e.g., [2]). This justifies the notations Prmax

M,s(φ) = maxS PrSM,s(φ) and
analogously Prmin

M,s(φ) forω-regular properties.
A Markov chain is a tuple M= (S,P,sinit,AP,L) which can be seen as an MDP with only one action.
The transition probability function P : S×S→ [0,1]∩Q does not include the action anymore and
satisfies

∑
t∈SP(s,t) ∈ {0,1} for all s ∈ S. There are no non-deterministic choices and PrM,s denotes

the induced probability measure on maximal paths starting in s.

ω-automata

A non-deterministic Büchi automaton (NBA) is a tuple A = (Q,Σ,δ,Q0,F) where Q is a finite set
of states, Σ an alphabet, δ ⊆ S×Σ×S the transition relation, Q0 ⊆Q the set of initial states and
F ⊆ Q the set of final states. A word w = w0w1 . . . in Σω is accepted by A if there is a run
q0w0q1w1q2 . . . such that q0 ∈Q0, (qi,wi,qi+1) ∈ δ for all i, and for infinitely many i, qi ∈ F.
The language L(A) is the set of words accepted by A.

2.2 Quantified linear temporal logic (QLTL)

Let AP be a finite set of atomic propositions. The syntax of linear temporal logic (LTL) is given by

φ ::= a|φ∧φ|¬φ|⃝φ|φUφ

where a∈AP. The semantics is given on words in (2AP)ω: For a wordw=w0,w1, . . . , we havew⊨a
if a ∈w0; w ⊨⃝φ if w1,w2, · · · ⊨φ; and w ⊨φUψ if there is a j ∈ N such that wj,wj+1, · · · ⊨ψ
and wi,wi+1, · · · ⊨φ for all i < j. The semantics of the Boolean connectives is defined as usual. For
more details, consult, e.g., [2]. The logic QLTL is an extension of LTL with quantification over atomic
propositions. We extend the syntax of LTL by allowing existential quantification ∃x.φ over additional,
fresh atomic propositions x ̸∈ AP where φ is an LTL-formula over AP∪ {x}. We further allow the
common abbreviations ⊤ for true, ⊥ for false, ∨,→,↔, ♢, □, and ∀x. For a word w ∈ (2AP)ω, we
define that w ⊨ ∃x.φ if and only if there is a set X⊆ N such that the word w′ with w′[i] =w[i] if
i ̸∈ X and w′[i] =w[i]∪ {x} if i ∈ X satisfies w′ ⊨ φ. Consider the following example to illustrate
the semantics of QLTL:
{a} {b} {a} {c} . . . ⊨ ∃x.□(x↔ ¬a) because
{a} {b,x} {a} {c,x} . . . ⊨ □(x↔ ¬a).

For a QLTL-formula ϑ over AP, we allow arbitrarily many additional atomic propositions but require
that all atomic propositions not in AP are quantified. We distinguish QLTL-formulas in prenex
normal form according to the number of quantifier alternations. For k⩾ 1, let ΣQLTLk be the set of
QLTL-formulas of the form

∃∗∀∗∃∗ . . .︸ ︷︷ ︸
k blocks of quantifiers

φ≡ ∃∗¬∃∗¬∃∗ . . .︸ ︷︷ ︸
k blocks of quantifiers

(¬)φ

where φ is quantifier-free, i.e. an LTL-formula. Likewise, let ΠQLTLk be the set of QLTL-formulas
starting with k blocks of quantifiers followed by a quantifier-free formula such that the first block is
∀∗. The negation of a ΣQLTLk -formula is equivalent to a ΠQLTLk -formula.
QLTL, and in particular ΣQLTL1 , can express exactly allω-regular properties. In fact, the existence
of an accepting run on a word in an NBA A with states Q can be expressed by a ΣQLTL1 -formula
with |Q|-many existential quantifications followed by an LTL-formula [20].



Conversely, for a ΣQLTLk -formula ϑ= ∃∗¬∃∗ . . .(¬)φ, we can build an NBA of k-exponential size
accepting exactly the words satisfying ϑ: For the LTL-part (¬)φ, we first construct an NBA of
exponential size (see [24]). Existential quantification on the NBA-level is easy as it corresponds
to standard projection onto the non-quantified variables; a quantified variable x is simply removed
from the labels of the transition relation. This introduces new non-deterministic choices between
the options to take a transition requiring a letter, i.e. a set of atomic propositions, P or a transition
requiring P ∪ {x} when reading P. The quantifier prefix contains k− 1 negations in addition to
the existential quantifiers. Each of these negations requires a complementation of the automaton
constructed so far before we can use projection again to account for the next block of quantifiers.
Each complementation increases the size by one further exponential. Hence, the procedure produces
an NBA for ϑ of k-exponential size in k-exponential time (see [21] for more details).

3 QLTL model checking in probabilistic systems

This section is devoted to proving the complexity hierarchy results in terms of the quantifier alternation
for the model-checking problem of QLTL in probabilistic systems. More precisely, our goal is to
pinpoint the complexities of the following problems, for ΠQLTLk - or ΣQLTLk -formulas φ:

Qualitative model-checking problems:

For a Markov chain M, decide whether PrM,sinit(φ) = 1, or whether PrM,sinit(φ)> 0, respec-
tively.
For an MDP M, decide whether Prmax

M,sinit
(φ)= 1, whether Prmax

M,sinit
(φ)> 0, whether Prmin

M,sinit
(φ)=

1, or whether Prmin
M,sinit

(φ)> 0, respectively.

Quantitative model-checking problems:

For a Markov chain M, compute PrM,sinit(φ). For hardness results, we consider the decision
versions whether PrM,sinit(φ) ▷◁ ϑ for a given ϑ ∈Q and ▷◁∈ {⩽,<,>,⩾}.
For an MDP M, compute Propt

M,sinit
(φ) for opt ∈ {max,min}. For hardness results, we consider

the decision versions whether Propt
M,sinit

(φ) ▷◁ ϑ for a given ϑ ∈Q, ▷◁∈ {⩽,<,>,⩾}, and opt ∈
{max,min}.

We restrict our attention to QLTL-formulas in prenex normal form. While we have seen that all QLTL-
formulas are equivalent to a ΣQLTL1 -formula, the transformation from arbitrary QLTL-formulas to
Σ
QLTL
1 -formulas has non-elementary complexity. The lower bound for this transformation is a direct

consequence of the complexity hierarchy result for the non-probabilistic model-checking problem
mentioned above. However, there is a polynomial-time transformation to prenex normal form for
QLTL-formulas: After renaming all quantified variables such that each quantifier quantifies a unique
variable not occurring outside the scope of this quantifier, we can pull out quantifiers using the
following equivalences for arbitrary QLTL-formula φ and ψ where ψ does not contain the atomic
proposition x and both formulas do not contain t:

1. (∃xφ)Uψ≡ ∀t∃x((tU(¬t∧φ))∨ (tUψ)).
2. (∀xφ)Uψ≡ ∀x(φUψ).
3. ψU(∃xφ)≡ ∃x(ψUφ).
4. ψU(∀xφ)≡ ∃t∀x((ψ∧ t)U(φ∧¬t)).

Note that in the first and last equivalence where t is quantified, only the first position where ¬t

holds is important for the subsequent formulas. In this way, the quantification over t corresponds
to the quantification over positions in the semantics of the U-operator. For Q ∈ {∃,∀}, we further
have⃝Qxφ≡Qx⃝φ and moving quantifiers to the front over Boolean connectives can be done



as usual. So, we can transform a QLTL-formula to prenex normal form in polynomial time while
introducing new quantifiers to account for the implicit quantification over positions of the U-operator.
In applications of QLTL in formal verification, however, quantified variables are mostly used to
describe possible annotations of a trace or traces of hidden variables. Hence, the quantified traces
are supposed to be constant once chosen and not to be reassigned when evaluating subformulas on
different suffixes. Thus, these formulas often are already in prenex normal form.
Our main result concerning QLTL-model checking over probabilistic systems is the following
complexity hierarchy result:

▶ Theorem 1 (Main Result). All qualitative and quantitative model-checking problems for ΣQLTLk

and ΠQLTLk in Markov chains are k-EXPSPACE-complete and can be solved in time polynomial in
the size of the Markov chain.
All qualitative and quantitative model-checking problems for ΣQLTLk and ΠQLTLk with k ⩾ 1 in
MDPs are k+1-EXPTIME-complete and can be solved in time polynomial in the size of the MDP.

The upper bounds are obtained by the straight-forward construction of NBAs as described above
(Section 2.2). The main contribution hence is the proof of the lower bounds. For Markov chains,
we provide a reduction from a tiling problem that simultaneously shows hardness for all qualitative
model-checking problems (Theorem 2). We afterwards conclude the same complexity result for all
quantitative model-checking problems (Corollary 3). For MDPs, the result requires two different
hardness proofs (Theorem 4): The hardness results for model-checking problems regarding the maxi-
mal satisfaction probability of ΠQLTLk -formulas (or analogously the minimal satisfaction probability
of ΣQLTLk -formulas) are somewhat simpler. We encode computations of an alternating Turing ma-
chine that is k-exponentially space bounded and can directly use sequences of k-exponentially many
extended tape symbols for the encoding. For the hardness proof concerning the minimal satisfaction
probability of ΠQLTLk -formulas, we have to include a binary counter of k− 1-exponential length
separating two successive tape symbols in the encoding. In the hardness proof for Markov chains, we
use a similar counter. So, the final hardness proof combines the ideas behind the first hardness proof
for MDPs and the hardness proof for Markov chains. The same complexity results for all quantitative
model-checking problems in MDPs can be concluded afterwards (Corollary 5).

3.1 Markov chains

We first address the qualitative model-checking problems in Markov chains. We provide a proof
sketch for the hardness proof. The full proof can be found in Appendix A.

▶ Theorem 2. For any k, all qualitative model-checking problems for ΣQLTLk and ΠQLTLk in Markov
chains are k-EXPSPACE-complete and can be solved in time polynomial in the size of the Markov
chain.

Proof sketch. The upper bounds are obtained by building NBAs of k-exponential size for ΣQLTLk -
formulas as described in Section 2. The negation of a ΠQLTLk -formula is equivalent to a ΣQLTLk -
formula of the same length. As all qualitative model-checking problems for NBAs in Markov chains
are PSPACE-complete and can be solved in time polynomial in the size of the Markov chain [7], we
obtain the upper bounds.
For the hardness results, we use a reduction from k-exponential tiling problems. We define the
following function h : N2→ N: Let h(0,n) = n for all n and h(k+1,n) = 2h(k,n) ·h(k,n) for all
k. So, h(k,n) is k-exponential in n. The following k-exponential tiling problem is known to be
k-EXPSPACE-complete [23]:
Given: a finite set of tiles T , two relations H⊆ T 2 and V ⊆ T 2, an initial tile t0 ∈ T and a final tile
tf ∈ T as well as a natural number n in unary.



start

t1 . . . tℓ 10

end

Figure 1 The Markov chain M.

Question: Is there an m ∈ N such that the 2h(k−1,n) × (m+ 1)-grid {0, . . . ,2h(k−1,n) − 1}×
{0, . . . ,m} can be tiled, i. e., is there a function f : {0, . . . ,2h(k−1,n)−1}× {0, . . . ,m}→ T , such that:

1. the tile at position (0,0) is the initial tile t0 and the tile at position (0,m) is the final tile tf; in
other words, f(0,0) = t0 and f(0,m) = tf,

2. two tiles placed next to each other horizontally satisfy the relation H; more precisely, for any
0 ⩽ i < 2h(k−1,n)−1 and 0 ⩽ j⩽m, the pair (f(i, j),f(i+1, j)) ∈H, and

3. two tiles placed next to each other vertically satisfy the relation V; more precisely, for any
0 ⩽ i⩽ 2h(k−1,n)−1 and 0 ⩽ j < m, the pair (f(i, j),f(i, j+1)) ∈ V?

Given an instance of the k-exponential tiling problem, we construct a Markov chain M and a ψ
in ΠQLTLk such that PrM(ψ) = 1 iff PrM(ψ) > 0 iff there is a valid tiling. This establishes k-
EXPSPACE-hardness for both qualitative model checking problems for ΠQLTLk . As the negation ofψ
is in ΣQLTLk and k-EXPSPACE is closed under complementation, the same result holds for ΣQLTLk .
Let T = {t0, . . . ,tℓ} be the set of tiles that we also use as atomic propositions and let {start,end, 0,1} be
further atomic propositions. We construct a simple Markov chain M, depicted in Figure 1, that almost
surely produces a concatenation of infinitely many words from start(T ∪ {0,1})+end that contains
each of the finite words in start(T ∪ {0,1})+end. Some of these finite words will encode potential
tilings. Namely, we encode a function f : {0, . . . ,2h(k−1,n)−1}× {0, . . . ,m}→ T in the word

start, f(0,0),

h(k−1,n) steps︷ ︸︸ ︷
0,0,0, . . . ,0 ,f(1,0),

h(k−1,n) steps︷ ︸︸ ︷
1,0,0, . . . ,0 , . . . ,f(2h(k−1,n)−1,0),

h(k−1,n) steps︷ ︸︸ ︷
1,1,1, . . . ,1 ,

f(0,1), . . . ,

f(0,m),

h(k−1,n) steps︷ ︸︸ ︷
0,0,0, . . . ,0 ,f(1,m),

h(k−1,n) steps︷ ︸︸ ︷
1,0,0, . . . ,0 , . . . ,f(2h(k−1,n)−1,m),

h(k−1,n) steps︷ ︸︸ ︷
1,1,1, . . . ,1 ,end.

For a valid encoding, the blocks of h(k−1,n) bits have to encode a correct binary counter modulo
2h(k−1,n), where the first bit is the least significant one, starting with 0 . . .0 after start and ending in
1 . . .1 before end. The encoding of the counter makes sure that indeed a function from a rectangle
{0, . . . ,2h(k−1,n)−1}× {0, . . . ,m} for somem is encoded.
Further, we construct a ΠQLTLk -formula valid_tiling that expresses that at some point a valid tiling is
encoded in a run. Several of the conditions including the initial, final and horizontal condition can
easily be expressed. As tiles that are vertically adjacent in a tiling are separated by h(k,n) = h(k−
1,n) ·2h(k−1,n) steps, however, we have to employ additional ideas to express that all conditions on
a valid encoding of a valid tiling are satisfied at some point. An important ingredient for our reduction
is the collection of ΣQLTLk−1 -formulas φk−1,n(p,q) from [21]. For each n and k from N, the formula
φk−1,n(p,q) holds on a word if p and q occur exactly once and, if the position at which p occurs is



i, the position at which q occurs is i+h(k−1,n). In addition to the use of these formulas, we use
universally quantified propositions that mark potential violations of the conditions. To illustrate this
idea, we sketch a formula that expresses that a run of M eventually contains a finite word starting
with start and ending in end in which tiles are followed by exactly h(k−1,n)-many bits. The atomic
proposition tile holds if the current letter encodes a tile.

∀d.
([
∀p∀q

(
φk−1,n(p,q)→□[(d∧ tile∧p)→

next occurrence of tile or end not one step after q]
)]
→ ♢(start∧ (¬(dUend))

)
.

The quantified proposition d can be used to mark any tiles for which the next tile or end does not follow
exactly h(k−1,n)+1 steps later. The quantified variables p and q and the formula φk−1,n(p,q)
are used to check that the markers are placed correctly, i.e., that indeed the next occurrence of tile or
end after the marked position is not exactly h(k−1,n)+1 steps later. If the markers d are not placed
correctly, the formula holds. Otherwise, it holds if a finite word between start and end is contained in
the run in which no tile is marked by d. As d is universally quantified, the formula hence holds on a
run of M iff it contains a finite word starting with start and ending in end in which tiles are followed
by exactly h(k−1,n)-many bits. Note that φk−1,n(p,q) occurs in the scope of two negations due
to the implications while ∀p∀q occurs in the scope of one negation. So, the formula is in ΠQLTLk .
The correctness of the counter can be expressed using the same idea of marking bits that violate the
correctness of the counter with a universally quantified variable and the fact that a bit in a binary
counter changes during an increment of the counter if and only if all less significant bits are 1. The
vertical condition of the tiling is checked by using universally quantified markers v1 and v2 that have
to be placed on vertically adjacent tiles. The correct placement of the markers is checked by stating
that there exists a proposition b that encodes a correct binary counter with h(k−1,n)-many bits that
starts with 0 . . .0 after v1 and counts up to 1 . . .1 right before v2. The correctness of the counter is
checked as for the counter using the bits 0 and 1. The additional existential quantification over b
does not yield an additional quantifier alternation. The resulting formula valid_tiling is in ΠQLTLk

and holds on a run of M if an encoding of a valid tiling is produced. As a run of M almost surely
contains all words in start(T ∪ {0,1})+end, the formula valid_tiling holds with probability 1 iff it
holds with positive probability iff there is a valid tiling for the given instance of the k-exponential
tiling problem. ◀

As the upper bounds are obtained via the construction of NBAs for the QLTL-formulas, we can
conclude the same results for the quantitative model-checking problems over Markov chains.

▶ Corollary 3 (Quantitative model checking). Given a ΣQLTLk - or ΠQLTLk -formula φ and a Markov
chain M, the probability PrM(φ) can be computed in k-exponential space and in time polynomial
in the size of M. Given a rational ϑ ∈ [0,1] and ▷◁∈ {⩽,<,>,⩾}, deciding whether PrM(φ) ▷◁ ϑ is
k-EXPSPACE-complete.

Proof. The lower bounds follow directly from the previous theorem. The upper bound follows from
the fact that, given a Markov chain M and an NBA A, the probability PrM(A) that a word produced
by M is accepted by A can be computed in time polynomial in M [7] and in space polynomial
in the total size of the input. We sketch a proof of the latter claim: In the algorithm provided by
Courcoubetis and Yannakakis in [7] to compute this probability, an exponentially large Markov chain
N is constructed from M and A. The states of N have a polynomial representation in the size of M
and A and one can compute the transition probabilities between any two states in polynomial time.
The probability PrM(A) now equals the probability to reach a recurrent state in N – as it is called in
[7], but which we do not define here. It is only important to us that one can decide whether a state
is recurrent in polynomial space polynomial in the size of A (and polylogarithmic in the size of M)



as shown in [7]. The probability to reach a recurrent state in N can be computed by solving a linear
equation system. As transition probabilities and whether states are recurrent in N can be computed in
space polynomial in A, each entry of the matrix and vector representing this linear equation system,
which is of size exponential in A and polynomial in M, can be computed in space polynomial in A.
Using the fact that solving linear equation systems lies in the complexity class NC and can hence be
done in polylogarithmic space (see, e.g., [18, Section 15]) and standard results on the composition of
space-bounded transductions (see, e.g., [18, Section 8]), we can conclude that the probability PrM(A)

can be computed in space polynomial in the size of A. Applied to the k-exponentially sized NBAs
for ΣQLTLk -formulas, this result leads to the claim of the corollary. ◀

3.2 Markov decision processes

We now provide the complexity results for QLTL-model checking over MDPs.

▶ Theorem 4. Given an MDP M, a ΠQLTLk -formula φ, and opt ∈ {max,min}, deciding whether
Propt

M (φ) = 1 and deciding whether Propt
M (φ)> 0 are k+1-EXPTIME-complete for any k⩾ 1. The

problems are solvable in time polynomial in the size of M.

As ΠQLTLk is not closed under negation, the model-checking problems in MDPs concerning the
maximal and minimal satisfaction probability, respectively, require different hardness proofs. We
sketch the two proof ideas in the sequel. The full proofs can be found in Appendix B.

Proof sketch. The upper bounds are obtained via the straight-forward construction of deterministic
automata (e.g., deterministic Rabin automata; see, e.g., [2]). This requires the determinization of the
k-exponentially large NBAs for ΣQLTLk -formulas, which are computable in k-exponential time, and
leads to a k+1-exponential-time procedure.
For the lower bounds, first consider the problems with opt = max. We prove k+ 1-EXPTIME-
hardness by encoding the computation of k-exponentially space-bounded alternating Turing machines
(ATM). It is well-known that the class of problems decidable by such ATMs coincides with k+1-
EXPTIME [5]. So, given a k-exponentially space-bounded ATM T and an input wordw, we construct
an MDP M and a ΠQLTLk -formula φ such that Prmax

M (φ) > 0 iff Prmax
M (φ) = 1 iff w is accepted

by T. Recall that acceptance in an ATM can be specified in terms of a game between a universal
player choosing the next move in universal states and an existential player choosing the next move
in existential state. A word is accepted if the existential player has a strategy that ensures that an
accepting state is reached from the initial configuration with the input word on the tape.
The idea for the reduction is to construct an MDP M in which the scheduler can produce a sequence
of (k-exponentially long) configurations of T. The sequence of configurations in turn represents a
sequence of infinitely many finite computations. The first configuration of each computation has to
be the initial configuration with w on the tape. After each configuration, the scheduler has to specify
whether the universal or existential player has to choose the next move, or whether the computation
ended and a new computation is about to start. If it is the existential player’s turn, the scheduler
chooses a move and has to construct the successor configuration accordingly. If it is the universal
player’s turn, the successor move is specified by a random choice and again the scheduler has to
construct the correct successor configuration. The constructed MDP is sketched in Figure 2.
The ΠQLTLk -formula φ we construct, on the one hand, expresses that the sequence produced by the
scheduler obeys all these requirements. Checking that the successor configurations are constructed
correctly is possible with the use of the ΣQLTLk -formulas φk,n(p,q) from [21] that express that the
positions at which p and q are a fixed k-exponentially large number of steps apart. On the other hand,
the formula φ expresses that all (infinitely many) encoded computations end in an accepting state. If
w is accepted by T, the scheduler can construct correct accepting computations no matter what moves



comp

step1,
zero,E

step2,
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step3,
zero,U

step4,
one,U

⃝ ⃝ ⃝
⃝ ⃝
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⃝ ⃝

⃝ ⃝ ⃝

Figure 2 The MDP M. The state depicted as Γ represents the behavior of each state γ ∈ Γ . I.e. from each
state, there is one action to each state in Γ with probability 1. Further, from all states in Γ , there are actions
leading to states comp, step1 and step2 with probability 1, as well as a randomized action (bold lines) leading
to states step3 and step4 with probability 1/2 each. The labels zero and one indicate which successor move
was chosen according to which the new configuration has to be constructed. The labels E and U indicate which
player has chosen the move and are used to check whether the successor move was indeed chosen randomly iff it
is the universal player’s move.

are chosen by the universal player and so Prmax
M (φ) = 1. If w is not accepted, however, the universal

player will play according to a winning strategy in any of the encoded computations with positive
probability. So, almost surely at some point any scheduler has to violate one of the requirements or
construct a rejecting computation. In this case, Prmax

M (φ) = 0.
In contrast to the case just discussed, the statement Prmin

M (φ) = 1 is a statement about all schedulers.
So, we cannot let a scheduler construct sequences of computations anymore. Instead, we construct
an MDP M′ that randomly generates sequences that potentially encode correct computations. In
the acceptance game of the given ATM, we also switch roles and let the choices of the existential
player be made randomly while the scheduler can specify which successor move should be chosen
in universal states. With positive probability, the correct successor configuration will be generated
afterwards. Hence, if the existential player has a winning strategy, a correct accepting computation
will eventually be produced randomly with probability 1 no matter what successor moves a scheduler
chooses. Otherwise, there is a scheduler that prohibits this.
In order to express that eventually a correct accepting computation is generated in ΠQLTLk , however,
it turns out that we cannot use the ΣQLTLk -formulas φk,n(p,q) from [21] as before. This is in part
due to the implicit existential quantification in the eventually-modality. For this reason, we do not
encode the computations simply as concatenations of configurations. Instead, we employ the ideas
that were also used in the hardness proof for Markov chains (Theorem 2): We separate the symbols of
the configurations by k−1-exponentially long binary counters to check that configurations have the
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Figure 3 The MDP M′. The behavior is probabilistic except for the choice in the state aux. When entering
the cluster of states Γ or the cluster with the two bits 0 and 1, one of the states in the cluster is chosen randomly.
Further all states in Γ have only the outgoing transition randomly moving to 0 or 1. The state aux is only an
auxiliary state for the graphical representation. That means that in states 0 and 1 two actions are enabled. The
first moving randomly to any state except for step3; the second moving randomly to any state except for step4.

correct length and use universally quantified variables to mark violations to any of the requirements
of a valid encoding of an accepting computation. The blocks of the potential binary counter values
are also randomly generated as sketched in Figure 3. An existentially quantified proposition encoding
a further binary counter with k−1-exponentially many bits is then used to compare tape cells at the
same position in two successive configurations, which are k-exponentially many steps apart in the
encoding. Under any scheduler, the resulting ΠQLTLk -formula φ holds on an execution of M almost
surely ifw is accepted by T. Similar to before, each of the randomly generated potential computations
is correct with positive probability and in each of these computations the randomly chosen moves of
the existential player are in accordance with a winning strategy with positive probability against any
scheduler, which chooses the moves of the universal player. If w is not accepted by T, however, there
is a strategy for the universal player and hence a scheduler that makes sure that no correct accepting
computation is generated. In this case, Prmin

M (φ) = 0. ◀

These results allow us to conclude that all qualitative model-checking problems for ΣQLTLk -formulas
in MDPs are k+ 1-EXPTIME-complete for any k ⩾ 1, too, as the negation of a ΣQLTLk -formula
is a ΠQLTLk -formula. Furthermore, as the upper bounds are obtained via the naive construction of
deterministic automata, also the quantitative model checking problems have the same complexity
as the minimal and maximal probabilities that an execution of an MDP is accepted by a suitable
deterministic automaton (such as a deterministic Rabin automaton) can be computed in polynomial
time (for details see, e.g., [2]).



▶ Corollary 5 (Quantitative model checking). Given a ΣQLTLk - or ΠQLTLk -formula φ and an MDP
M, the probabilities Prmin

M (φ) and Prmax
M (φ) can be computed in time k+1-exponential in the size of

φ and polynomial in the size of M. Given a rational ϑ ∈ [0,1], ▷◁∈ {⩽,<,>,⩾} and opt ∈ {min,max},
deciding whether Propt

M (φ) ▷◁ ϑ is k+1-EXPSPACE-complete.

4 Trace Vacuity in Probabilistic Systems

Vacuity notions have been studied for non-probabilistic systems in order to express, roughly, that the
truth of a formula is not affected by the truth of one of its subformulae [1, 3, 16]. Among the existing
definitions of vacuity in the literature, trace vacuity is the strongest.

▶ Definition 6. Let φ be an LTL-formula and ψ a subformula. Let T be a transition system. We say
that ψ does not affect φ in T if for every execution π in T:

π ⊨ ∀x.φ[ψ← x] ⇐⇒ π ⊨ ∃x.φ[ψ← x].

We say that φ holds vacuously in T if there is a subformula that does not affect φ in T.

The above definition of non-affection generalizes the one from [1] by relaxing the hypothesis that φ
holds on T. For any execution π, π ⊨ ∀x.φ[ψ← x]⇒ π ⊨φ⇒ π ⊨ ∃x.φ[ψ← x]. We thus merely
require that the three sets of executions that satisfy, ∀x.φ[ψ← x], φ, and ∃x.φ[ψ← x] respectively,
coincide. Also, this generalisation allows us to naturally extend the notions of non-affection and
vacuity to probabilistic systems. In the remainder of this section, we introduce trace vacuity for
probabilistic systems, and establish tight complexity bounds for checking probabilistic vacuity. As in
the non-probabilistic case, vacuity checking reduces to checking a ΠQLTL1 -formula. Conversely, one
can reduce the qualitative model checking of ΠQLTL1 to probabilistic vacuity.

4.1 Probabilistic trace vacuity

▶ Definition 7. Let φ be an LTL-formula and ψ a subformula. Let M be an MDP or a Markov chain.
We say that ψ does not affect φ in M iff

Prmin
M (∀x.(φ[ψ← x]↔φ)) = 1.

We say that φ is vacuous in M if there is a subformula that does not affect φ in M.

Note that it does make sense for Markov chains and MDPs to consider that a formula is vacuous
if its satisfaction probability (under any scheduler) is not affected when replacing a subformula,
even if the global formula does not hold almost-surely. In MDPs, the definition of non-affection
generalizes the non-probabilistic definition. This is made more precise in the following proposition.
Paths in a transition system correspond to schedulers not making use of randomization when we view
a transition system as an MDP.

▶ Proposition 8. A subformula ψ does not affect a formula φ in an MDP (or a Markov chain) M if
and only if for all schedulers S, PrSM(∀x.φ[ψ← x]) = PrSM(φ) = PrSM(∃x.φ[ψ← x]).

Proof. Let us rewrite ∀x.(φ[ψ← x]↔φ) as (∀x.(φ→φ[ψ← x]))∧ (∀x.(φ[ψ← x]→φ)). The
latter is equivalent to (φ→ ∀x.φ[ψ← x])∧ (∀x.¬φ[ψ← x]∨φ). Rewritten as implications, we
obtain (φ→ ∀x.φ[ψ← x])∧ (∃x.φ[ψ← x]→ φ). As the two implications (φ← ∀x.φ[ψ← x])

and (∃x.φ[ψ← x]← φ) are tautologies, the claim follows easily considering that the minimal
probability in Definition 7 can be read as a universal quantification over schedulers. ◀
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Figure 4 A Markov chain to illustrate the notion of affection.

▶ Example 9. We provide a short example of non-affection in Markov chains, also to shed light on the
difference with the non-probabilistic setting. Consider the Markov chain on Fig. 4, where we assume
arbitrary non-zero probabilities on edges, and the following formulas: φ=□♢(a∧b)∨□(a∨b)

and ψ = □(a∨b). Clearly enough, PrM(φ) = PrM(∃x.φ[ψ← x]) = PrM(∀x.φ[ψ← x]) = 1 so
that ψ does not affect φ, and φ is vacuous in this Markov chain. However, if one views the graph as
a transition system T, then T ⊨φ and T ̸⊨ ∀x.φ[ψ← x]. So, ψ affects φ.

Armoni et al. [1] observed that ifψ appears only positively inφ, for every execution π in the transition
system T then: T,π ⊨ ∀x.φ[ψ← x]⇐⇒ T,π ⊨ φ[ψ← ⊥]. As a consequence, a pure polarity
subformulas ψ does not affect φ if and only if Prmin

M (φ[ψ← ⊤]↔ φ[ψ← ⊥]) = 1. Therefore,
checking whether a pure polarity subformula affects a formula reduces to quantitative model checking
of LTL formulas and can be done in PSPACE for Markov chains and in 2-EXPTIME for MDPs.
As also argued in [1], restricting attention to subformulas with pure polarity or to consider single
occurrences of subformulas separately is insufficient for a satisfactory vacuity check. For example, a
formula like □(p→ p)≡□(p∨¬p), in which p occurs positively and negatively, should be rendered
vacuous in any system. Restricting attention to only one of the two occurences of p, however, would
in general lead to the insight that each of the two occurrences on its own does affect the formula.
Beyond pure polarity formulas, checking affectation is harder for Markov chains. Indeed, hardness
of ΠQLTL1 model checking transfers to hardness of vacuity checking. As stated in the next theorem,
for MDPs affection checking has the same complexity as quantitative LTL model checking, whereas
Markov chains exhibit an exponential complexity blowup.

▶ Theorem 10. Checking whether a subformula ψ affects an LTL-formula φ in a Markov chain M

is EXPSPACE-complete. In MDPs, the problem is 2-EXPTIME-complete.

Proof. The upper bounds follow directly from the upper bounds of qualitative model-checking of
Π
QLTL
1 in Markov chains and MDPs. For the lower bound, we first concentrate on MDPs. We

provide a reduction from the problem whether a ΠQLTL1 -formula ϑ= ∀x.φ satisfies Prmin
M (ϑ) = 1 in

an MDP M. We sketch a proof that the restriction to one quantified variable does not influence the
complexity in Appendix C. So, let M be labeled with atomic propositions from AP. Let ϑ = ∀x.φ
where φ is an LTL-formula over AP∪ {x} with x ̸∈ AP be given. We construct the MDP M′ by adding
a new initial state s′init from which the original initial state sinit is reached in one step with probability 1.
Further, we let β be an LTL-formula that is valid and does not occur in φ. Finally, we define φ′ to be
the LTL-formula φ′ = β∨⃝φ[x← β]. Of course, Prmin

M′,s′init
(φ′) = 1 as β is valid. We claim that β

does not affect φ′ in M′ if and only if Prmin
M (∀x.φ) = 1. The subformula β does not affect φ′ in M′

iff Prmin
M′,s′init

(∀x.(x∨⃝φ)) = 1 by definition and the fact that β does not occur anywhere else in φ.

But Prmin
M′,s′init

(∀x.(x∨⃝φ)) = 1 holds if and only if Prmin
M′,s′init

(∀x.⃝φ) = 1 because the universal

quantifier can choose x not to hold in the first position of any trace produced by M′. After the first
step M′ behaves exactly like M and hence Prmin

M′,s′init
(∀x.⃝φ) = 1 if and only if Prmin

M,sinit
(∀x.φ) = 1.

So, checking affection in MDPs is as hard as the respective qualitative model-checking problem for
Π
QLTL
1 and hence 2-EXPTIME-complete.

For Markov chains, the argument goes analogously. Note that the constructed MDP M′ is a Markov
chain if M is a Markov chain. So, checking affection in Markov chains is also as hard as the respective



qualitative model-checking problem for ΠQLTL1 and hence EXPSPACE-complete. ◀

In Markov chains, the exponential blow-up in complexity of non-affection checking compared to
LTL-model checking constitutes a major obstacle for vacuity checking. To provide a possibility to
check that a specification is not obviously faulty without such an exponential blow-up, we turn our
attention to the notion of inherent vacuity.

4.2 Inherent vacuity in probabilistic systems

Inherent vacuity for transition systems expresses whether a formula holds vacuously in every model
in which it holds [9]. Using our generalized definition, we do not restrict ourselves to the models
in which the formula holds anymore and provide an analogous definition for probabilistic systems.
As in [9], we consider two natural variants of the definition and investigate how to check whether a
formula is inherently vacuous.

▶ Definition 11. Let φ be an LTL-formula. Let C be the class of all transition systems, all Markov
chains, or all MDPs, respectively. We say that φ is inherently vacuous over C, if φ is vacuous in all
models M ∈ C. For a subformula ψ of φ we say that ψ inherently does not affect φ over C, if for
every M ∈ C, ψ does not affect φ in M. If there is a subformula that inherently does not affect φ
over C, we say that φ is uniformly inherently vacuous.

In [9], it is shown that inherent vacuity and uniform inherent vacuity coincide for transition systems.
Dropping the restriction to models in which a formula φ holds, the results of [9] show that the notions
are equivalent to the existence of a subformula ψ such that ∀x.(φ[ψ← x]↔φ) is valid. We prove
that inherent and uniform inherent vacuity for Markov chains and MDPs are also equivalent to this
condition and hence to inherent vacuity in transition systems. First, we show that uniform inherent
vacuity coincides with inherent vacuity.

▶ Proposition 12. Let φ be an LTL-formula and let C be the class of all Markov chains or all MDPs.
The formula φ is uniformly inherently vacuous over C if and only if it is inherently vacuous over C.

Proof. One direction is clear. For the other direction, suppose thatφ is inherently vacuous over C, but
not uniformly inherently vacuous. Hence, for each subformula ψ of φ, there is a model Mψ ∈ C such
that ψ affects φ over Mψ. Let N be the disjoint union of the models Mψ for all subformulas ψ with
an initial uniform probability distribution over the initial states of these models. We claim that φ is
not vacuous in M. For each subformula ψ, there is a positive probability that Mψ is chosen. As there
is a scheduler S (for Markov chains, the unique scheduler) with PrSMψ

(∀x.(φ[ψ← x]↔φ)< 1, the
same holds in N. This is a contradiction to the inherent vacuity of φ. ◀

The following proposition establishes that all variants of inherent vacuity considered coincide:

▶ Proposition 13. Let φ be an LTL-formula and ψ a subformula. Then, ψ inherently does not affect
φ over Markov chains or MDPs, respectively, if and only if the formula ∀x.(φ↔φ[ψ← x]) is valid.

Proof. Only the left-to-right implication deserves a proof, and we prove the contrapositive. Assume
the formula χ= ∀x.(φ↔φ[ψ← x]) is not valid. Since χ expresses a regular property, there exists
an ultimately periodic wordw that violates χ. It suffices to consider the Markov chain or MDP M that
has only one path, and produces w with probability 1, and observe that ψ does affect φ in M. ◀

As a consequence, checking inherent vacuity for probabilistic systems is as simple as in the non-
probabilistic case, and can be done in polynomial space. In particular for Markov chains, an inherent
vacuity check might be an interesting option for practical applications as it avoids the exponential
blow-up in complexity over LTL-model checking.



5 Conclusion

We determined the precise complexities of the model-checking problems for the different levels
of the quantifier alternation hierarchy of QLTL over probabilistic systems. The knowledge of the
precise complexities, in particular the established lower bounds, has the potential to serve as the basis
for hardness proofs for other questions in the formal verification of probabilistic systems. Despite
the high complexities that we obtained, efficient model checking for formulas with few quantifier
alternations might still be possible because all problems are solvable in time polynomial in the size of
the system and typically formulas are small compared to the size of the models.
These results have been applied to the notion of trace vacuity known from the non-probabilistic setting
that we adapted to the probabilistic setting. It turned out that checking whether a formula is affected
by a subformula in a system is inter-reducible with ΠQLTL1 -model checking. For Markov chains,
our new lower bounds allowed us to conclude that affection checking is EXPSPACE-complete and
hence exponentially harder than LTL-model checking, while the complexity of affection checking
and LTL-model checking are the same in MDPs. Furthermore, we showed that the notion of inherent
vacuity – expressing that a formula is vacuous in a class of system models – is invariant under the
switch from non-probabilistic to probabilistic models, and hence, known polynomial-space algorithms
are applicable for Markov chains and MDPs. In addition to the vacuity notions we studied here, an
interesting direction for future research is the investigation of “more probabilistic” notions of vacuity
that express that a perturbation of a subformula does not influence the satisfaction probability of a
formula in a system.
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A Full proof of Theorem 2

▶ Theorem 14 (Theorem 2). For any k, all qualitative model checking problems for ΣQLTLk and
Π
QLTL
k in Markov chains are k-EXPSPACE-complete.

Proof. The upper bounds are obtained by building NBAs of k-exponential size for ΣQLTLk -formulas
as described in Section 2. The negation of a ΠQLTLk -formula is equivalent to a ΣQLTLk -formula
of the same length. As all qualitative model-checking problems for NBAs in Markov chains are
PSPACE-complete [7], we obtain the upper bounds.
For the hardness results, we use a reduction from k-exponential tiling problems. We define the
following function h : N2→ N: Let h(0,n) = n for all n and h(k+1,n) = 2h(k,n) ·h(k,n) for all
k. So, h(k,n) is k-exponential in n.

k-exponential tiling problem

Given: a finite set of tiles T , two relations H⊆ T 2 and V ⊆ T 2, an initial tile t0 ∈ T and a final tile
tf ∈ T as well as a natural number n in unary.
Question: Is there a natural numberm such that the 2h(k−1,n)× (m+1)-grid {0, . . . ,2h(k−1,n)−

1}× {0, . . . ,m} can be tiled, i. e., is there a function

f : {0, . . . ,2h(k−1,n)−1}× {0, . . . ,m}→ T ,

such that:

1. the tile at position (0,0) is the initial tile t0 and the tile at position (0,m) is the final tile tf; in
other words, f(0,0) = t0 and f(0,m) = tf,

2. two tiles placed next to each other horizontally satisfy the relation H; more precisely, for any
0 ⩽ i < 2h(k−1,n)−1 and 0 ⩽ j⩽m, the pair (f(i, j),f(i+1, j)) ∈H, and

3. two tiles placed next to each other vertically satisfy the relation V; more precisely, for any
0 ⩽ i⩽ 2h(k−1,n)−1 and 0 ⩽ j < m, the pair (f(i, j),f(i, j+1)) ∈ V?

This problem is known to be k-EXPSPACE-complete [23].
An important ingredient for our reduction is the collection of ΣQLTLk -formulas φk,n(p,q) from [21].
For each n and k from N, the formula φk,n(p,q) holds on a word if p and q occur exactly once and,
if the position at which p occurs is i, the position at which q occurs is i+h(k,n).
Given an instance of the k-exponential tiling problem, we will construct a Markov chain M and a
Π
QLTL
k -formula ψ such that PrM(ψ) = 1 iff PrM(ψ)> 0 iff there is a valid tiling. This establishes
k-EXPSPACE-hardness for both qualitative model checking problems for ΠQLTLk . As the negation
of ψ is a ΣQLTLk -formula and k-EXPSPACE is closed under complementation, the same result holds
for ΣQLTLk in Markov chains.
The Markov chain M is very simple (see Figure 5). Let T = {t0, . . . ,tℓ}. The Markov chain has
states T ∪ {start,0,1,end}. The initial state is start. From there the chain randomly moves to one
of the states from T ∪ {0,1}. From each of these states, it continues by moving to one of the states
from T ∪ {0,1,end} and from end it moves back to the state start. The precise probabilities are not
important. A run of M almost surely consists of a concatenation of infinitely many words from
start(T ∪ {0,1})+end. Furthermore, each of these finite words is contained in a run with probability 1.
We will use finite words from start(T∪{0,1})+end to encode potential tilings: Let f : {0, . . . ,2h(k−1,n)−



start

t1 . . . tℓ 10

end

Figure 5 The Markov chain M.

1}× {0, . . . ,m}→ T be a function. The following word encodes this potential tiling:

start,

f(0,0),

h(k−1,n) steps︷ ︸︸ ︷
0,0,0, . . . ,0 ,f(1,0),

h(k−1,n) steps︷ ︸︸ ︷
1,0,0, . . . ,0 ,f(2,0),

h(k−1,n) steps︷ ︸︸ ︷
0,1,0, . . . ,0 ,f(3,0), . . . ,

f(2h(k−1,n)−1,0),

h(k−1,n) steps︷ ︸︸ ︷
1,1,1, . . . ,1 ,

f(0,1),

h(k−1,n) steps︷ ︸︸ ︷
0,0,0, . . . ,0 ,f(1,1),

h(k−1,n) steps︷ ︸︸ ︷
1,0,0, . . . ,0 ,f(2,1),

h(k−1,n) steps︷ ︸︸ ︷
0,1,0, . . . ,0 ,f(3,1), . . . ,

f(2h(k−1,n)−1,1),

h(k−1,n) steps︷ ︸︸ ︷
1,1,1, . . . ,1 ,

...

f(0,m),

h(k−1,n) steps︷ ︸︸ ︷
0,0,0, . . . ,0 ,f(1,m),

h(k−1,n) steps︷ ︸︸ ︷
1,0,0, . . . ,0 ,f(2,m),

h(k−1,n) steps︷ ︸︸ ︷
0,1,0, . . . ,0 ,f(3,m), . . . ,

f(2h(k−1,n)−1,m),

h(k−1,n) steps︷ ︸︸ ︷
1,1,1, . . . ,1 ,end

In order for a word to encode a potential tiling, we hence require that the elements from T are
separated by h(k−1,n)-many bits from {0,1}. These bits have to encode a correct binary counter
modulo 2h(k−1,n) starting with 0 . . .0 after start and ending in 1 . . .1 before end. This ensure that
there are 2h(k−1,n) ·m tiles included in the finite word for somem ∈N. The first digit in the counter
is considered to be the least significant one. Furthermore, it implies that horizontally adjacent tiles
in the tiling are followed by the same binary counter value. Vertically adjacent tiles in the tiling are
consecutive tiles in the encoding.
We will now construct a ΠQLTLk -formula valid_tiling that expresses that at some point a valid
tiling is encoded in a run. Some of the conditions of a valid tiling can be easily expressed in LTL.
For the remaining conditions, we use universally quantified variables to mark positions where the
condition is violated. Hence, we want to check that eventually a valid tiling containing no markers
for violations of conditions is encoded in a run. The formula valid_tiling will be of the following
form:

∀d∀c∀v1∀v2
(
ψ→ ♢

(
start∧ initial∧ final∧horizontal∧correct_dist(d)∧

correct_counter(c)∧vertical(v1,v2)
))



The subformula ψ expresses requirements on the quantified variables and contains quantifiers itself.
As ψ will be a ΣQLTLk -formula that occurs under one negation as the antecedent of an implication,
while the other named subformulas are quantifier-free, the resulting formula valid_tiling will be in
Π
QLTL
k .

The formulas that check the conditions for a valid tiling are always evaluated at the states labeled with
start due to the structure of valid_tiling. Let us begin by providing the formulas for the conditions
that can be checked by an LTL-formula:
The formula initial is the formula⃝t0.
The formula final is the formula([

T ∧⃝(0UT)∧⃝
(
(¬(T ∧⃝(0UT)))Uend

)]
→ tf

)
Uend.

This formula states that if a tile is followed by the counter value 0 . . .0 and no later tile before end is
followed by the counter value 0 . . .0, then this tile is the final tile tf.
The formula horizontal is the following:(

T →
[ ∨
(t,t′)∈H

(t∧⃝((0∨1)Ut′))∨⃝(1U(T ∨ end))
])

Uend.

This formula states that each tile before end is followed by a counter value and then a tile that is
horizontally compatible according to H or by the counter value 1 . . .1.
For the remaining formulas, we introduce universally quantified variables. Further, we need auxiliary
formulas that express that two positions are h(k−1,n)-many steps apart. As mentioned above, in
[21], it is shown that for each k⩾ 1, there is a ΣQLTLk−1 -formula φk−1,n(p,q) of length polynomial in
n that holds if and only if p and q occur exactly once and the distance between the positions where
they hold is exactly h(k−1,n). I.e. if φk−1,n(p,q) holds, and p holds at position i, then q holds at
position i+h(k−1,n).
Let us begin by showing how to check whether there are two tiles that are not separated by exactly
h(k−1,n)-many bits from {0,1}. We introduce a universally quantified variable d. The variable d is
supposed to hold at most once between each pair of start and end. Further, it is supposed to only hold
on tiles. Finally, d has to mark a position that is not followed by exactly h(k−1,n)-many bits from
{0,1}. These requirements are formulated in the following formula ψd:

□(d→ T)∧

□
(
(start∧¬end Ud)→ (¬dU(d∧⃝(¬dUend)))

)
∧

∀p∀q
(
φk−1,n(p,q)→

[
□
(
(d∧⃝p)→

[
¬⃝ (¬(T ∨ end)Uq))∨⃝(¬(T ∨ end)U(q∧ (0∨1)))

])])
The first lines simply states that d holds only on tiles and at most once between start and end. The
universally quantified variables p and q can be placed at any two positions that are h(k−1,n) steps
apart. If they are placed differently, the antecedent of the following implication fails. The consequent
of the implication states that if p holds directly after a position where d holds, then either T ∨ end
holds at some point before q, or one step after q at the earliest. If this requirement holds for all p and
q satisfying φk−1,n(p,q), then d can only hold at tiles that are not followed by exactly h(k−1,n)-
many bits. As φk−1,n(p,q) is a ΣQLTLk−1 -formula that occurs as the antecedent of an implication, i.e.
in the scope of one negation, the whole formula ψd can be written as a ΠQLTLk−1 -formula.
The formula correct_dist now simply is ¬dUend. This simply expresses that no tile before end is
marked as not being followed by exactly h(k−1,n) bits of a binary counter.



Next, we will use a similar idea to construct a formula that can check whether the encoded binary
counter is incorrect. We use a universally quantified variable c that will mark a bit whose successor is
incorrect. Note that we let the first digit in a counter value be the least significant one. This means
that the ith digit of a counter value does not change between two successive counter values if and
only if there is a j < i such that the jth digit is 0. A digit only changes if all previous digits are 1.
The check whether the counter is incorrect will only be necessary on finite encodings between start
and end in which the tiles are placed at the correct distances. The requirements for the variable c are
now that it holds at most once between each occurrence of start and end, that it only holds on states
labeled with 0 or 1, that another tile and binary counter value follow before end, and that the bit that
is placed h(k−1,n)+1 steps later is incorrect. If the distance between tiles is correct, this is the
successor bit of the bit marked by c. The formula ψc expresses these requirements:

□(c→ (0∨1))∧

□
(
(start∧¬end Uc)→ (¬cU(c∧⃝(¬cUend)))

)
∧

∀p∀q
(
φk−1,n(p,q)→[
□
(
(T ∧⃝(¬T U(c∧⃝p)))→[
¬end U(q∧ (0∨1))∧

(
(¬cU(c∧0))↔

((¬qU(q∧0)∧¬⃝ (1Uc))∨¬qU(q∧1)∧⃝(1Uc))
)])])

.

The first two lines work analogously to the first lines of the formula ψd and state that c holds at
most once between start and end and only on bits. The universally quantified varibales p and q are
again used to simultaneously check the successors of all c labeled bits. The antecedent after □ in the
fourth line now holds on a tile that is followed by a counter value in which a bit is marked by c if p is
placed directly after c. This implies that q is placed h(k−1,n)+1 steps after c and hence marks the
successor bit of c. If in the counter value all bits before the one marked with c are 1, then the bits
marked with c and q have to be different. Otherwise, they have to be the same. This is expressed in
the bi-implication in the last two lines.
The formula correct_counter is now

⃝⃝ (0UT)∧¬(T ∧⃝(¬T Uend))U⃝(1Uend)∧¬cUend.

The last conjunct states that no counter bit is marked as incorrect, analogously to the formula
correct_dist above. The other conjuncts state that the first counter value is 0 . . .0 and the last
counter value before end is 1 . . .1.
Finally, we have to provide a formula that can detect violations of the vertical condition. The difficulty
here is that vertically adjacent tiles are 2h(k−1,n) · (h(k−1,n)+1) steps apart. We want to mark
such tiles with universally quantified variables v1 and v2. If we now would check whether the distance
between these variables is correct by using universally quantified variables p and q as above, we
would have to rely on the formula φk,n(p,q) in the antecedent of an implication. The resulting
formula would then not be in ΣQLTLk anymore. Hence, we will use an auxiliary existentially quantified
variable b. This variable then has to encode a correct binary counter between the positions at which
v1 and v2 hold. This counter has to start with value 0 and count up to 2h(k−1,n)−1. The check of the
vertical condition is only necessary if the tiles are placed at the correct distances. So, the formula only
has to work as intended if the distances between tiles are correct. We can then check the correctness
of the counter encoded by b and ¬b similar to the correctness of the counter encoded by 0 and 1. The
universally quantified variables v1 and v2 are supposed to hold at most once between start and end in



this order. Further, they should only hold on tiles. The formula ψv is hence the conjunction of the
following formulas:

□((v1 ∨v2)→ T)

states that v1 and v2 hold only on tiles.∧
i∈{1,2}

□
(
(start∧¬end Uvi)→ (¬viU(vi∧⃝(¬viUend)))

)
states that they hold at most once between start and end, and

□(v1→⃝¬(¬v2 Uend))

that v1 has to occur before v2. The correctness of the counter is then expressed in the following
formula:

∃b
(
□(v1→⃝(¬bUT))∧□((T ∧⃝(¬T Uv2))→⃝(bUv2))∧

∀p∀q
(
φk−1,n(p,q)→

□
[(
v1 ∧ (¬v2 U(p∧ (0∨1)))∧ (¬v2 Uq)

)
→(

¬pU(p∧b)↔
(
((T → ¬⃝ (bUp))Up)↔ ¬qU(q∧⃝b)

))])
∧

□(v1→ (¬(T ∧⃝(bUT))U(T ∧⃝(bUv2))))

)
.

As mentioned above, we assume that the states from T are separated by h(k−1,n) states from {0,1}.
The variable b encodes counter values on exactly these blocks of h(k−1,n) states. The first line
ensures that b does not hold in the first block of bits after v1; the second line that b always holds on
all positions in the last block before v2. The third line introduces p and q at distance h(k−1,n) if
the antecedent φk−1,n(p,q) holds. The next lines state that if p and q hold somewhere between v1

and v2 and p marks a position in one of the blocks of bits from {0,1}, then the following condition has
to hold: Either, the next p marks a position at which b holds; then the successor bit h(k−1,n)+1
steps later satisfies b iff b does not hold on all positions of bits before p. The successor bit is encoded
one position after q. Or, the next p marks a position at which ¬b holds. Then the condition for ¬b
one step after q is analogously. The last line ensures that the counter encoded by b reaches 1 . . .1 only
once before v2. Hence, v1 and v2 are indeed placed on the encodings of vertically adjacent tiles.
Again, the formula φk−1,n(p,q) appears in the scope of one negation. So, the subformula starting
with the universal quantification of p,q is in ΠQLTLk−1 . That means that the whole formula ψv is in
Σ
QLTL
k .

The formula vertical is now stating that the two tiles marked with v1 and v2 satisfy the vertical
condition if there are marked tiles:

¬(¬v1 Uend)→
∨

(t,t′)∈V

((¬v1 U(v1 ∧ t))∧ (¬v2 U(v2 ∧ t
′))).

This completes the formula valid_tiling:

∀d∀c∀v1∀v2
(
(ψd∧ψc∧ψv)→ ♢

(
start∧ initial∧ final∧horizontal∧

correct_dist(d)∧correct_counter(c)∧vertical(v1,v2)
))



As ψv is in ΣQLTLk and ψc and ψd are in ΠQLTLk−1 and these formulas occur in the scope of one
negation while the remaining formulas are quantifier-free, the whole formula can be written as a
Π
QLTL
k formula of size polynomial in the size of T , V , H, and n which was given in unary.

We claim that in the Markov chain M we have:

PrM(valid_tiling) = 1 iff there is a valid tiling, and

PrM(valid_tiling) = 0 iff there is no valid tiling.

So, suppose there is no valid tiling for the given instance of the tiling problem. A run of the Markov
chain almost surely produces a concatenation of infinitely many words from start(T ∪ {0,1})+end.
Consider one such run ρ. We can now simply choose positions for the quantified variables d, c, v1, v2,
and b such that the formula does not holds on this run ρ. Each of the words from start(T ∪ {0,1})+end
either does not encode a tiling because the distance between the tiles or the counter are not correct
or it does not encode a valid tiling. If the distance between the tiles is not correct, we pick a tile in
the substring that is not followed by h(k−1,n) bits and make d true at that position. Note that the
formula is designed such that we can use each of the ’markers’ on each of the finite words between
start and end. So, the quantified variable d can be used to mark violations to the required distance in
all infinitely many words in which that is necessary. If the distances are correct, but the counter is
incorrect, we make c true at a bit with incorrect successor. If the finite word does encode a tiling,
either one of the formulas ¬intial, ¬final, or ¬horizontal holds when evaluated at the first
position of this finite word, or the vertical condition is violated. In the first case, we do not have to
mark any positions. In the second case, we mark two horizontally adjacent tiles within this finite
word which are not compatible with v1 and v2. These positions are separated by 2h(k−1,n) blocks of
h(k−1,n) bits. On these blocks, we make the variable b true such that it encodes a correct binary
counter using ¬b to represent 0 and b to represent 1. This counter will start with value 0 . . .0 after v1

and end with 1 . . .1 before v2. We conclude that ρ ⊨ ¬valid_tiling. So, PrM(valid_tiling) = 0
in this case.
Now, suppose there is a valid tiling f and suppose that the finite word w ∈ start(T ∪ {0,1})+end
encodes this tiling. Almost all runs ρ contain this word at some point. Let ρ′ be the suffix of a run
that starts with w. By design, we have

ρ′ ⊨initial∧ final∧horizontal∧correct_dist(d)

∧correct_counter(c)∧vertical(v1,v2)

for all possible choices of d, c, v1, v2, and b that satisfy ψd∧ψc∧ψv. Therefore,

PrM(valid_tiling) = 1.

That means that deciding whether a ΠQLTLk -formula holds almost surely and whether it holds with
positive probability in a Markov chain are both k-EXPSPACE-complete. Hence, the same result
holds for ΣQLTLk because the negations of ΣQLTLk are equivalent to ΠQLTLk formulas of the same
length. ◀

B Full proof of Theorem 4

▶ Theorem 15 (Theorem 4). Given an MDP M, aΠQLTLk -formulaφ, and opt∈ {max,min}, deciding
whether Propt

M (φ) = 1 and deciding whether Propt
M (φ)> 0 are k+1-EXPTIME-complete for any k⩾ 1.

We split up the proof into two parts in the sequel.



B.1 Proof of Theorem 4 for maximal satisfaction probabilities

First, we prove the result for opt = max which is somewhat easier.

▶ Theorem 16. Given an MDP M and a ΠQLTLk -formula φ, deciding whether Prmax
M (φ) = 1 and

deciding whether Prmax
M (φ)> 0 are k+1-EXPTIME-complete for any k⩾ 1.

Proof. Again, the upper bounds are easily obtained: From the negation of a ΠQLTLk -formula, i.e.,
a ΣQLTLk -formula, we can build a non-deterministic Büchi automaton in k-exponential time. A
deterministic Rabin automaton (of k+1-exponential size) can hence be obtained in k+1-exponential
time. Using this automaton all qualitative model-checking problems can then be solved in time
polynomial in the size of the automaton.
For the hardness proof, we will encode alternating space-bounded Turing machines. Let us recall the
definition of an alternating Turing machine (ATM). An ATM consists of a finite set of states Q, a
finite tape alphabet Σ, a transition function

δ :Q×Σ→ P(Q×Σ× {L,S,R}),

an initial state qinit, and a function g assigning to each state one of the types ∨ (existential), ∧
(universal), accept, or reject. We can safely assume that there is exactly one state of type accept and
one of type reject.
A computation of an ATM can be seen as a two player game between an existential and a universal
player: Whenever the current state is existential, the existential player chooses a move from the
possible moves given by the transition function that are interpreted as usual for a Turing machine.
Likewise, the universal player chooses the move if the current state is universal. The existential
player wins if the accepting state accept is reached. An input word is accepted if the existential
player has a winning strategy starting from the initial configuration with the input word on the tape
and the head in the initial state on the first letter of the input word. W.l.o.g. we assume that for
each existential or universal state there are exactly two possible moves for each tape symbol. The
accepting and rejecting state do not have any successors. More precisely, the transition function
δ : Q×Σ→ P(Q×Σ× {L,S,R}) has the property that the image of (q,a) has size two for all
existential or universal states q and letters a. Hence, we regard δ as a function of the form

(Q\ {accept,reject})×Σ× {zero,one}→Q×Σ× {L,S,R}.

Furthermore, we can assume that it is impossible to repeat configurations in a computation of the
ATM and that hence all computations end in an accepting or rejecting state.
It is well-known that the class of problems solvable by a k-exponentially space-bounded ATM
coincides with the class k+1-EXPTIME [5]. So, let T = (Q,Σ,δ,qinit,g) be an ATM satisfying the
assumptions mentioned above. Assume that on an input word of length n the space used by T is
bounded by h(k,n). Recall that we defined h(0,n) = n and h(k+1,n) = 2h(k,n) ·h(k,n) for all k
and n. So, for each k, the function h(k,n) is k-exponential in n.
Let w ∈ Σn be an input word of length n. We will construct an MDP M and a ΠQLTLk -formula
input_accepted of size polynomial in the size of T and n such that Prmax

M (input_accepted) =
1 if and only if T accepts w, i.e., if the existential player has a winning strategy on the initial
configuration with w on the tape. Further, Prmax

M (input_accepted) = 1 will hold if and only if
Prmax

M (input_accepted)> 0.
We define the extended tape alphabet to be

Γ = Σ∪Σ×Q∪ {blank}.

A configuration of the Turing machine T on input w can now be represented by a string of length
h(k,n) over the extended tape alphabet Γ that contains exactly one symbol from Σ×Q. This symbol



marks the position of the head together with the current state. The symbol blank represents empty
tape cells. The idea is to construct an MDP in which a scheduler can produce sequences over the
extended tape alphabet separated by a marker step indicating a new step or comp indicating a new
computation. A run of the MDP will consist of the concatenation of the encodings of potential
computations. If the encoded computations are correct computations, a run will contain infinitely
many finite encodings of computations. The formula we construct requires the scheduler to construct
the correct initial configuration at the beginning of each computation. Afterwards, the scheduler has
to construct the correct successor configurations in each step. The successor move here can be chosen
by the scheduler if the state of a configuration is existential. If the state is universal, the successor
move is chosen randomly. As soon as the accepting or rejecting state is reached, the scheduler has to
end the computation and start a new one. If the scheduler can correctly construct all computations and
always end in an accepting state, no matter which moves are randomly chosen in universal states, the
formula holds. As almost surely all possible strategies for the universal player are played by chance
at some point, the formula can only hold with positive probability, and then already with probability
1, if the input word w is accepted by the ATM T.
The MDP M, depicted in Figure 6 is quite simple: It consists of states comp, step1, step2, step3, step4,
and one state for each extended tape symbol γ ∈ Γ . States are labeled with their name. Additionally,
the states of the form stepi are labeled with step and have further additional lables: step1 is labeled
with zero and E; step2 is labeled with one and E; step3 is labeled with zero and U; and step4 is
labeled with one and U. The labels zero and one are used to indicate which of the two successor
moves has been chosen. The labels E and U denote which player has made the choice of the move.
The initial state is comp. In the states comp, and stepi, i = 1, . . . ,4, there is one action enabled for
each state in Γ , leading to that state with probability 1. In each state from Γ , there is an action to each
state with probability 1 except for the states step3 and step4. States step3 and step4 can be reached
from each state from Γ via a randomized action leading to these states with probability 1/2 each.
These are the only probabilistic transitions.
We will now construct the formula input_accepted. The first requirement we impose on a run of
the MDP is that a state labeled with comp or step is always followed by a block of exactly h(k,n)
symbols from Γ before the next state labeled with comp or step. We express this in the following
formula distance, again exploiting the ΣQLTLk -formulas φk,n(p,q) from [21]:

∀p∀q
(
φk,n(p,q)→[
□
(
((comp∨ step)∧⃝p)→⃝(Γ U(q∧ (comp∨ step)))

)])
.

Note that this formula is in ΠQLTLk as the subformula φk,n(p,q) which is in ΣQLTLk appears in the
scope of one negation as the antecedent of an implication.
The next requirement is that the state comp is always followed by an encoding of the initial con-
figuration. We write w1 . . .wn for the input word w. The requirement is expressed by the formula
initial:

□
(
comp→

[
⃝ (w1,qinit)∧

∧
2⩽i⩽n

⃝iwi∧⃝n+1(blank U(comp∨ step))
])

.

Here (w1,qinit) is the letter from the extended tape alphabet, that indicates that the head is on the first
letter of the input word in the initial state. As n is given in unary, this formula is an LTL-formula
polynomial in the size of the input.
The next requirement is that each block of extended tape symbols contains exactly one symbol from
Σ×Q to ensure that it encodes a configuration. The formula configuration is:

□
(
(comp∨ step)→⃝

[
¬(comp∨ step)U(Σ×Q∧⃝(¬Σ×QU(comp∨ step)))

])
.
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Figure 6 The MDP M. The state depicted as Γ represents the behavior of each state γ ∈ Γ . I.e. from each
state, there is one action to each state in Γ with probability 1. Further, from all states in Γ , there are actions
leading to states comp, step1 and step2 with probability 1, as well as a randomized action (bold lines) leading to
states step3 and step4 with probability 1/2 each.

The additional label in the states labeled with step denotes which player, E or U, is allowed to move
and which of the two possible successor moves zero or one. If the universal player U is allowed to
move, the decision is made randomly. The moves of the existential player E are determined by the
scheduler. The formulamove checks whether the scheduler always chooses the right player to make
the next move. Let exists denote all symbols of the extended tape alphabet containing an existential
state from Q and forall denote all symbols containing a universal state. The formula move is the
following:

□(exists→ (¬(comp∨ step)UE))∧□(forall→ (¬(comp∨ step)UU))

The crucial point to check now is that successive configurations are correct with respect to the
transition function of the ATM T and the successor move, zero or one, denoted in the state labeled
step separating the two configurations. The (extended) content of a tape cell depends on the chosen
move and on the content of the same cell in the previous configuration as well as its two neighbors
because a tape cell denoted by a symbol of the extended tape alphabet can only change if the head was
placed there or moves there. Let B denote the border of the tape, i.e., the set of the states labeled with
comp or step. As the bit zero or one determines the successor move, we can define two relations
∇zero,∇one ⊆ (Γ ∪B)4. A tuple of symbols (γ1,γ2,γ3,ρ) is in∇i if the content of a cell is ρ after
move i if the cell itself contained γ2 and its neighbors were γ1 and γ3 in the previous configuration.
So, only γ1 or γ3 can be in B for a valid tuple. If ρ is not equal to γ2, then one of the symbols γ1,
γ2, and γ3 has to contain the state of the ATM before the transition. Together with the knowledge
whether move zero or one was chosen, the new tape content ρ is then uniquely defined. In our



encoding of a computation, the left neighbor of a cell in the previous configuration and the cell itself
are placed h(k,n)+2 steps apart. The formula successor checks the correctness of all successor
configurations. We use universally quantified variables p and q that satisfy φk,n(p,q). The cell at
which p is placed is the cell whose successor has to be checked. The successor cell can be found at
the position directly after q. The left neighbor of the cell marked with p satisfies⃝p. Finally, the
move that is chosen can be found by checking whether the next state labeled with comp or step is
labeled with zero or one. If it is labeled with comp we are in the final configuration of a computation
and no successor configuration has to be checked. The formula successor_zero checks whether the
successor is correct if the chosen move is zero.

∀p∀q
(
φk,n(p,q)→

[
□(⃝(p∧ Γ ∧ (¬(comp∨ step)Uzero))→∨

(γ1,γ2,γ3,ρ)∈∇zero

(γ1 ∧⃝γ2 ∧⃝2γ3 ∧♢(q∧⃝ρ)))
])

.

The formula successor_oneworks completely analogously with zero replaced by one. The formula
successor is simply successor_zero∧ successor_one.
The last requirement on a valid sequence of encodings of computations we pose is that as soon as
an accepting or rejecting state is reached, the computation is ended. This is indicated by the state
comp following the configuration. Immediately afterwards a new computation is started. Let final be
referring to all extended tape symbols that contain an accepting or rejecting state. The formula end
requires that all configurations with a final state are followed by comp:

□(final→ (¬stepUcomp)).

Finally, we can state that all computations encoded in a run lead to an accepting state. Let reject denote
all extended tape symbols with a rejecting state. The formula input_accepted is the conjunction of
all formulas we described:

distance∧ initial∧configuration∧move∧ successor∧end∧□¬reject.

As all the formulas in the conjunction are contained in ΠQLTLk this formula itself is contained in
Π
QLTL
k .

We claim that Prmax
M (input_accepted) = 1 iff the input word w is accepted by T. Assume that w is

accepted. So, the existential player has a winning strategy from the initial configuration. This strategy
chooses a move for each configuration. It can be seen as a function from

Γh(k,n)→ {zero,one}.

All steps a scheduler has to take in order to satisfy input_accepted are uniquely determined by
the history so far except for the choice between states step1 and step2 when a configuration with an
existential state is completed. If the scheduler makes this choice of the next move according to the
winning strategy and otherwise constructs correct successor configurations, all computations will lead
to the accepting state no matter which moves are randomly chosen when it is the universal player’s
turn.
Assume now that the universal player has a winning strategy. As the length of possible computations
is bounded by the number of possible configurations, in each of the infinitely many computations
encoded in a run, there is a positive probability that the randomly chosen moves of the universal player
agree with her winning strategy in each step. Hence, the probability that eventually a rejecting state is
reached if all requirements on a correct encoding are satisfied is 1. So, Prmax

M (input_accepted) = 0.
We also see that Prmax

M (input_accepted) = 1 iff Prmax
M (input_accepted)> 0.

Hence, checking for a ΠQLTLk -formula whether the its maximal satisfiability probability is 1 (or > 0)
in MDPs is k+1-EXPTIME-complete. ◀
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Figure 7 The MDP M. The behavior is probabilistic except for the choice in the state aux. When entering
the cluster of states Γ or the cluster with the two bits 0 and 1, one of the states in the cluster is chosen randomly.
Further all states in Γ have only the outgoing transition randomly moving to 0 or 1. The state aux is only an
auxiliary state for the graphical representation. That means that in states 0 and 1 two actions are enabled. The
first moving randomly to any state except for step3; the second moving randomly to any state except for step4.

B.2 Proof of Theorem 4 for minimal satisfaction probabilities

Now, we prove the result for the minimal satisfaction probabilities.

▶ Theorem 17. Given an MDP M and a ΠQLTLk -formula φ, deciding whether Prmin
M (φ) = 1 and

deciding whether Prmin
M (φ)> 0 are k+1-EXPTIME-complete for any k⩾ 1.

Proof. The upper bounds are obtained as in the proof of Theorem 4 directly via the construction of a
deterministic Rabin automaton for a ΠQLTLk -formula.
For the proof of the lower bound, let T = (Q,Σ,δ,qinit,g) be an ATM that is k-exponentially space-
bounded. More precisely, assume that on an input word of length n, the space used by T is bounded
by 2h(k,n)−1. Recall that we defined h(0,n) = n and h(k+1,n) = 2h(k,n) ·h(k,n) for all k and
n. So, for each k, the function 2h(k,n)−1 is k-exponential in n. As in the proof of Theorem 4, we
further assume that the transition function has the form

(Q\ {accept,reject})×Σ× {zero,one}→Q×Σ× {L,S,R}

and that it is impossible to repeat a configuration, so each computation ends in the accepting state
accept or the rejecting state reject after finitely many steps.
As the minimal satisfaction probability corresponds to a statement about all schedulers, we cannot let
a scheduler construct correct computations anymore. Instead potential sequences of configurations



are produced randomly. The scheduler now takes the role of the universal player trying to minimize
the probability that eventually a correct accepting computation is produced. Checking that, e.g.,
eventually an encoding is produced in which the distances between the beginnings of the computation
steps are correct now becomes more difficult. A pair of universally quantified variables p and q placed
at the correct distance by the formula φk,n(p,q) is not sufficient anymore. The reason is that the
♢-operator implicitly contains an existential quantification; for each pair of p and q a different starting
point can be referred to by ♢. To circumvent this problem, we employ two ideas that we have seen in
the hardness proof for Markov chains, Theorem 2, already: A binary counter of (k−1)-exponential
length separating the content of the encoding and quantified variables as markers for violations to
various conditions.
Again, we let Γ = Σ∪Σ×Q∪ {blank} be the extended tape alphabet. A computation will be
represented similar to a tiling above by a function f : {1, . . . ,2h(k,n)−1}× {0, . . . ,m}→ Γ . Each row
of the grid stands for one configuration. Such a function will then be encoded by a finite word of the
following form:

comp,

h(k−1,n) steps︷ ︸︸ ︷
0,0,0, . . . ,0 ,f(1,0),

h(k−1,n) steps︷ ︸︸ ︷
1,0,0, . . . ,0 ,f(2,0),

h(k−1,n) steps︷ ︸︸ ︷
0,1,0, . . . ,0 ,f(3,0), . . . ,

f(2h(k−1,n)−1,0),

h(k−1,n) steps︷ ︸︸ ︷
1,1,1, . . . ,1 ,

step,

h(k−1,n) steps︷ ︸︸ ︷
0,0,0, . . . ,0 ,f(1,1),

h(k−1,n) steps︷ ︸︸ ︷
1,0,0, . . . ,0 ,f(2,1),

h(k−1,n) steps︷ ︸︸ ︷
0,1,0, . . . ,0 ,f(3,1), . . . ,

...

step,

h(k−1,n) steps︷ ︸︸ ︷
0,0,0, . . . ,0 ,f(1,m),

h(k−1,n) steps︷ ︸︸ ︷
1,0,0, . . . ,0 ,f(2,m),

h(k−1,n) steps︷ ︸︸ ︷
0,1,0, . . . ,0 ,f(3,m), . . . ,

f(2h(k−1,n)−1,m),

h(k−1,n) steps︷ ︸︸ ︷
1,1,1, . . . ,1 ,comp

The MDP M for the reduction, depicted in Figure 7, contains states comp, step1, step2, step3, step4,
one state for each extended tape symbol γ ∈ Γ as in the previous proof, and additionally two states
0 and 1. Starting from the state comp, the process randomly moves to one of the two states 0 and
1. In these states, two actions α0 and α1 are enabled. Action α0 randomly leads to any state except
for step4; action α1 to any state except for step3. In this way, a scheduler can determine which of
the states labeled with U indicating that it is the universal player’s move to go to whenever it is
probabilistically chosen that one of these states will be visited. From all other states, the process
moves back to one of the states 0 and 1. A run of the MDP M almost surely is the concatenation of
infinitely many finite words separated by the state labeled comp. These finite words are potential
encodings of an accepting computation of T.
The formula input_accepted′ that we construct now expresses that eventually a correct accepting
computation is encoded that respects the successor moves indicated by zero or one in the step-states.
A correct computation also has to contain the correct labels E or U indicating which player’s move it
is after each configuration. In this way, a scheduler takes the role of the universal player U in a valid
encoding of a computation.
The conditions for a valid encoding of a computation are very similar to the conditions for a valid
encoding of tiling as in the proof of Theorem 2. Checking that the distance length of the binary
counters is correct can be done completely analogously. We use a quantified variable d to mark
violations. We only have to appropriately exchange the names of the propositions in the formula ψd
used there. Then this formula expresses that d can only be placed at positions labeled comp, step,



or with γ ∈ Γ , that it can occur at most once between two states labeled comp and that a sequence
of bits following a marked position is always of length not equal to h(k− 1,n). We denote the
modified formula byψ′

d. The formula correct_dist′ then becomes ¬d∧⃝(¬dUcomp). Evaluated
at a state labeled comp it makes sure that no violation to the length of the counter is marked before
the next state comp. If we now universally quantify d, all placements of d somewhere between
any successive occurrences of comp where the correct length of the counters is not adhered to are
considered. Similarly, we can adapt the formulas ψc and correct_counter from the proof of
Theorem 2 by minor changes exchanging the used atomic propositions appropriately. We denote the
modified formulas by ψ′

c and correct_counter′.
The formula config_follows expresses that there is exactly one symbol from Σ×Q before step∨
comp holds:

⃝
[
¬(step∨ comp)U(Σ×Q∧⃝(¬Σ×QU(step∨ comp)))

]
.

The formula configuration′ evaluated at comp states that this condition holds on all encoded
configurations before the next comp:

config_follows∧⃝((step→ config_follows)Ucomp).

The formula initial′ checks that the correct initial configuration is encoded first:

⃝((0∨1)U((w1,qinit)∧⃝((0∨1)U(w2 ∧ · · ·∧ (wn∧⃝((0∨1∨blank)Ustep) . . .).

The formula end′ using final to denote an accepting or rejecting state makes sure that the computation
ends after a final state:[

final→ (¬stepUcomp)
]

Ucomp.

Let again accept denote letters from Γ containing an accepting state. Then, accept′ is the formula

⃝(¬(¬accept Ucomp))

stating that an accepting state occurs before the next comp. Next, we make sure that the correct player
determines the next move by defining the formulamove′ using exists and forall as before to denote
an extended tape alphabet with an existential or universal state, respecively:[

exists→ (¬stepUE)
]

Ucomp∧
[
forall→ (¬stepUU)

]
Ucomp.

Finally, we have to make sure that the successor configurations are correct. We use variables v1 and v2

to mark a cell and its incorrect successor. For the correct placement of these markes – at most once in
the correct order between two states labeled comp, only on extended tape symbols, and at the correct
distance – we reuse the formula ψv from the proof of Theorem 2. After the necessary renaming of
propositions in the formula, we obtain the formula ψ′

v. This formula uses the existentially quantified
variable b to encode an additional counter. Nevertheless ψ′

v is in ΣQLTLk . For the transition relation,
we also need markers on the neighboring tape cells (or the borders marked by step or comp which
we again denote by B in case v1 is placed at the first or last cell of a configuration). We introduce
universally quantified variables u1 and u2. The Formula ψu makes sure these are always placed on
these neighboring cells:

□
[
((B∨ Γ)∧⃝((0∨1)Uv1))→ u1

]
∧□

[
v1→ (⃝((0∨1)Uu3))

]
.

We again define the two relations∇zero,∇one ⊆ (Γ ∪B)4. A tuple of symbols (γ1,γ2,γ3,ρ) is in
∇i if the content of a cell is ρ after move i if the cell itself contained γ2 and its neighbors were γ1



and γ3 in the previous configuration. The formula successor_zero′ states that the cells marked by
u1, v1, u2, and v3 satisfy the relation∇zero if the move chosen at the corresponding step is zero:

⃝
[
¬compU(v1 ∧ (¬stepUzero))

]
→[ ∧

(γ1,γ2,γ3,ρ)∈∇zero

¬u1 U(u1 ∧γ1)∧¬v1 U(v1 ∧γ2)∧¬u2 U(u2 ∧γ3)∧¬v2 U(v2 ∧ρ)
]
.

The formula successor_one′ again works complete analogously. Put together, we obtain the formula
successor′ that simply is successor_zero′∧ successor_one′.
This completes the list of subformulas for the formula input_accepted′:

∀d∀c∀v1∀v2∀u1∀u2(
(ψ′
d∧ψ

′
c∧ψ

′
v∧ψu)→ ♢

(
comp∧correct_dist′∧correct_counter′∧

initial′∧configuration′∧move′∧ successor′∧end′∧accept′
))

.

It remains to show that Prmin
M (input_accepted′) = 1 iff the existential player has a winning strategy

iff Prmin
M (input_accepted′) > 0. The argument goes as before: If there is a winning strategy for

the existential player, a correct accepting computation no matter which moves the scheduler as the
universal player chooses is encoded with probability 1. On the encoding of a correct computation, no
markers that satisfy ψ′

d∧ψ
′
c∧ψ

′
v∧ψu can be placed. Also all LTL-expressible conditions hold

and hence the formula holds with probability 1 under any scheduler.
If, however, there is a winning strategy for the universal player, the scheduler can follow this strategy.
Each finite word between two states labeled comp then violates one condition. Either this violation is
already detected by the LTL-expressible conditions, or a universally quantified marker indicating a
violation of the remaining conditions can be placed on this finite word. So, no suffix satisfies the whole
formula after the ♢-operator and the minimal satisfaction probability of input_accepted′ is 0. ◀

C Argument for the restriction to one quantifier in the proof of Theorem 10

We sketch that ΠQLTL1 -model checking can be reduced to model checking of formulas of the form
∀xφ with only one quantifier in Markov chains and MDPs. Let M be an MDP with state space S and
let ϑ be a ΠQLTL1 -formula of the form ∀x0 . . .∀xn−1ψ. We construct an MDP M′ by replacing each
state s in S by a chain s0, . . . ,sn−1 with transition from si to si+1 for i < n−1. From the last state
sn−1 of such a chain, the same transtions to states t0 are available as between s and t in M. States of
the form s0 are additionally labeled with #. We can now mimic the variables xi by replacing them by
⃝ix. In order to do that we translate the formula ψ by the following translation function T :

T(a) = a for a ∈ AP,
T(xi) =⃝ix,
T(¬χ) = ¬T(χ),
T(χ1 ∧χ2) = T(χ1)∧T(χ2),
T(⃝χ) =⃝nχ,
T(χ1 Uχ2) = (¬#∨T(χ1))U(#∧T(χ2)).

So, also in the formula the transition from a step in the original MDP M to n steps through a chain
in M′ is respected after the translation. The marker # at the beginning of the chains makes sure
that in the U-operator only the first positions in a chain are considered. Now, it is not hard to see
that PrSM,sinit

(∀x0 . . .∀xn−1ψ) = PrS
′

M,sinit,0
(∀x.T(ψ)) where S′ and S are schedulers that behave the

same in M and M′ when considereing the chains in M′ as single states .
So, the restriction to one quantified variable does not decrease the complexity of the model-checking
problems for MDPs or Markov chains.
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