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Abstract. Unambiguous automata, i.e., nondeterministic automata with
the restriction of having at most one accepting run over a word, have
the potential to be used instead of deterministic automata in settings
where nondeterministic automata can not be applied in general. In this
paper, we provide a polynomially time-bounded algorithm for probabilis-
tic model checking of discrete-time Markov chains against unambiguous
Büchi automata specifications and report on our implementation and
experiments.

1 Introduction

Unambiguity is a widely studied generalization of determinism with many im-
portant applications in automata-theoretic approaches, see e.g. [13,14]. A non-
determistic automaton is said to be unambiguous if each word has at most one
accepting run. In this paper we consider unambiguous Büchi automata (UBA)
over infinite words. Not only are UBA as expressive as the full class of non-
deterministic Büchi automata (NBA) [2], they can also be exponentially more
succinct than deterministic automata. For example, the language “eventually b
occurs and a appears k steps before the first b” over the alphabet {a, b, c} is rec-
ognizable by a UBA with k+1 states (see the UBA on the left of Fig. 1), while a
deterministic automaton requires at least 2k states, regardless of the acceptance
condition, as it needs to store the positions of the a’s among the last k input
symbols. Languages of this type arise in a number of contexts, e.g., absence of
unsolicited response in a communication protocol – if a message is received, then
it has been sent in the recent past.

Furthermore, the NBA for linear temporal logic (LTL) formulas obtained
by applying the classical closure algorithm of [42,41] are unambiguous. The
generated automata moreover enjoy the separation property: the languages of
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Fig. 1. Two UBA (where final states are depicted as boxes)

the states are pairwise disjoint. Thus, while the generation of deterministic ω-
automata from LTL formulas involves a double exponential blow-up in the worst
case, the translation of LTL formulas into separated UBA incurs only a sin-
gle exponential blow-up. This fact has been observed by several authors, see
e.g. [17,36], and recently adapted for LTL with step parameters [43,12].

These nice properties make UBA a potentially attractive alternative to de-
terministic ω-automata in those applications for which general nondeterministic
automata are not suitable. However reasoning about UBA is surprisingly dif-
ficult. While many decision problems for unambiguous finite automata (UFA)
are known to be solvable in polynomial time [39], the complexity of several fun-
damental problems for unambiguous automata over infinite words is unknown.
This, for instance, applies to the universality problem, which is known to be
in P for deterministic Büchi automata (DBA) and PSPACE-complete for NBA.
However, the complexity of the universality problem for UBA is a long-standing
open problem. Polynomial-time solutions are only known for separated UBA and
other subclasses of UBA [9,27].

In the context of probabilistic model checking, UFA provide an elegant ap-
proach to compute the probability for a regular safety or co-safety property in
finite-state Markov chains [7]. The use of separated UBA for a single exponential-
time algorithm that computes the probability for an LTL formula in a Markov
chain has been presented in [17]. However, separation is a rather strong condition
and non-separated UBA (and even DBA) can be exponentially more succinct
than separated UBA, see [9]. This motivates the design of algorithms that oper-
ate with general UBA rather than the subclass of separated UBA. Algorithms
for the generation of (possibly non-separated) UBA from LTL formulas that
are more compact than the separated UBA generated by the classical closure-
algorithm have been realized in the tool Tulip [35,34] and the automata library
SPOT [18].

The main theoretical contribution of this paper is a polynomial-time algo-
rithm to compute the probability measure PrM(Lω(U)) of the set of infinite
paths generated by a finite-state Markov chain M that satisfy an ω-regular
property given by a (not necessarily separated) UBA U . The existence of such
an algorithm has previously been claimed in [7,6,35] (see also [34]). However
these previous works share a common fundamental error. Specifically they rely
on the claim that if PrM(Lω(U)) > 0 then there exists a state s of the Markov
chainM and a state q of the automaton U such that q accepts almost all trajec-
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tories emanating from s (see [7, Lemma 7.1], [6, Theorem 2]3 , and [35, Section
3.3.1]). While this claim is true in case U is deterministic [15], it need not hold
when U is merely unambiguous. Indeed, as we explain in Remark 3, a coun-
terexample is obtained by taking U to be the automaton on the right in Fig. 1
and M the Markov chain that generates the uniform distribution on {a, b}ω.
The long version of this paper [4] gives a more detailed analysis of the issue,
decribing precisely the nature of the errors in the proofs of [7,35,6]. To the best
of our knowledge these errors are not easily fixable, and the present paper takes
a substantially different approach.

Our algorithm involves a two-phase method that first analyzes the strongly
connected components (SCCs) of a graph obtained from the product of M and
U , and then computes the value PrM(Lω(U)) using linear equation systems.
The main challenge is the treatment of the individual SCCs. For a given SCC
we have an equation system comprising a single variable and equation for each
vertex (s, q), with s a state ofM and q a state of U . We use results in the spectral
theory of non-negative matrices to argue that this equation system has a non-zero
solution just in case the SCC makes a non-zero contribution to PrM(Lω(U)). In
order to compute the exact value of PrM(Lω(U)) the key idea is to introduce an
additional normalization equation. To obtain the latter we identify a pair (s,R),
where s is a state of the Markov chain M and R a set of states of automaton
U such that almost all paths starting in s have an accepting run in U when
the states in R are declared to be initial. The crux of establishing a polynomial
bound on the running time of our algorithm is to find such a pair (s,R) efficiently
(in particular, without determinizing U) by exploiting structural properties of
unambiguous automata.

As a consequence of our main result, we obtain that the almost universality
problem for UBA, which can be seen as probabilistic variant of the universality
problem for UBA and which asks whether a given UBA accepts almost all infinite
words, is solvable in polynomial time.

The second contribution of the paper is an implementation of the new al-
gorithm as an extension of the model checker PRISM, using the automata li-
brary SPOT [18] for the generation of UBA from LTL formulas and the COLT

library [26] for various linear algebra algorithms. We evaluate our approach us-
ing the bounded retransmission protocol case study from the PRISM benchmark
suite [33] as well as specific aspects of our algorithm using particularily “chal-
lenging” UBA.

Outline. Section 2 summarizes our notations for Büchi automata and Markov
chains. The theoretical contribution will be presented in Section 3. Section 4
reports on the implementation and experimental results. Section 5 contains con-
cluding remarks. The appendix of this full version [4] contains the counterexam-
ples for the previous approaches, proofs and further details on the implementa-

3 As the flaw is in the handling of the infinite behavior, the claim and proof of Lemma 1
in [6], dealing with unambiguous automata over finite words, remain unaffected.
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tion and results of experimental studies. Further information is available on the
website [1] as well.

2 Preliminaries

We suppose the reader to be familiar with the basic notions of ω-automata and
Markov chains, see e.g. [23,31]. In what follows, we provide a brief summary
of our notations for languages and the uniform probability measure on infinite
words, Büchi automata as well as Markov chains.

Prefixes, cylinder sets and uniform probability measure for infinite words.
Throughout the document, we suppose Σ is a finite alphabet with two or more
elements. If w = a1 a2 a3 . . . ∈ Σω is an infinite word then Pref (w) denotes
the set of finite prefixes of w, i.e., Pref (w) consists of the empty word and all
finite words a1 a2 . . . an where n > 1. Given a finite word x = a1 a2 . . . an ∈
Σ∗, the cylinder set of x, denoted Cyl(x), is the set of infinite words w ∈ Σω

such that x ∈ Pref (w). The set Σω of infinite words over Σ is supposed to be
equipped with the σ-algebra generated by the cylinder sets of the finite words
and the probability measure given by Pr

(
Cyl(a1 a2 . . . an)

)
= 1/|Σ|n where

a1, . . . , an ∈ Σ. Note that all ω-regular languages over Σ are measurable. We
often make use of the following lemma (see Appendix B for its proof):

Lemma 1. If L ⊆ Σω is ω-regular and Pr(L) > 0 then there exists x ∈ Σ∗ such
that Pr

{
w ∈ Σω : xw ∈ L

}
= 1.

Büchi automata. A nondeterministic Büchi automaton is a tupleA = (Q,Σ, δ,Q0, F )
where Q is a finite set of states, Q0 ⊆ Q is a set of initial states, Σ denotes the
alphabet, δ : Q × Σ → 2Q denotes the transition function, and F is a set of
accepting states. We extend the transition function δ : 2Q × Σ → 2Q in the
standard way for subsets of Q and finite words over Σ. Given states q, p ∈ Q
and a finite word x = a1 a2 . . . an ∈ Σ∗ then a run for x from q to p is a sequence
q0 q1 . . . qn ∈ Q+ with q0 = q, qn = p and qi+1 ∈ δ(qi, ai+1) for 0 6 i < n.
A run in A for an infinite word w = a1 a2 a3 . . . ∈ Σω is an infinite sequence
ρ = q0 q1 . . . ∈ Qω such that qi+1 ∈ δ(qi, ai+1) for all i ∈ N and q0 ∈ Q0. Run
ρ is called accepting, if qi ∈ F for infinitely many i ∈ N. The language Lω(A)
of accepted words consists of all infinite words w ∈ Σω that have at least one
accepting run. If R ⊆ Q then A[R] denotes the automaton A with R as set of
initial states. For q ∈ Q, A[q] = A[{q}]. If A is understood from the context,
then we write Lω(R) rather than Lω(A[R] ) and Lω(q) rather than Lω(A[q] ).
A is called deterministic if Q0 is a singleton and |δ(q, a)| 6 1 for all states q and
symbols a ∈ Σ and unambiguous if each word w ∈ Σω has at most one accept-
ing run in A. Clearly, each deterministic automaton is unambiguous. We use the
shortform notations NBA, DBA and UBA for nondeterministic, deterministic
and unambiguous Büchi automata, respectively.
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Markov chains. In this paper we only consider finite-state discrete-time Markov
chains. Formally, a Markov chain is a triple M = (S, P, ι) where S is a finite
set of states, P : S × S → [0, 1] is the transition probability function satisfying∑
s′∈S P (s, s′) = 1 for all states s ∈ S and ι an initial distribution on S. We write

PrM to denote the standard probability measure on the infinite paths ofM. For
s ∈ S, the notation PrMs will be used for PrMs whereMs = (S, P,Dirac[s]) and
Dirac[s] : S → [0, 1] denotes the Dirac distribution that assigns probability 1
to state s and 0 to all other states. If L ⊆ Sω is measurable then PrM(L) is a
shortform notation for the probability forM to generate an infinite path π with
π ∈ L.

Occasionally, we also consider Markov chains with transition labels in some
alphabet Σ. These are defined as triplesM = (S, P, ι) where S and ι are as above
and the transition probability function is of the type P : S×Σ×S → [0, 1] such
that

∑
(a,s′)∈Σ×S P (s, a, s′) = 1 for all states s ∈ S. If L ⊆ Σω is measurable

then PrM(L) denotes the probability measure of the set of infinite paths π where
the projection to the transition labels constitutes a word in L. Furthermore,
if M[Σ] = (S, P, ι) is a transition-labeled Markov chain where S = {s} is a

singleton and P (s, a, s) = 1/|Σ| for all symbols a ∈ Σ, then PrM[Σ](L) = Pr(L)
for all measurable languages L.

3 Analysis of Markov chains against UBA-specifications

The task of the probabilistic model-checking problem for a given Markov chainM
and NBA A is to compute PrM(Lω(A)) whereM is either a plain Markov chain
and the alphabet of A is the state space ofM or the transitions ofM are labeled
by symbols of the alphabet of A. The positive model-checking problem for M
and A asks whether PrM(Lω(A)) > 0. Likewise, the almost-sure model-checking
problem for M and A denotes the task to check whether PrM(Lω(A)) = 1.
While the positive and the almost-sure probabilistic model-checking problems
for Markov chains and NBA are both known to be PSPACE-complete [40,15], the
analysis of Markov chains against UBA-specification can be carried out efficiently
as stated in the following theorem:

Theorem 2. Given a Markov chain M and a UBA U , the value PrM(Lω(U))
is computable in time polynomial in the sizes of M and U .

Remark 3. The statement of Theorem 2 has already been presented in [5] (see
also [35,6]). However, the presented algorithm to compute PrM(Lω(U)) is flawed.
This approach, rephrased for the special case where the task is to compute
Pr(Lω(U)) for a given positive UBA U (which means a UBA where Pr(Lω(U)) >
0) relies on the mistaken belief that there is at least one state q in U such that
Pr(Lω(U [q])) = 1. However, such states need not exist. To illustrate this, we
consider the UBA U with two states qa and qb and δ(qa, a) = δ(qb, b) = {qa, qb}
and δ(qa, b) = δ(qb, a) = ∅. (See the UBA on the right of Fig. 1.) Both states
are initial and final. Clearly, Lω(U [qa]) = aΣω and Lω(U [qb]) = bΣω. Thus, U is
universal and Pr(Lω(U)) = 1, while Pr(Lω(U [qa])) = Pr(Lω(U [qb])) = 1

2 .
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Outline of Section 3. The remainder of Section 3 is devoted to the proof of The-
orem 2. We first assume that the Markov chainM generates all words according
to a uniform distribution and explain how to compute the value Pr(Lω(U)) for a
given UBA U in polynomial time. For this, we first address the case of strongly
connected UBA (Section 3.1) and then lift the result to the general case (Sec-
tion 3.2). The central idea of the algorithm relies on the observation that each
positive, strongly connected UBA has “recurrent sets” of states, called cuts. We
exploit structural properties of unambiguous automata for the efficient construc-
tion of a cut and show how to compute the values Pr(Lω(U [q])) for the states of
U by a linear equation system with one equation per state and one equation for
the generated cut. Furthermore, positivity of a UBA U (i.e., Pr(Lω(U)) > 0) is
shown to be equivalent to the existence of a positive solution of the system of
linear equations for the states. Finally, we explain how to adapt these techniques
to general Markov chains (Section 3.3).

3.1 Strongly connected UBA

We start with some general observations about strongly connected Büchi au-
tomata under the probabilistic semantics. For this, we supposeA = (Q,Σ, δ,Q0, F )
is a strongly connected NBA where Q0 and F are nonempty. Clearly, Lω(q) 6= ∅
for all states q and

Pr(Lω(A)) > 0 iff Pr(Lω(q)) > 0 for some state q

iff Pr(Lω(q)) > 0 for all states q

Moreover, almost all words w ∈ Σω \ Lω(A) have a finite prefix x with
δ(Q0, x) = ∅ (for the proof see Lemma 18 in Appendix C):

Lemma 4 (Measure of strongly connected NBA). For each strongly con-
nected NBA A with at least one final state, we have:

Pr(Lω(A)) = 1− Pr
{
w ∈ Σω : w has a finite prefix x with δ(Q0, x) = ∅

}

In particular, A is almost universal if and only if δ(Q0, x) 6= ∅ for all finite words
x ∈ Σ∗. This observation will be crucial at several places in the soundness proof
of our algorithm for UBA, but can also be used to establish PSPACE-hardness
of the positivity (probabilistic nonemptiness) and almost universality problem
for strongly connected NBA (see Theorem 27 in Appendix C). For computing
Pr(Lω(U)) given a UBA U , it suffices to compute the values Pr(Lω(q)) for the
(initial) states of U as we have

Pr(Lω(U)) =
∑

q∈Q0

Pr(Lω(q))

Furthermore, in each strongly connected UBA, the accepting runs of almost
all words w ∈ Lω(U) visit each state of U infinitely often (see Theorem 29 in
Appendix D.1).
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Deciding positivity for strongly connected UBA. The following lemma
provides a criterion to check positivity of a strongly connected UBA in polyno-
mial time using standard linear algebra techniques.

Lemma 5. Let U be a strongly connected UBA with at least one initial and one
final state, and

(∗) ζq =
1

|Σ| ·
∑

a∈Σ

∑

p∈δ(q,a)
ζp for all q ∈ Q

Then, the following statements are equivalent:

(1) Pr(Lω(U)) > 0,
(2) the linear equation system (*) has a strictly positive solution, i.e., a solution

(ζ∗q )q∈Q with ζ∗q > 0 for all q ∈ Q,
(3) the linear equation system (*) has a non-zero solution.

Given the strongly connected UBA U with at least one final state, we define a
matrix M ∈ [0, 1]Q×Q by Mp,q = 1

|Σ| |{a ∈ Σ : q ∈ δ(p, a)}| for all p, q ∈ Q. Since

U is strongly connected, M is irreducible. Write ρ(M) for the spectral radius
of M . We will use the following Lemma in the proof of Lemma 5.

Lemma 6. We have ρ(M) ≤ 1. Moreover ρ(M) = 1 if and only if Pr(Lω(U)) >
0.

Proof. For p, q ∈ Q and n ∈ N, let Ep,n,q ⊆ Σω denote the event of all words
w = a1a2 . . . such that q ∈ δ(p, a1a2 . . . an). Its probability under the uniform
distribution on Σω is an entry in the n-th power of M :

Pr(Ep,n,q) = (Mn)p,q (1)

In particular, Mn
p,q ≤ 1 for all n. From the boundedness of Mn it follows (e.g.,

by [25, Corollary 8.1.33]) that ρ(M) ≤ 1. The same result implies that

ρ(M) = 1 ⇐⇒ lim sup
n→∞

(Mn)p,q > 0 for all p, q ∈ Q

⇐⇒ lim sup
n→∞

(Mn)p,q > 0 for some p, q ∈ Q
(2)

For the rest of the proof, fix some state p ∈ Q. By the observations from
the beginning of Section 3.1 it suffices to show that Pr(Lω(p)) > 0 if and only
if ρ(M) = 1. To this end, consider the event Ep,n :=

⋃
q∈QEp,n,q. Notice that

(Ep,n)n∈N forms a decreasing family of sets. We have:

Pr(Lω(p)) = lim
n→∞

Pr(Ep,n) by Lemma 4

= lim
n→∞

Pr


⋃

q∈Q
Ep,n,q


 definition of Ep,n

(3)
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Assuming that ρ(M) = 1, we show that Pr(Lω(p)) > 0. Let q ∈ Q. We have:

Pr(Lω(p)) ≥ lim sup
n→∞

Pr(Ep,n,q) by (3)

= lim sup
n→∞

(Mn)p,q by (1)

> 0 by (2)

Conversely, assuming that ρ(M) < 1, we show that Pr(Lω(p)) = 0.

Pr(Lω(p)) = lim
n→∞

Pr


⋃

q∈Q
Ep,n,q


 by (3)

≤ lim sup
n→∞

∑

q∈Q
Pr(Ep,n,q) union bound

= lim sup
n→∞

∑

q∈Q
(Mn)p,q by (1)

= 0 by (2)

This concludes the proof. ut

Proof (of Lemma 5). “(1) =⇒ (2)”: Suppose Pr(Lω(U)) > 0. Define the vector
(ζ∗q )q∈Q with ζ∗q = Pr(Lω(q)). It holds that

Lω(q) =
⋃

a∈Σ

⋃

p∈δ(q,a)
{aw : w ∈ Lω(p)}

Since U is unambiguous, the sets {aw : w ∈ Lω(p)} are pairwise disjoint. So, the
vector (ζ∗q )q∈Q is a solution to the equation system.

As Pr(Lω(U)) > 0 and U is strongly connected, the observation at the begin-
ning of Section 3.1 yields that Pr(Lω(q)) > 0 for all states q. Thus, the vector
(ζ∗q )q∈Q is strictly positive.

“(2) =⇒ (3)” holds trivially.
“(3) =⇒ (1)”: Suppose ζ∗ is a non-zero solution of the linear equation system.

Then, Mζ∗ = ζ∗. Thus, 1 is an eigenvalue of M . This yields ρ(M) > 1. But then
ρ(M) = 1 and Pr(Lω(U)) > 0 by Lemma 6. ut

Computing pure cuts for positive, strongly connected UBA. The key
observation to compute the values Pr(Lω(q)) for the states q of a positive,
strongly connected UBA U is the existence of so-called cuts. These are sets
C of states with pairwise disjoint languages such that almost all words have an
accepting run starting in some state q ∈ C. More precisely:

Definition 7 ((Pure) cut). Let U be a UBA and C ⊆ Q. C is called a cut for
U if Lω(q)∩Lω(p) = ∅ for all p, q ∈ C with p 6= q and U [C] is almost universal.
A cut is called pure if it has the form δ(q, z) for some state q and some finite
word z ∈ Σ∗.
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Obviously, U is almost universal iff Q0 is a cut. If q ∈ Q and Kq denotes the
set of finite words z ∈ Σ∗ such that δ(q, z) is a cut then Pr(Lω(q)) equals the
probability measure of the language Lq consisting of all infinite words w ∈ Σω

that have a prefix in Kq. See Lemma 40 in Appendix D.2.

Lemma 8 (Characterization of pure cuts). Let U be a strongly connected
UBA. For all q ∈ Q and z ∈ Σ∗ we have: δ(q, z) is a cut iff δ(q, zy) 6= ∅ for
each word y ∈ Σ∗. Furthermore, if U is positive then for each cut C:

C is pure, i.e., C = δ(q, z) for some state-word pair (q, z) ∈ Q×Σ∗

iff for each state q ∈ Q there is some word z ∈ Σ∗ with C = δ(q, z)

iff for each cut C ′ there is some word y ∈ Σ∗ with C = δ(C ′, y)

The proof of Lemma 8 is provided in Appendix D.2 (see Corollary 34 and Lemma
35). By Lemma 1 and Lemma 8 we get:

Corollary 9. If U is a strongly connected UBA then Pr(Lω(U)) > 0 iff U has
a pure cut.

For the rest of Section 3.1, we suppose that U is positive and strongly con-
nected. The second part of Lemma 8 yields that the pure cuts constitute a
bottom strongly connected component of the automaton obtained from U using
the standard powerset construction. The goal is now to design an efficient (poly-
nomially time-bounded) algorithm for the generation of a pure cut. For this, we
observe that if q, p ∈ Q, q 6= p, then {q, p} ⊆ C for some pure cut C iff there
exists a word y such that {q, p} ⊆ δ(q, y). See Lemma 37 in Appendix D.2.

Definition 10 (Extension). A word y ∈ Σ∗ is an extension for a state-word
pair (q, z) ∈ Q × Σ∗ iff there exists a state p ∈ Q such that q 6= p, δ(p, z) 6= ∅
and {q, p} ⊆ δ(q, y).

It is easy to see that if y is an extension of (q, z), then δ(q, yz) is a proper superset
of δ(q, z) (see Lemma 41 in Appendix D.2). Furthermore, for all state-word pairs
(q, z) ∈ Q×Σ∗ (see Lemma 42 in Appendix D.2):

δ(q, z) is a cut iff there is no extension for (q, z)

These observations lead to the following algorithm for the construction of a pure
cut. We pick an arbitrary state q in the UBA and start with the empty word
z0 = ε. The algorithm iteratively seeks for an extension for the state-word pair
(q, zi). If an extension yi for (q, zi) has been found then we switch to the word
zi+1 = yizi. If no extension exists then (q, zi) is a pure cut. In this way, the
algorithm generates an increasing sequence of subsets of Q,

δ(q, z0) ( δ(q, z1) ( δ(q, z2) ( . . . ( δ(q, zk),

which terminates after at most |Q| steps and yields a pure cut δ(q, zk).
It remains to explain an efficient realization of the search for an extension of

the state-word pairs (q, zi). The idea is to store the sets Qi[p] = δ(p, zi) for all
states p. The sets Qi[p] can be computed iteratively by:
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Q0[p] = {p} and Qi+1[p] =
⋃

r∈δ(p,yi)
Qi[r]

To check whether (q, zi) has an extension we apply standard techniques for the
intersection problem for the languages Hq,q = {y ∈ Σ∗ : q ∈ δ(q, y)} and
Hq,Fi = {y ∈ Σ∗ : δ(q, y) ∩ Fi 6= ∅} where Fi = {p ∈ Q \ {q} : Qi[p] 6= ∅}.
Then, for each word y ∈ Σ∗ we have: y ∈ Hq,q ∩ Hq,Fi if and only if y is an
extension of (q, zi). The languages Hq,q and Hq,Fi are recognized by the NFA
Uq,q = (Q,Σ, δ, q, q) and Uq,Fi = (Q,Σ, δ, q, Fi). Thus, to check the existence
of an extension and to compute an extension y (if existent) where the word y
has length at most |Q|2, we may run an emptiness check for the product-NFA
U [q, q]⊗ U [q, Fi]. We conclude:

Corollary 11. Given a positive, strongly connected UBA U , a pure cut can be
computed in time polynomial in the size of U .

Computing the measure of positive, strongly connected UBA. We sup-
pose that U = (Q,Σ, δ,Q0, F ) is a positive, strongly connected UBA and C is a
cut. (C might be a pure cut that has been computed by the techniques explained
above. However, in Theorem 12 C can be any cut.) Consider the linear equation
system of Lemma 5 with variables ζq for all states q ∈ Q and add the constraint
that the variables ζq for q ∈ C sum up to 1.

Theorem 12. Let U be a positive, strongly connected UBA and C a cut. Then,
the probability vector ( Pr(Lω(q)) )q∈Q is the unique solution of the following
linear equation system:

(1) ζq =
1

|Σ| ·
∑

a∈Σ

∑

p∈δ(q,a)
ζp for all states q ∈ Q

(2)
∑

q∈C
ζq = 1

Proof. Let n = |Q|. Define a matrix M ∈ [0, 1]Q×Q by Mq,p = |{a ∈ Σ :
p ∈ δ(q, a)}|/|Σ| for all q, p ∈ Q. Then, the n equations (1) can be written as
ζ = Mζ, where ζ = (ζq)q∈Q is a vector of n variables. It is easy to see that
the values ζ∗q = Pr(Lω(q)) for q ∈ Q satisfy the equations (1). That is, defining
ζ∗ = (ζ∗q )q∈Q we have ζ∗ = Mζ∗. By the definition of a cut, those values also
satisfy equation (2).

It remains to show uniqueness. We employ Perron-Frobenius theory as fol-
lows. Since ζ∗ = Mζ∗, the vector ζ∗ is an eigenvector of M with eigenvalue 1.
Since ζ∗ is strictly positive (i.e., positive in all components), it follows from [8,
Corollary 2.1.12] that ρ = 1 for the spectral radius ρ of M . Since U is strongly
connected, matrix M is irreducible. By [8, Theorem 2.1.4 (b)] the spectral ra-
dius ρ = 1 is a simple eigenvalue of M , i.e., all solutions of ζ = Mζ are scalar
multiples of ζ∗. Among those multiples, only ζ∗ satisfies equation (2). Uniqueness
follows. �
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Together with the criterion of Lemma 5 to check whether a given strongly
connected UBA is positive, we obtain a polynomially time-bounded computation
scheme for the values Pr(Lω(q)) for the states q of a given strongly connected
UBA. The next section shows how to lift these results for arbitrary UBA.

3.2 Computing the measure of arbitrary UBA

In what follows, let U = (Q,Σ, δ,Q0, F ) be a (possibly not strongly connected)
UBA. We assume that all states are reachable from Q0 and that F is reachable
from all states. Thus, Lω(q) 6= ∅ for all states q.

Let C be a strongly connected component (SCC) of U . C is called non-trivial
if C viewed as a direct graph contains at least one edge, i.e., if C is cyclic. C is
called bottom if δ(q, a) ⊆ C for all q ∈ C and all a ∈ Σ. We define QBSCC to be
the set of all states q ∈ Q that belong to some bottom SCC (BSCC) of U . If C
is a non-trivial SCC of U and p ∈ C then the sub-NBA

U
∣∣
C,p = (C, Σ, δ|C , {p}, C ∩ F )

of U with state space C, initial state p and the transition function δ|C given
by δ|C(q, a) = δ(q, a) ∩ C is strongly connected and unambiguous. Let Lp be
the accepted language, i.e., Lp = Lω(U

∣∣
C,p). The values Pr(Lp), p ∈ C, can be

computed using the techniques for strongly connected UBA presented in Section
3.1. A non-trivial SCC C is said to be positive if Pr(Lp) > 0 for all/some state(s)
p in C.

We perform the following preprocessing. As before, for any p ∈ Q we write
Lω(p) for Lω(U [p] ), and call p zero if Pr(Lω(p)) = 0. First we remove all states
that are not reachable from any initial state. Then we run standard graph algo-
rithms to compute the directed acyclic graph (DAG) of SCCs of U . By processing
the DAG bottom-up we can remove all zero states by running the following loop:
If all BSCCs are marked (initially, all SCCs are unmarked) then exit the loop;
otherwise pick an unmarked BSCC C.
– If C is trivial or does not contain any final state then we remove it: more

precisely, we remove it from the DAG of SCCs, and we modify U by deleting
all transitions p

a−→ q where q ∈ C.
– Otherwise, C is a non-trivial BSCC with at least one final state. We check

whether C is positive by applying the techniques of Section 3.1. If it is posi-
tive, we mark it; otherwise we remove it as described above.

Note that this loop does not change Pr(Lω(p)) for any state p.
Let QBSCC denote the set of states in U that belong to some BSCC. The val-

ues Pr(Lω(p) ) for the states p ∈ QBSCC can be computed using the techniques
of Section 3.1. The remaining task is to compute the values Pr(Lω(q) ) for the
states q ∈ Q \QBSCC . For q ∈ Q \QBSCC , let βq = 0 if δ(q, a)∩QBSCC = ∅ for
all a ∈ Σ. Otherwise:

βq =
1

|Σ| ·
∑

a∈Σ

∑

p∈δ(q,a)∩QBSCC

Pr(Lω(p) )



12

In Appendix D.4 (see Theorem 43) we show:

Theorem 13. If all BSCCs of U are non-trivial and positive, then the linear
equation system

ζq =
1

|Σ| ·
∑

a∈Σ

∑

r ∈ δ(q, a)
r /∈ QBSCC

ζr + βq for q ∈ Q \QBSCC

has a unique solution, namely ζ∗q = Pr(Lω(q) ).

This yields that the value Pr(Lω(U)) for given UBA U is computable in polyno-
mial time.

Remark 14. For the special case where δ(q, a) = {q} for all q ∈ F and a ∈ Σ,
the language of U is a co-safety property and Pr(Lω(q)) = 1 if q ∈ F = QBSCC ,
when we assume that all BSCCs are non-trivial and positive. In this case, the
linear equation system in Theorem 13 coincides with the linear equation system
presented in [7] for computing the probability measure of the language of U
viewed as an UFA.

Remark 15. As a consequence of our results, the positivity problem (“does Pr(Lω(U)) >
0 hold?”) and the almost universality problem (“does Pr(Lω(U)) = 1 hold?”)
for UBA are solvable in polynomial time. This should be contrasted with the
standard (non-probabilistic) semantics of UBA and the corresponding results for
NBA. The non-emptiness problem for UBA is in P (this already holds for NBA),
while the complexity-theoretic status of the universality problem for UBA is a
long-standing open problem. For standard NBA, it is well known that the non-
emptiness problem is in P and the universality problem is PSPACE-complete.
However, the picture changes when switching to NBA with the probabilistic se-
mantics as both the positivity problem and the almost universality problem for
NBA are PSPACE-complete, even for strongly connected NBA (see Theorem 27
in Appendix C).

3.3 Probabilistic model checking of Markov chains against UBA

To complete the proof of Theorem 2, we show how the results of the previous
section can be adapted to compute the value PrM(Lω(U)) for a Markov chain
M = (S, P, ι) and a UBA U = (Q,Σ, δ,Q0, F ) with alphabet Σ = S. 4 The
necessary adaptions to the proofs are detailed in Appendix D.5.

4 In practice, e.g., when the UBA is obtained from an LTL formula, the alphabet of
the UBA is often defined as Σ = 2AP over a set of atomic propositions AP and
the Markov chain is equipped with a labeling function from states to the atomic
propositions that hold in each state. Clearly, unambiguity w.r.t. the alphabet 2AP

implies unambiguity w.r.t. the alphabet S when switching from the original transi-
tion function δ : Q× 2AP → 2Q to the transition function δS : Q× S → 2Q given by
δS(q, s) = δ(q, L(s)), where L : S → 2AP denotes the labeling function of M.
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If A is an NBA over the alphabet S and s ∈ S, then PrMs (A) denotes the
probability PrMs (Π) with Π being the set of infinite paths π = s0s1 . . . ∈ Sω
starting with s0 = s and such that s1s2 . . . ∈ Lω(A). Our algorithm relies on the
observation that

PrM(Lω(U)) =
∑

s∈S
ι(s) · PrMs (U [δ(Q0, s)] )

As the languages of the UBA U [q] for q ∈ δ(Q0, s) are pairwise distinct (by the
unambiguity of U), we have PrMs (U [δ(Q0, s)]) =

∑
q∈δ(Q0,s)

PrMs (U [q]).

Thus, the task is to compute the values PrMs (U [q]) for s ∈ S and q ∈ Q. As a
first step, we build a UBA P =M⊗U that arises from the synchronous product
of the UBA U with the underlying graph of the Markov chain M. Formally,
P = (S × Q,Σ,∆,Q′0, S × F ) where Q′0 consists of all pairs 〈s, q〉 ∈ S × Q
where ι(s) > 0 and q ∈ δ(Q0, s). Let s, t ∈ S and q ∈ Q. If P (s, t) = 0 then
∆(〈s, q〉, t) = ∅, while for P (s, t) > 0, the set ∆(〈s, q〉, t) consists of all pairs
〈t, p〉 where p ∈ δ(q, s). We are only concerned with the reachable fragment of
the product.

Given that M viewed as an automaton over the alphabet S behaves deter-
ministically and we started with an unambiguous automaton U , the product P
is unambiguous as well. Let P[s, q] denote the UBA resulting from P by declar-
ing 〈s, q〉 to be initial. It is easy to see that PrMs (P[s, q] ) = PrMs (U [q] ) for
all states 〈s, q〉 of P, as the product construction only removes transitions in U
that can not occur in the Markov chain. Our goal is thus to compute the values
PrMs (P[s, q]). For this, we remove all states 〈s, q〉 from P that can not reach a
state in S×F . Then, we determine the non-trivial SCCs of P and, for each such
SCC C, we analyze the sub-UBA P

∣∣
C obtained by restricting to the states in C.

An SCC C of P is called positive if PrMs (P
∣∣
C [s, q]) > 0 for all/any 〈s, q〉 ∈ C.

As in Section 3.2, we treat the SCCs in a bottom-up manner, starting with the
BSCCs and removing them if they are non-positive. Clearly, if a BSCC C of P
does not contain a final state or is trivial, then C is not positive. Analogously
to Lemma 5, a non-trivial BSCC C in P containing at least one final state is
positive if and only if the linear equation system

(∗) ζs,q =
∑

t∈Post(s)

∑

p∈δC(q,t)
P (s, t) · ζt,p for all 〈s, q〉 ∈ C

has a strictly positive solution if and only if (∗) has a non-zero solution. Here,
Post(s) = {t ∈ S : P (s, t) > 0} denotes the set of successors of state s inM and
δC(q, t) = {p ∈ δ(q, t) : 〈t, p〉 ∈ C}.

We now explain how to adapt the cut-based approach of Section 3.1 for
computing the probabilities in a positive BSCC C of P. For 〈s, q〉 ∈ C and t ∈ S,
let ∆C(〈s, q〉, t) = ∆(〈s, q〉, t) ∩ C. A pure cut in C denotes a set C ⊆ C such
that PrMs (P[C]) = 1 and C = ∆C(〈s, q〉, z) for some 〈s, q〉 ∈ C and some finite
word z ∈ S∗ such that s z is a cycle in M. (In particular, the last symbol of
z is s, and therefore C ⊆ {〈s, p〉 ∈ C : p ∈ Q}.) To compute a pure cut in C,
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we pick an arbitrary state 〈s, q〉 in C and successively generate path fragments
z0, z1, . . . , zk ∈ S∗ inM by adding prefixes. More precisely, z0 = ε and zi+1 has
the form yzi for some y ∈ S+ such that (1) s y is a cycle inM and (2) there exists
a state p ∈ Q\{q} in U with ∆C(〈s, p〉, zi) 6= ∅ and {〈s, q〉, 〈s, p〉} ⊆ ∆C(〈s, q〉, y).
Each such word y is called an extension of (〈s, q〉, zi), and ∆C(〈s, q〉, zi+1) =
∆C(〈s, q〉, yzi) is a proper superset of ∆C(〈s, q〉, zi). The set C = ∆C(〈s, q〉, z) is a
pure cut if and only if (〈s, q〉, zi) has no extension. The search for an extension can
be realized efficiently using a technique similar to the one presented in Section
3.1. Thus, after at most min{|C|, |Q|} iterations, we obtain a pure cut C.

Having computed a pure cut C of C, the values PrMs (P[s, q]) for 〈s, q〉 ∈ C are
then computable as the unique solution of the linear equation system consisting
of equations (*) and the additional equation

∑
〈s,q〉∈C ζs,q = 1.

In this way we adapt Theorem 12 to obtain the values PrMs (P[s, q]) for the
states 〈s, q〉 belonging to some positive BSCC of P. It remains to explain how
to adapt the equation system of Theorem 13. Let QBSCC be the set of BSCC
states of P and Q? be the states of P not contained in QBSCC . For 〈s, q〉 ∈ Q?,
let βs,q = 0 if ∆(〈s, q〉, t) ∩QBSCC = ∅ for all t ∈ S. Otherwise:

βs,q =
∑

t∈Post(s)

∑

p ∈ δ(q, t) s.t.
〈t, p〉 ∈ QBSCC

P (s, t) · PrMt (P[t, p] )

Then, the vector (PrMs (P[s, q]))〈s,q〉∈Q?
is the unique solution of the linear equa-

tion system

ζs,q =
∑

t∈Post(s)

∑

p ∈ δ(q, t) s.t.
〈t, p〉 /∈ QBSCC

P (s, t) · ζt,p + βs,q for 〈s, q〉 ∈ Q?

This completes the proof of Theorem 2.

4 Implementation and Experiments

We have implemented a probabilistic model checking procedure for Markov
chains and UBA specifications using the algorithm detailed in Section 3 as an
extension to the probabilistic model checker PRISM [32,37]. 5 Our implementation
is based on the explicit engine of PRISM, where the Markov chain is represented
explicitly. An implementation for the symbolic, MTBDD-based engines of PRISM
is planned as future work.

Our implementation supports UBA-based model checking for handling the
LTL fragment of PRISM’s PCTL∗-like specification language as well as direct
verification against a path specification given by a UBA provided in the HOA
format [3]. For LTL formulas, we rely on external LTL-to-UBA translators. For

5 More details are available at [1]. All experiments were carried out on a computer with
two Intel E5-2680 8-core CPUs at 2.70 GHz with 384GB of RAM running Linux.
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the purpose of the benchmarks we employ the ltl2tgba tool from SPOT [19] to
generate UBA for a given LTL formula.

For the linear algebra parts of the algorithms, we rely on the COLT library [26].
We considered two different variants for the SCC computations as detailed in Ap-
pendix F. The first variant (Appendix F.1) relies on COLT to perform a QR
decomposition of the matrix for the SCC to compute the rank, which allows
for deciding the positivity of the SCC. The second approach (Appendix F.2)
relies on a variant of the power iteration method for iteratively computing an
eigenvector. This method has the benefit that, in addition to deciding the pos-
itivity, the computed eigenvector can be directly used to compute the values
for a positive SCC, once a cut has been found. (As the proof of Theorem 12
shows: Pr(Lω(q)) = ζ∗q /

∑
p∈C ζ

∗
p if ζ∗ is an eigenvector of the matrix M for

eigenvalue 1.) We have evaluated the performance and scalability of the cut
generation algorithm together with both approaches for treating SCCs with se-
lected automata specifications that are challenging for our UBA-based model
checking approach (Appendix F.3). As the power iteration method performed
better, our benchmark results presented in this section use this method for the
SCC handling.

We report here on benchmarks using the bounded retransmission protocol
(BRP) case study of the PRISM benchmark suite [33]. The model from the bench-
mark suite covers a single message transmission, retrying for a bounded number
of times in case of an error. We have slightly modified the model to allow the
transmission of an infinite number of messages by restarting the protocol once
a message has been successfully delivered or the bound for retransmissions has
been reached. We consider the LTL property

ϕk = (¬sender ok) U
(
(retransmit ∧ (¬sender ok U=k sender ok)

)
,

ensuring that k steps before an acknowledgment the message was retransmit-
ted. To remove the effect of selecting specific tools for the LTL to automa-
ton translation (ltl2tgba for UBA, the Java-based PRISM reimplementation of
ltl2dstar [30] to obtain a deterministic Rabin automaton (DRA) for the stan-
dard PRISM approach), we also consider direct model checking against automata
specifications. As the language of ϕk is equivalent to the UBA depicted in Fig-
ure 1 (on the left) when a = retransmit ∧ ¬sender ok, b = sender ok and
c = ¬retransmit∧¬send ok, we use this automaton and the minimal DBA for
the language (this case is denoted by A). We additionally consider the UBA and
DBA obtained by replacing the self-loop in the last state with a switch back to
the initial state (denoted by B), i.e., roughly applying the ω-operator to A.

Table 1 shows results for selected k (with a timeout 30 minutes), demon-
strating that for this case study and properties our UBA-based implementation
is generally competitive with the standard approach of PRISM relying on de-
terministic automata. For ϕ and A, our implementation detects that the UBA
has a special shape where all final states have a true-self loop, which allows for
skipping the SCC handling. Without this optimization, tCut and tPos are in the
sub-second range for ϕ and A for all considered k. At a certain point, the imple-
mentation of the standard approach in PRISM becomes unsuccessful, either due
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Table 1. Statistics for DBA/DRA- and UBA-based model checking of the BRP case
study (parameters N = 16, MAX = 128), a DTMC with 29358 states, depicting the
number of states for the automata and the product and the time for model checking
(tMC). For ϕ, tMC includes the translation to the automaton, for B the time for checking
positivity (tPos) and cut generation (tCut) are included in tMC. The mark − stands for
“not available” or timeout (30 minutes).

PRISM standard PRISM UBA
DRA product tMC UBA product tMC tPos tCut

k = 4, ϕ 118 62,162 0.8 s 6 34,118 0.6 s
A 33 61,025 0.8 s 6 34,118 0.5 s
B 33 75,026 0.7 s 6 68,474 1.9 s 1.1 s <0.1 s

k = 6, ϕ 4,596 72,313 3.2 s 8 36,164 0.9 s
A 129 62,428 1.1 s 8 36,164 0.9 s
B 129 97,754 1.1 s 8 99,460 3.1 s 1.5 s <0.1 s

k = 8, ϕ 297,204 − − 10 38,207 0.8 s
A 513 64,715 1.1 s 10 38,207 0.7 s
B 513 134,943 1.3 s 10 136,427 4.5 s 2.5 s <0.1 s

k = 14, ϕ − − − 16 44,340 12.8 s 0.0 s 0.0 s
A 32,769 83,845 5.3 s 16 44,340 1.0 s
B 32,769 444,653 6.0 s 16 246,346 10.2 s 6.5 s <0.1 s

k = 16, ϕ − − − 18 46,390 115.0 s
A 131,073 − − 18 46,390 1.0 s
B 131,073 − − 18 282,699 12.3 s 8.6 s <0.1 s

k = 48, A − − − 50 79,206 1.8 s
B − − − 50 843,414 88.4 s 71.1 s <0.1 s

to timeouts in the DRA construction (ϕ: k ≥ 10) or PRISM size limitations in
the deterministic product construction (ϕ: k ≥ 8, A/B: k ≥ 16). For k ≥ 18,
ltl2tgba was unable to construct the UBA for ϕ within the given time limit,
for k = 16, 114.4 s of the 115.0 s were spent on constructing the UBA. As can be
seen, using the UBA approach we were able to successfully scale the parameter k
beyond 48 when dealing directly with the automata-based specifications (A/B)
and within reasonable time required for model checking.

5 Conclusion

The main contribution of the paper is a polynomial-time algorithm for the
quantitative analysis of Markov chains against UBA-specifications, and an im-
plementation thereof. This yields a single exponential-time algorithm for the
probabilistic model-checking problem for Markov chains and LTL formulas, and
thus an alternative to the double exponential-time classical approach with deter-
ministic automata that has been implemented in PRISM and other tools. Other
single exponential algorithms for Markov chains and LTL are known, such as
the automata-less method of [15] and the approaches with weak alternating
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automata [10] or separated UBA [17]. To the best of our knowledge, no imple-
mentations of these algorithms are available.6

The efficiency of the proposed UBA-based analysis of Markov chains against
LTL-specifications crucially depends on sophisticated techniques for the genera-
tion of UBA from LTL formulas. Compared to the numerous approaches for the
generation of compact nondeterministic or deterministic automata, research on
for efficient LTL-to-UBA translators is rare. The tool Tulip [35] uses a variant
of the LTL-to-NBA algorithm by Gerth et al. [22] for the direct construction
of UBA from LTL formulas, while SPOT’s LTL-to-UBA generator relies on an
adaption of the Couvreur approach [16]. A comparison of NBA versus UBA
sizes for LTL benchmark formulas from [21,38,20] (see Appendix F.4) using
SPOT suggests that requiring unambiguity does not necessarily lead to a major
increase in NBA size. An alternative to the direct translation of LTL formulas
into UBA are standard LTL-to-NBA translators combined with disambiguation
approaches for NBA (e.g. of [28]). However, we are not aware of tool support for
these techniques.

Besides the design of efficient LTL-to-UBA translators that exploit the addi-
tional flexibility of unambiguous automata compared to deterministic ones, our
future work will include a symbolic implementation of our algorithm and more
experiments to evaluate the UBA-based approach against the classical approach
with deterministic automata (e.g. realized in PRISM [32,37] and IscasMC [24] and
using state-of-the-art generators for deterministic automata such as Rabinizer)
or other single exponential-time algorithms [15,17,10], addressing the complex
interplay between automata sizes, automata generation time, size of the (reach-
able fragment of the) product and the cost of the analysis algorithms that all
influence the overall model checking time.
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approach to LTL model checking of probabilistic systems. In 10th Interna-
tional Conference on Logic for Programming Artificial Intelligence and Reasoning
(LPAR), volume 2850 of Lecture Notes in Computer Science, pages 361–375, 2003.

18. Alexandre Duret-Lutz. Manipulating LTL formulas using Spot 1.0. In 11th In-
ternational Symposium on Automated Technology for Verification and Analysis
(ATVA), volume 8172 of Lecture Notes in Computer Science, pages 442–445, 2013.

19. Alexandre Duret-Lutz. LTL translation improvements in Spot 1.0. International
Journal of Critical Computer-Based Systems, 5(1/2):31–54, 2014.

20. Matthew B. Dwyer, George S. Avrunin, and James C. Corbett. Patterns in prop-
erty specifications for finite-state verification. In 21th International Conference on
Software Engineering (ICSE), pages 411–420. ACM, 1999.



19

21. Kousha Etessami and Gerard Holzmann. Optimizing Büchi automata. In 11th In-
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Appendix

Section A provides counterexamples that illustrate the flaw in the previously
proposed approaches of [7] and [6]. The proof of Lemma 1 is provided in Section
B. Section C provides a proof for the PSPACE-completeness of the positivity
(probabilistic non-emptiness) and the almost universality problem for NBA. It
also presents some observations on strongly connected NBA that will be applied
for reasoning about UBA. Detailed proofs for the results of Section 3 can be
found in Section D. Section E explains the connection between our approach for
(possibly non-separated) UBA and the approach presented in [17] for separated
UBA. Section F provides details on our implementation and further benchmark
results.

Throughout the appendix, we will use some additional notations, as detailed
below. We often use arrow-notation such as q

x−→ p to indicate that p ∈ δ(q, x)
for the transition relation δ of an NBA.

If K ⊆ Σ∗ is a regular language then Pr(K) stands shortly for Pr(LK)
where LK is the set of infinite words w ∈ Σω with Pref (w)∩K 6= ∅. The syntax
of nondeterministic finite automata (NFA) is the same as for NBA. Given an
NFA A = (Q,Σ, δ,Q0, F ), we write Lfin(A) for the accepted language over finite
words, i.e., Lfin(A) = {x ∈ Σ∗ : δ(Q0, x) ∩ F 6= ∅}.

Note that for the special case of the Markov chain M = (S, P, ι) with state
space S = Σ and P (a, b) = 1/|S| for all a, b ∈ Σ and uniform initial distribution
(i.e., ι(a) = 1/|Σ| for all a ∈ Σ), we have PrM(L) = Pr(L) for all measurable
languages L ⊆ Σω.

A Counterexamples for the UBA-based quantitative
analysis of Markov chains proposed in [7] and [6]

In this section, we provide details about the flaw in the approach to the quan-
titative analysis of Markov chains using unambiguous automata that has been
proposed by Benedikt, Lenhardt and Worrell [7,35]. They first present a tech-
nique for computing the probability of a Markov chain to satisfy a (co-)safety
specification given by an unambiguous finite automaton (UFA) using a linear
equation system with variables for pairs of states in the Markov chain and the
UFA. This approach can be seen as an elegant variant of the universality test for
UFA using difference equations [39]. Furthermore, [7,35] presents an algorithm
for the quantitative analysis of Markov chains against ω-regular properties spec-
ified by unambigous Büchi automata (UBA). As observed by the authors, this
approach is flawed. An attempt to repair the proposed UBA-based analysis of
Markov chains has been presented by the authors in the arXiv document [6].
However, the approach of [6] is flawed again.

Section A.1 provides an example illustrating the faultiness of the algorithms
for the analysis of Markov chains against UBA-specifications presented in [6],
while Section A.2 does the same for the algorithm presented in [7], which is the
same as in [35].
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A.1 Counterexample for the approach of [6]

In what follows, letM = (S, P, ι) be a Markov chain and U = (Q,Σ, δ,Q0, F ) an
UBA with the alphabet Σ = S. In this section, we use the following additional
notations: If µ : S → [0, 1] is a distribution then we write PrMµ for PrMµ where
Mµ is the Markov chain (S, P, µ). This notation will be used for the distributions
P (s, ·) where s is a state in M.7 Thus,

PrMP (s,·) =
∑

t∈S
P (s, t) · PrMt where PrMt = PrMDirac[t].

The task addressed in [6] is to compute PrM(Lω(U)). The algorithm proposed
in [6] relies on the mistaken belief that if the Markov chain M generates words
accepted by the given UBA U with positive probability then the product-graph
M⊗U contains recurrent pairs. These are pairs 〈s, q〉 consisting of a state s in
M and a state q of U such that almost all paths inM starting in a successor of s
can be written as the infinite concatenation of cycles around s that have a run in
U starting and ending in q. (The formal definition of recurrent pairs will be given
below.) This claim, however, is wrong as there exist UBA that continuously need
a look-ahead for the paths starting in a fixed state of the Markov chain.

Before presenting a counterexample illustrating this phenomenon and the
faultiness of [6], we recall some notations of [6]. Given a state s ∈ S of the Markov
chainM and a state q ∈ Q of the UBA U , the regular languages Gs,q, Hs,q ⊆ S+

are defined as follows:

Gs,q =
{
s1 s2 . . . sk ∈ S+ : sk = s and p

s1 s2... sk−−−−−−→ q for some p ∈ Q0

}

Hs,q =
{
s1 s2 . . . sk ∈ S+ : sk = s and q

s1 s2... sk−−−−−−→ q
}

A pair 〈s, q〉 ∈ S × F is called recurrent if PrMP (s,·)
(
Hω
s,q

)
= 1.

The accepted language of U can then be written as:

Lω(U) =
⋃

(s,q)∈S×F
Gs,q ·Hω

s,q

The idea of [6] is to reduce the task to compute PrM(Lω(U)) to the task of
computing the probability for M to generate a finite word accepted by an UFA
for the language given by the UFA resulting from the union of the regular lan-
guages Gs,q where 〈s, q〉 is recurrent. To show the correctness of this approach,
[6] claims that for each pair 〈s, q〉 ∈ S ×Q:

PrMP (s,·)
(
Hω
s,q

)
∈

{
0, 1
}

and thus PrMP (s,·)
(
Hω
s,q

)
= 0 for the non-recurrent pairs 〈s, q〉 ∈ S × F . To prove

this claim, the authors conjecture (in Equation (5) of [6]) that:

PrMP (s,·)
(

(Hs,q)
ω
)

= lim
n→∞

PrMP (s,·)
(

(Hs,q)
n
) (∗)

= lim
n→∞

PrMP (s,·)
(
Hs,q

)n

7 We depart here from the notations of [6] where the notation PrM,t has been used as
a shortform for PrMP (t,·).



23

The following example shows that equality (∗) is wrong, and recurrent pairs need
not to exist, even if U is universal.

Example. We consider the Markov chain M = (S, P, ι) with two states, say
S = {a, b}, and the transition probabilities

P (a, a) = P (a, b) = P (b, a) = P (b, b) = 1
2

and the uniform initial distribution, i.e., ι(a) = ι(b) = 1
2 . Thus:

PrMP (a,·) = PrMP (b,·) = 1
2 · PrMa + 1

2 · PrMb

From state a, the Markov chain M schedules almost surely an infinite word
w starting with a and containing both symbols a and b infinitely often. The
analogous statement holds for state b of M.

a b

1

2

1

2 a

b

1

2

1

2

qa qb

a b

Fig. 2. Markov chain M (left) and universal UBA (right)

Let U = (Q, {a, b}, δ, Q,Q) be the UBA with state space Q = {qa, qb} where
both states are initial and final and

δ(qa, a) = δ(qb, b) =
{
qa, qb

}

while δ(qa, b) = δ(qb, a) = ∅. Then, U is universal as U can use a one-letter
look-ahead to generate an infinite run for each infinite word over {a, b}. More
precisely, for doing so, U moves to state qa if the next letter is a and to state qb
is the next letter is b. As both states are final, each word has an accepting run.
Thus, Lω(U) = {a, b}ω and therefore PrM(Lω(U)) = 1.

The language Ha,qa is given by the regular expression a(a + b)∗. Thus, for
n > 2, the language Hn

a,qa consists of all finite words x ∈ {a, b}∗ that start with
letter a and contain at least n occurrences of letter a. Likewise, the language
Hω
a,qa consists of all infinite words over {a, b} with infinitely many a’s and where

the first letter is a. Hence:

PrMa
(
Hω
a,qa

)
= PrMa

(
Hn
a,qa

)
= 1

PrMb
(
Hω
a,qa

)
= PrMb

(
Hn
a,qa

)
= 0

for all n ∈ N with n > 1. This yields:
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PrMP (a,·)
(
Hω
a,qa

)
= PrMP (a,·)

(
Hn
a,qa

)
= 1

2

for all n ∈ N with n > 1. On the other hand:

lim
n→∞

PrMP (a,·)(Ha,qa )n = lim
n→∞

(
1
2

)n
= 0

Thus, equality (∗) is wrong. In this example, none of the pairs 〈a, qa〉, 〈a, qb〉,
〈b, qa〉, 〈b, qb〉 is recurrent. Note that the languages Ha,qb and Hb,qa are empty
and that an analgous calculation yields:

PrMP (b,·)
(
Hω
b,qb

)
= PrMP (b,·)

(
Hn
b,qb

)
= 1

2

and lim
n→∞

PrMP (b,·)(Hb,qb )n = 0.

A.2 Counterexample for the approach of [7]

A similar counterexample can be constructed for Lemma 7.1 of [7] (p.22), i.e.,
the original proposal for using UBA for model checking of DTMCs.

In [7], the Büchi automata are state-labeled, usually with an alphabet over
some atomic propositions. For presentational simplicity, we use here a fixed al-
phabet {a, b, c, d}, corresponding to the states of the Markov chain, omitting the
atomic proposition based labeling functions. The accepting condition in [7] is a
generalized Büchi condition, i.e., of set of Büchi conditions. A run is accepting,
if it satifsfy every Büchi condition in the generalized Büchi condition.

The paper [7] assumes a product graph out of a Markov chain M and a
(generalised) UBA U . The nodes are pairs of Markov chain states and UBA
states with agreeing labels. There is an edge between two nodes, if and only if
there is an edge between the two corresponding Markov chain states and an edge
between the two corresponding UBA states. It defines an SCC C to be accepting
if

(i) for every acceptance set F ∈ F there exists a node 〈s, qF 〉 with qF ∈ F , and
(ii) for every node 〈s, p〉 and every transition s −→ t in the Markov chain M

there exists a transition p −→ q in U such that 〈t, q〉 is contained in C.

Example. Our example will give a Markov Chain and a UBA, for which PrM(L(U)) =
1, holds, but the product will not contain an accepting SCC according to the
definition of [7]. Consider the (state-labeled) UBA U and the Markov Chain M
of Figure 3.

The UBA accepts all words of the form

(
(dab) + (dac)

)ω

and consequently PrM(L(U)) = 1.
The product graph M⊗U that arises from the construction in the proof of

Lemma 7.1 of [7] is depicted in Figure 4.
The product graph is strongly connected, but it is not accepting as condition

(ii) is violated: Consider the vertex (a, qa) in the product graph. There exists a



25

d

a

b c

1

2

1

2

qd

qa

qb

pa

qc

a a

cb

d

Fig. 3. Markov chainM (left) and UBA U (right, state labels from alphabet {a, b, c, d})

d, qd

a, qa

b, qb

a, pa

c, qc

Fig. 4. Product graph according to [7]

transition a→ c in the Markov chain, however there is no successor (c, t) in the
SCC of the product graph, with t being a successor of qa in the UBA (c can not
be consumed from the state qa in the UBA). As the (only) SCC in the product
is not accepting, all vertices in the product graph are assigned value 0 in the
linear equation system, yielding that PrM(L(U)) = 0. However, as stated above,
PrM(L(U)) = 1.

B Almost-sure residuals of positive languages

We now provide the proof for Lemma 1. We first recall the statement:

Lemma 16 (See Lemma 1). If L ⊆ Σω is ω-regular and Pr(L) > 0 then there
exists x ∈ Σ∗ such that Pr

{
w ∈ Σω : xw ∈ L

}
= 1.

Proof. Pick a deterministic ω-automaton D = (Q,Σ, δ, qinit,Acc) for L, for in-
stance, with a Rabin acceptance condition. W.l.o.g. all states are reachable from
qinit and D is complete. Let MD = (Q,P ) be the transition-labeled Markov
chain resulting from D by turning all branchings in D into uniform probabilistic
choices, i.e., for each state q and each letter a, P (q, a, q′) = 1/|Σ| if δ(q, a) = q′

and P (q, a, q′) = 0 otherwise. Clearly, the underlying graph of D andMD is the
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same. If C is a bottom strongly connected component (BSCC) of D resp. MD

then C is said to satisfy D’s acceptance condition Acc, denoted C |= Acc, iff
all infinite paths π with inf (π) = C meet the condition imposed by Acc, where
inf (π) denotes the set of states that appear infinitely often in π. For example,
if Acc is a Rabin condition, say

Acc =
∨

16i6k

(♦�Ai ∧ �♦Bi ) where Ai, Bi ⊆ Q,

and C ⊆ Q a BSCC, then C |= Acc iff there is at least one Rabin pair (Ai, Bi) in
Acc with C ⊆ Ai and C ∩ Bi 6= ∅. As almost all paths in MD eventually enter
a BSCC and visit all its states infinitely often, we get:

Pr(L) > 0 iff PrMD (Acc) > 0

iff D has at least one BSCC C with C |= Acc

In this case and if x is a finite word such that δ(qinit, x) ∩ C 6= ∅, then Pr{w ∈
Σω : xw ∈ L } = 1. �

C Positivity and almost universality for NBA

For the remainder of Section C, we consider the case where A = (Q,Σ, δ,Q0, F )
is a strongly connected NBA with at least one initial and one final state. As be-
fore, we briefly write Lω(q) instead of Lω(A[q]) whereA[q] is the NBA (Q,Σ, δ, q, F ).
The assumption yields that Lω(A[q]) is nonempty for all states q.

Fact 17 Suppose A is a strongly connected NBA. Then, the following statements
are equivalent:

(1) Pr(Lω(A)) > 0
(2) Pr(Lω(q)) > 0 for some state q
(3) Pr(Lω(p)) > 0 for all states p

Proof. The implications (1) =⇒ (2) and (3) =⇒ (1) are trivial. We now show
that (2) =⇒ (3). Since A is strongly connected, there exists a finite word x with

p
x−→ q, i.e., q ∈ δ(p, x). But then

Pr(Lω(p)) >
1

2|x|
· Pr(Lω(q)) > 0

Note that 1/2|x| is the probability for (the cylinder set spanned by) the finite
word x. �

Lemma 18 (see Lemma 4). For each strongly connected NBA A with at least
one final state, we have:

Pr(Lω(A)) = 1− Pr
{
w ∈ Σω : w has a finite prefix x with δ(Q0, x) = ∅

}
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To prove Lemma 18, we show that the language consisting of all words w ∈
Σω \ Lω(A) such that δ(Q0, x) 6= ∅ for all x ∈ Pref (w) is a null set. If Lω(A)
has positive measure, this statement is a simple consequence of Lemma 1 (see
Lemma 19 below). The general case will be shown in Lemma 25 using known
results for the positive probabilistic model-checking problem.

Lemma 19. Suppose A is strongly connected and Pr(Lω(A)) > 0. Let L denote
the set of infinite words w ∈ Σω \ Lω(A) such that δ(Q0, x) 6= ∅ for all x ∈
Pref (w). Then, Pr(L) = 0.

Proof. Suppose by contradiction that Pr(L) is positive. Obviously, L is ω-regular.
Lemma 1 yields the existence of a finite word x such that

Pr
{
v ∈ Σω : xv ∈ L

}
= 1

LetR = δ(Q0, x). Then,R is nonempty and Pr(Lω(A[R]) ) = 0, i.e., Pr(Lω(q) ) =
0 for all states q ∈ R. This is impossible by Fact 17. �

To prove the analogous result for the general case (possibly Pr(Lω(A)) =
0), we rely on results by Courcoubetis and Yannakakis [15] for the positive
probabilistic model-checking problem. These results rephrased for our purposes
yield the following. Let Adet denote the standard powerset construction of A.
That is, the states of Adet are the subsets of Q and the transitions in Adet are
given by R

a−→ R′ iff R′ = δ(R, a). The initial state of Adet is Q0. Adet is viewed
here just as a pointed labeled graph rather than an automaton over words.

Recall that A might be incomplete. Thus, ∅ is a trap state of Adet that is
reached via the a-transition from any state R ⊆ Q where δ(R, a) is empty. Hence,
{∅} is a BSCC of Adet that might or might not be reachable from Q0. We refer
to {∅} as the trap-BSCC of Adet. All other BSCCs of Adet are called non-trap.

A state q ∈ Q of A is said to be recurrent if there is some BSCC C of Adet

that contains a state R ⊆ Q of Adet with q ∈ R and that is reachable from the
singleton {q} viewed as a state of Adet. That is, q is recurrent iff there exists a

finite word x such that q
x−→ q and the set δ(q, x) belongs to a BSCC of Adet.

Fact 20 (Proposition 4.1.4 in [15]) For each NBA A (not necessarily strongly
connected):

Pr
(
Lω(A)

)
> 0 iff

{
there exists a finite word x ∈ Σ∗ such that
δ(Q0, x) ∩ F contains a recurrent state

Example 21. We consider the strongly connected NBA shown in Figure 5. Then,
Adet has two BSCCs, namely the trap-BSCC {∅} and the non-trap BSCC {Q}.
The singletons {qa} and {qb}, viewed as states of Adet, can reach {Q}. Hence,
both states qa and qb are recurrent. To verify the statement of Fact 20, we observe
that Pr(Lω(A)) = 1/2 > 0 and δ({qa}, a)∩ F = {qb} contains a recurrent state.
�
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qa
a

b

qb
a b

{qa}
a

b

Q
a b {qb}Q

∅

a, b

Fig. 5. Automata from Example 21, NBA A (left) and corresponding Adet (right)

Suppose now that A is strongly connected. Then, for each non-trap BSCC
C of Adet (i.e., C 6= {∅}) and each state p of A there exists some R ⊆ Q with
p ∈ R ∈ C. Moreover, whenever R ∈ C and x ∈ Σ∗ then δ(R, x) ∈ C.

Lemma 22. If A is strongly connected and Adet has a non-trap BSCC that is
reachable from some singleton {q} then all states p ∈ Q are recurrent.

Proof. Let C be a non-trap BSCC of Adet that is reachable from {q} and let p be
a state of A. We pick finite words x, y ∈ Σ∗ such that q ∈ δ(p, x) and δ(q, y) ∈ C.
Then, for all finite words z, δ(q, yz) ∈ C and therefore:

∅ 6= δ(q, yz) ⊆ δ(p, xyz)

Hence, δ(p, xyz) = δ(δ(p, xy), z) is nonempty for all words z. Thus, there is a
non-trap BSCC C′ (possibly different from C) that is reachable from p via some
finite word of the form xyz. As stated above, C′ contains some R ⊆ Q with
p ∈ R. Hence, p is recurrent. �

Corollary 23 (Probabilistic emptiness of strongly connected NBA).
Let A be a strongly connected NBA with at least one final state. Then, the fol-
lowing statements are equivalent:

(1) Pr
(
Lω(A)

)
= 0

(2) Adet has no non-trap BSCC that is reachable from some singleton {q}
(3) there is no recurrent state in A

Example 24. We consider the strongly connected NBA shown in Figure 6. Then,
Adet has a non-trap BSCC consisting of the states {p1, p2} and Q that is not
accessible from any singleton. However, there is another non-trap BSCC in Adet

consisting of the three states {p1}, {p2} and {q0, p2}. Indeed, A accepts almost
all words starting with letter c and therefore Pr(Lω(A)) = 1/3. �

We are now ready to complete the proof of Lemma 4 by proving the following
lemma:
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c

c

a,b

∅
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a,b

a,b

c

c
a,b

Fig. 6. Automata from Example 24, NBA A (left) and Adet (right, with BSCCs)

Lemma 25. Suppose A is strongly connected with at least one final state. Let
L be the set of infinite words w ∈ Σω \ Lω(A) such that δ(Q0, x) 6= ∅ for all
x ∈ Pref (w). Then, Pr(L) = 0.

Proof. We consider first the case where A has a single initial state, say Q0 =
{q0}. Suppose by contradiction that Pr(L) is positive. Then, there is some finite
word z such that zv ∈ L for almost all words v ∈ Σω. Let R = δ(q0, z). By
definition of L, the set R is nonempty and δ(R, x) 6= ∅ for all finite words x.
Hence, the state ∅ is not reachable from R in Adet. Therefore, there is a non-trap
BSCC of Adet that is reachable from the singleton {q0}. Hence, Pr(Lω(A)) > 0
by Corollary 23. But then Pr(L) = 0 by Lemma 19. Contradiction.

The argument for the general case is as follows. Suppose by contradiction
that L has positive measure. We consider the labeled Markov chain M =
(2Q, P,Dirac[Q0]) that arises from the deterministic automaton Adet with initial
state Q0 by attaching uniform distributions. That is, if R,R′ ⊆ Q and a ∈ Σ
then P (R, a,R′) = 1/|Σ| if R′ = δ(R, a) and P (R, a,R′) = 0 otherwise. For
almost all words w in L, the corresponding path πw inM eventually visits some
BSCC C of M resp. Adet and visits all its states infinitely often. By assumption
C is non-trap.

The goal is to show that a non-trap BSCC is accessible from some singleton.
Let L′ denote the set of all words w = a1 a2 a3 . . . ∈ L such that πw eventually
enters some BSCC ofM and visits all its states infinitely often. Then, Pr(L′) =
Pr(L). If w = a1 a2 a3 . . . ∈ L′ and πw = R0R1R2 . . . then R0 = Q0 and
Rn = δ(Q0, a1 . . . an). By König’s Lemma there is an infinite run q0 q1 q2 . . . for
w in A such that qi ∈ Ri for all i ∈ N. We write Runs(w) to denote the set of
all these runs. Pick some run ρ = q0 q1 q2 . . . ∈ Runs(w) and define U0 = {q0}
and Ui = δ(q0, a1 a2 . . . ai) = δ(Ui−1, ai) for i > 1. Clearly, qi ∈ Ui ⊆ Ri for all
indices i and πρ = U0 U1 U2 . . . is a path in M and the unique run for w in
Adet starting in {q0}.

Consider the set U of all sets U ⊆ Q such that U ∈ inf (πρ) for some word
w ∈ L′ and some ρ ∈ Runs(w). (The notation inf (·) is used to denote the set
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of elements that appear infinitely often in (·).) We now show that the subgraph
of Adet consisting of the nodes U ∈ U contains a BSCC. For each subset V of U
and each state q ∈ Q, let

Lq,V =
{
w ∈ L′ : ∃ρ ∈ Runs(w) s.t. q = first(πρ) ∧ inf (πρ) = V

}

Then, L′ is the union of all sets Lq,V with (q,V) ∈ Q0×U. As Pr(L′) = Pr(L) > 0
and Q0×U is finite, there is some pair (q,V) ⊆ Q0×U with Pr(Lq,V) > 0. Clearly,
Lq,V is ω-regular. Hence, there is some finite word z such that

Pr
{
v ∈ Σω : zv ∈ Lq,V

}
= 1

Let R = δ(q, z). We now regard the fragment of Adet that is reachable from R.
LetM[R] be the corresponding Markov chain (i.e., the sub Markov chain ofM
with initial state R). Since zv ∈ Lq,V for almost all words v ∈ Σω, inf (π) = V
for almost all paths inM[R]. But then V constitutes a non-trap BSCC ofM[R],
and therefore of M and Adet. Since V is reachable from {q} in Adet, we obtain
Pr(Lω(A)) > 0 by Corollary 23. Lemma 19 yields Pr(L) = 0, which contradicts
the assumption Pr(L) > 0. �

Remark 26. Clearly, Pr(Lω(A)) depends on Q0 as there might be state-letter
pairs (q, a) where δ(q, a) is empty. However, Lemma 4 implies that ifA is strongly
connected with at least one final state then Pr(Lω(A)) does not depend on F . �

Theorem 27. The positivity and the almost universality problem for strongly
connected NBA are PSPACE-complete.

Proof. Membership to PSPACE follows from the results of [40,15]. PSPACE-
hardness of the positivity and almost universality problem for strongly connected
NBA can be established using a polynomial reduction from the universality
problem for nondeterministic finite automata (NFA) where all states are final.
The latter problem is known to be PSPACE-complete [29].

Let B = (Q,Γ, δB, Q0, Q) be an NFA. We can safely assume that Q0 is
nonempty and all states are reachable fromQ0. We define an NBAA = (Q,Σ, δA, Q0, Q)
over the alphabet Σ = Γ ∪ {#} as follows. If q ∈ Q and a ∈ Γ then δA(q, a) =
δB(q, a) and δA(q,#) = Q0. Clearly, A is strongly connected. Furthermore,
δA(R,#) = Q0 for all nonempty subsets R of Q and δA(q, x#) = Q0 for all
states q and all words x ∈ Σ∗ where δA(q, x) is nonempty.

B is universal iff Lfin(B) = Γ ∗

iff δB(Q0, y) 6= ∅ for all y ∈ Γ ∗

iff δA(Q0, x) 6= ∅ for all x ∈ Σ∗

By Lemma 4, B is universal iff Pr(Lω(A)) = 1. This yields the PSPACE-hardness
of the almost universality problem for strongly connected NBA. Moreover, all
singletons {q} can reach Q0, and if there is a non-trap BSCC C of Adet then
Q0 ∈ C. Using Corollary 23, we obtain:
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B is universal iff Q0 is contained in some non-trap BSCC of Adet

iff Pr(Lω(A)) > 0

This yields the PSPACE-hardness of the positivity problem for strongly con-
nected NBA. �

D Proofs for Section 3

D.1 Some technical statements about UBA

In what follows, let U = (Q,Σ, δ,Q0, F ) be a UBA such that all states are
reachable from some initial state and Lω(q) 6= ∅ for all states q.

We start with some simple observations. If q1, q2 are states in U with q1 6= q2
such that {q1, q2} ⊆ δ(Q0, x) for some finite word x then Lω(q1)∩Lω(q2) = ∅. In
particular, the languages of the initial states are pairwise disjoint, and therefore:

Pr(Lω(U)) =
∑

q∈Q0

Pr(Lω(q)).

The following simple fact will be used at several places:

Fact 28 If U is a UBA then for each state p ∈ Q, each nonempty subset R
of Q of the form R = δ(Q0, y) for some word y ∈ Σ∗ and each finite word
x = a1 a2 . . . an ∈ Σ∗ there exists at most one state q ∈ R and at most one run

q = q0
a1−→ q1

a2−→ . . .
an−→ qn = p

for x starting in q and ending in p. In particular, the NFA (Q,Σ, δ, δ(Q0, y), {p})
is unambiguous for each y ∈ Σ∗ and each state p ∈ Q.

Proof. If there would be two runs q0
y−→ q

x−→ p and q′0
y−→ q′

x−→ p where
q, q′ ∈ R and q0, q

′
0 ∈ Q0 then each word yxw with w ∈ Lω(p) would have two

accepting runs. This is impossible by the unambiguity of U and the assumption
that Lω(p) is nonempty for all states p ∈ Q. �

Fact 28 will often be used in form of the statement that, for all states q, p ∈ Q
and all finite words x, there is at most one run for x from q to p.

We now suppose that U is a strongly connected UBA. Note that Lω(p) 6= ∅
and Pr(Lω(p)) = 0 is possible. However, in this case Pr(Lω(q)) = 0 for all
states q. The following theorem states that for strongly connected UBA U , the
accepting runs of almost all words in Lω(U) visit each state of U infinitely often.
Although irrelevant for the soundness of our algorithm, we find that it reveals
an interesting structural property of strongly connected UBA.

Theorem 29 (Measure of strongly connected UBA). If U is a strongly
connected UBA with at least one final state then:

Pr
{
w ∈ Lω(U) : inf (accrun(w)) = Q

}
= Pr

(
Lω(U)

)
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In Theorem 29 we use the following notations. For w ∈ Lω(U), we write
accrun(w) to denote the unique accepting run for w in U . For q0 q1 q2 . . . ∈ Qω,
the set inf (q0 q1 q2 . . .) denotes the set of all states q ∈ Q such that q = qi for
infinitely many indices i. Thus, if w ∈ Lω(U) then inf (accrun(w)) collects all
states q ∈ Q that appear infinitely often in the accepting run for w.

Proof. To prove Theorem 29, we can rely on the following facts that hold for all
events (measurable sets) Li, L in each probability space:

– Pr(L1) = Pr(L2) = 1 iff Pr(L1 ∩ L2) = 1
Hence, if L1, . . . , Ln ⊆ L and Pr(L1) = . . . = Pr(Ln) = Pr(L) then Pr(L1 ∩
. . . ∩ Ln) = Pr(L) as Pr(Li |L) = 1 for all i = 1, . . . , n implies Pr(L1 ∩ . . . ∩
Ln |L) = 1.

– if (Ln)n∈N is a countable family of measurable sets with L0 ⊇ L1 ⊇ L2 ⊇ . . .
then

Pr(L) = lim
n→∞

Pr(Ln) where L =
⋂

n∈N
Ln

Hence, for the proof of Theorem 29 it suffices to show that the accepting runs for
almost all words in Lω(U) contain a fixed state q that appears infinitely often.
Thus, the goal is to show:

Pr
{
w ∈ Lω(U) : q ∈ inf (accrun(w))

}
= Pr

(
Lω(U)

)

The claim is obvious if Pr(Lω(U)) = 0. Suppose now that Pr(Lω(U)) > 0. Hence,
Pr(Lω(p)) > 0 for all states p (Fact 17). We first show that the accepting runs
for almost all words in Lω(U) eventually visit q.

Claim: Pr
{
w ∈ Lω(U) : accrun(w) |= ♦q

}
= Pr

(
Lω(U)

)

Proof of the claim: Suppose by contradiction that there is some state q ∈ Q
such that the set of words w ∈ Lω(U) whose run does not visit q has positive
measure, i.e.,

Pr
{
w ∈ Lω(U) : accrun(w) 6|= ♦q

}
> 0

Lemma 1 yields the existence of a finite word x ∈ Σ∗ such that:

Pr
{
w ∈ Σω : xw ∈ Lω(U), accrun(xw) 6|= ♦q

}
= 1

In particular, δ(Q0, x) is nonempty. Pick some state p ∈ δ(Q0, x), say p ∈ δ(q0, x)
where q0 ∈ Q0. As U is strongly connected, there is some nonempty finite word
y with q ∈ δ(p, y). Let

L =
{
xyv : v ∈ Lω(q)

}
and L′ =

{
yv : v ∈ Lω(q)

}
.

As Pr(Lω(q)) > 0, we get:

Pr(L′) > Pr(L) =
1

2n
· Pr(Lω(q)) > 0
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where n = |x| + |y|. The words xyv ∈ L have accepting runs starting with the
prefix:

q0
x−→ p

y−→ q

In particular:

L′ ⊆
{
w ∈ Σω : xw ∈ Lω(U), accrun(xw) |= ♦q

}

and therefore:

Pr
{
w ∈ Σω : xw ∈ Lω(U), accrun(xw) |= ♦q

}
> 0

But then:

Pr
{
w ∈ Σω : xw ∈ Lω(U), accrun(xw) 6|= ♦q

}
< 1

Contradiction. This completes the proof of the claim.
With an analogous argument we get that for each state q ∈ Q, Pr(Lω(U)) =

Pr(Ln) where Ln is the set of all infinite words w ∈ Lω(U) such that accrun(w)
visits state q at least n times. Then,

Lω(U) = L0 ⊇ L1 ⊇ L2 ⊇ . . . ⊇
⋂

n∈N
Ln

def
= L

Then, L is the set of all words w ∈ Lω(U) such that q ∈ inf (accrun(w)). And
we have:

Pr(L) = lim
n→∞

Pr(Ln) = Pr(Lω(U))

This completes the proof of Theorem 29. �

Remark 30. The only place where the proof of Theorem 29 uses the unambiguity
of U is in the statement that L agrees with the set of infinite words w such that
q ∈ inf (accrun(w)). �

Remark 31. With analogous arguments one can show that the accepting runs of
almost all words in Lω(U) contain each finite path of U infinitely often. �

D.2 Properties of cuts

In what follows, we suppose U = (Q,Σ, δ,Q0, F ) is a strongly connected UBA
where Q0 and F are nonempty. Hence, Lω(q) 6= ∅ for all states q. Moreover, by
the strong connectivity of U we get Pr(Lω(U)) > 0 iff Pr(Lω(q)) > 0 for some
state q.

The following facts are simple observations that will be used at various places:

Fact 32 Suppose U is a UBA (possibly not strongly connected).

– If C is a cut then so are the sets δ(C, y) for all finite words y ∈ Σ∗.
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– If Pr(Lω(U)) > 0 then there exists some finite word x ∈ Σ∗ such that
δ(Q0, xy) is a cut for all words y ∈ Σ∗.

Proof. The first statement is obvious. The argument for the second statement
is as follows. Suppose Pr(Lω(U)) > 0. Lemma 1 asserts the existence of a finite
word x such that

Pr
{
w ∈ Σω : xw ∈ Lω(U)

}
= 1

Hence, the δ(Q0, x) is a cut, and so are the sets δ(Q0, xy) = δ(δ(Q0, x), y) for all
y ∈ Σ∗ by the first statement. �

Fact 32 yields the following characterization of almost universal UBA:

U is almost universal iff Q0 is a cut

iff δ(Q0, x) is a cut for all x ∈ Σ∗

The above characterization holds in any (possibly not strongly connected) UBA.
An analogous characterization of positivity for strongly connected UBA is ob-
tained using the fact that Pr(Lω(U)) > 0 iff Pr(Lω(q)) > 0 for some state q:

U is positive, i.e., Pr(Lω(U)) > 0

iff U has a reachable cut, i.e., a cut of the form δ(Q0, x)

iff U has a pure cut, i.e., a cut of the form δ(q, x)

We now elaborate the notion of cuts in strongly connected UBA.

Fact 33 Suppose U is a strongly connected UBA and Pr(Lω(U) ) > 0.

– Let C be a cut and C ′ a subset of Q with Lω(q) ∩ Lω(p) = ∅ for all states
q, p ∈ C ′ with q 6= p. Then, C ⊆ C ′ implies C = C ′.

– If δ(q, x) is a cut and y ∈ Σ∗ such that q ∈ δ(q, xy) then δ(q, x) = δ(q, xyx).

Proof. The first statement is obvious as Pr(Lω(r)) > 0 for all states r. For the

second statement we suppose C = δ(q, x) is a cut and r
y−→ q for some state

r ∈ C. Then:

δ(q, xyx) = δ(C, yx) ⊇ δ(r, yx) = δ( δ(r, y), x) ⊇ δ(q, x) = C

is a cut that subsumes R. Hence, C = δ(q, xyx) by the first statement. �

As a consequence of Lemma 4, we get that if C ⊆ Q such that Lω(q)∩Lω(p) =
∅ for all states q, p ∈ C with q 6= p then:

C is a cut iff δ(C, y) 6= ∅ for all y ∈ Σ∗

Corollary 34 (Pure cuts in strongly connected UBA; see first part of
Lemma 8). Let U be a strongly connected UBA with at least one final state.
Then for each state q and each finite word x:

δ(q, x) is a cut iff δ(q, xy) 6= ∅ for all y ∈ Σ∗
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Proof. The languages of the states in δ(q, x) are pairwise disjoint by the un-
ambiguity of U . Hence, δ(q, x) is a (pure) cut if and only if U [δ(q, x)] is almost
universal. By Lemma 4, this is equivalent to the statement that δ(q, xy) 6= ∅ for
all y ∈ Σ∗. �

The following lemma yields that for positive, strongly connected UBA, the
pure cuts constitute a non-trap BSCC in the deterministic automaton Udet ob-
tained by applying the standard powerset construction.

Lemma 35 (See second part of Lemma 8). Suppose Pr(Lω(U)) > 0 and
U is strongly connected. Then, for each cut C ⊆ Q the following statements are
equivalent:

(1) C is pure, i.e., C = δ(q, x) for some state q ∈ Q and some word x ∈ Σ∗
(2) for each state p ∈ Q there exists a word z ∈ Σ∗ such that C = δ(p, z)
(3) C is reachable from any other cut, i.e., if C ′ is a cut then there exists a finite

word y with C = δ(C ′, y).

Proof. Obviously, (1) is a consequence of (2). Let us prove the implication (1)
=⇒ (2). Suppose δ(q, x) is a cut and let p ∈ Q be an arbitrary state. Pick some

finite word y with p
y−→ q. Then, δ(p, yx) ⊇ δ(q, x). We get δ(p, yx) = δ(q, x) by

the second statement of Fact 33.
We now show the implication (2) =⇒ (3). Let C ′ be a cut and p ∈ C ′. By

assumption (2), there is some word z such that C = δ(p, z). Then, δ(C ′, z) is a
cut as well and we have:

C = δ(p, z) ⊆ δ(C ′, z)

and therefore C = δ(C ′, z) by the first statement of Fact 33.
For the implication (3) =⇒ (1) we pick a cut C ′ of the form C ′ = δ(p, z)

for some state p ∈ C and word z. (Such a cut exists by the second statement
in Fact 32.) By assumption (3) there is a word y with C = δ(C ′, y). But then
C = δ(p, yz). �

The above lemma shows that if U is positive then Udet has exactly one non-
trap BSCC consisting of the cuts of U that are reachable from some resp. all
singleton(s). More precisely, if Pr(Lω(U)) > 0 and U is strongly connected then
the cuts of U that are reachable from some singleton constitute a BSCC C of
Udet. This is the only non-trap BSCC of Udet and C is reachable from each cut.
Additionally, the trap BSCC {∅} is reachable if there are states q in U with
Pr(Lω(q)) < 1.

Remark 36. As the results above show: there is no cut C that is reachable from
some singleton and that is not contained in the non-trap BSCC C. However,
there might be cuts outside C. For example, let U = (Q, {a, b}, δ, Q0, F ) where

Q =
{
qa, qb, pa, pb

}
, Q0 =

{
qa, pb

}
, F =

{
qa
}
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The transition function δ is given by:

δ(qa, a) = {qa, qb}
δ(qb, b) = {pa, pb}

δ(pa, a) = {pa, pb}
δ(pb, b) = {qa, qb}

and δ(·) = ∅ in all remaining cases. The unambiguity of U is clear since the
switch between the q- and p-states are deterministic and since

Lω(qa) = Lω(pa) =
{
aw : w ∈ {a, b}ω

}

Lω(qb) = Lω(pb) =
{
bw : w ∈ {a, b}ω

}

Thus, U is universal. The sets {qa, qb}, {pa, pb} constitute the non-trap BSCC
consisting of the cuts that are reachable from the four singletons. The set
C = {qa, pb} is a cut too, but C is not reachable from any singleton. However,
δ(C, a) = δ(C, b) = {qa, qb}. �

Lemma 37. Suppose Pr(Lω(U)) > 0 and U is strongly connected. Let q, p be
states in U with q 6= p. Then:

{q, p} ⊆ C for some pure cut C

iff there is some finite word z with q
z−→ q

z−→ p

Proof. Let C be a pure cut that contains q and p. By Lemma 35 there is a word
z with C = δ(q, z). Then, C = δ(C, z) and δ(p, z) = ∅ by the unambiguity of

U (see Fact 28). But then q
z−→ q

z−→ p. Vice versa, q
z−→ q

z−→ p implies
{q, p} ⊆ δ(C, z) for each cut C with q ∈ C. �

Remark 38. Lemma 37 yields that for all states q and p of a strongly connected
UBA U :

– If there is no word z with q
z−→ q

z−→ p then there is no cut C with
{q, p} ⊆ C.

– If Pr(Lω(U)) > 0 and q
z−→ q

z−→ p then there is a pure cut C that contains
q and p.

The existence of some finite word z with q
z−→ q

z−→ p can be checked efficiently
using standard algorithms for NFA. Note that the first case applies (i.e., no
such word z exists) if and only if the accepted languages of the NFA Bq,q =
(Q,Σ, δ, {q}, {q}) and Bq,p = (Q,Σ, δ, {q}, {p}) are disjoint. The latter can be
checked by running an emptiness check to the product-NFA of Bq,q and Bq,p.

If the languages of Bq,q and Bq,p are not disjoint then we can generate a finite

word z of length at most |Q|2 such that q
z−→ q

z−→ p by searching an accepted
word of the product of Bq,q and Bq,p. �

The following concept of cut languages is irrelevant for the soundness proof
of our algorithm to compute Pr(Lω(U)). However, we find that Lemma 40 (see
below) is an interesting observation.
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Definition 39 (Cut languages). For each state q in U , let Kq be the set of
finite words x such that δ(q, x) is a cut. We refer to Kq as the cut language for
state q.

The cut languages Kq are upward-closed (i.e., if x ∈ Kq then xy ∈ Kq for all
finite words y) by the first statement of Fact 32. The second statement of Fact
32 yields that Kq is nonempty if Pr(Lω(q)) is positive. Vice versa, if x ∈ Kq

then almost all infinite words w with x ∈ Pref (w) belong to Lω(q). Hence, the
cut language Kq is nonempty if and only if Pr(Lω(q)) > 0. Moreover, the cut
language Kq is regular since Kq = Lfin(Udet[q]) where Udet[q] denotes the DFA
that results from the powerset construction of U by declaring state {q} to be
initial and the states that cannot reach the trap BSCC to be final (in particular,
the states in the non-trap BSCCs are final). The unambiguity of U yields that
Kq ∩Kp = ∅ for all states q, p ∈ Q such that {q, p} ⊆ δ(Q0, x) for some finite
word x ∈ Σ∗.

We use Pr(Kq) as a shortform notation for Pr(L) where L consists of all
infinite words that have some prefix in Kq. Recall that the cut language Kq is
empty if Pr(Lω(q)) = 0, in which case Pr(Lω(q)) = Pr(Kq) = 0.

Lemma 40. Pr(Lω(q)) = Pr(Kq)

Proof. Obviously, almost all infinite words that have a prefix in Kq belong to
Lω(q). This yields Pr(Lω(q)) > Pr(Kq). Suppose by contradiction that Pr(Lω(q)) >
Pr(Kq). Then, the regular language {w ∈ Lω(q) : Pref (w)∩Kq = ∅} is positive.
Lemma 1 yields the existence of some finite word x such that:

Pr
{
v ∈ Σω : xv ∈ Lω(q), Pref (xv) ∩Kq = ∅

}
= 1

In particular, x /∈ Kq and Pr
{
v ∈ Σω : xv ∈ Lω(q)

}
= 1. The latter yields that

δ(q, x) is a cut. But then x ∈ Kq (by definition of Kq). Contradiction. �

D.3 Properties of extensions

Recall that an extension for a state-word pair (q, z) ∈ Q×Σ∗ is a word y ∈ Σ∗
such that there is some state p ∈ Q q 6= p, δ(p, z) 6= ∅ and {q, p} ⊆ δ(q, y).
Occasionally, we refer to the pair (p, y) as an extension of (q, z).

The idea for the iterative generation of a pure cut in positive, strongly con-
nected UBA sketched in Section 3.1 is to pick an arbitrary state q, define z0 = ε
and to seek successively for an extension y for (q, zi). If such an extension exists
then we define zi+1 as y zi. In this way, we obtain a strictly increasing sequence

δ(q, z0) ( δ(q, z1) ( δ(q, z2) ( . . .

of subsets of Q as shown in the following lemma:

Lemma 41. Let U be a (possibly non-positive, possibly not strongly connected)
UBA, and let q, p be states in U and y, z finite words. If y is an extension of
(q, z), then δ(q, yz) is a proper superset of δ(q, z).
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Proof. Since {q, p} ⊆ δ(q, y) we have:

δ(q, z) ∪ δ(p, z) = δ
(
{q, p}, z

)
⊆ δ

(
δ(q, y), z

)
= δ(q, yz)

In particular, δ(q, z) ⊆ δ(q, yz). The set δ(p, z) is nonempty (by the definition
of extensions). Let r be an arbitrary state in δ(p, z). Then, r /∈ δ(q, z), since
otherwise the word yz would have two runs from q to r:

q
y−→ q

z−→ r and q
y−→ p

z−→ r,

which is impossible by the unambiguity of U (see Fact 28). �

Lemma 42. Let U be a positive, strongly connected UBA. Then for each state-
word pair (q, z) ∈ Q×Σ∗:

δ(q, z) is a cut iff the pair (q, z) has no extension

Proof. “=⇒”: Let δ(q, z) be a cut and suppose by contradiction that there exists
an extension y for (q, z). Let p ∈ Q such that q 6= p, δ(p, z) 6= ∅ and {q, p} ⊆
δ(q, y). The set δ(q, yz)\ δ(q, z) is nonempty (Lemma 41). As Pr(Lω(r) ) > 0 for
all states r, we get:

Pr
(
Lω(δ(q, yz))

)
= Pr

(
Lω(δ(q, z))

)
+
∑

r ∈ δ(q, yz)
r /∈ δ(q, z)

Pr
(
Lω(r) ) > Pr

(
Lω(δ(q, z))

)

Hence, Pr(Lω(δ(q, z)) < 1. But then δ(q, z) cannot be a cut as Pr(Lω(R)) = 1
for all cuts R. Contradiction.

“⇐=”: Suppose now that (q, z) has no extension. To prove that C is a cut we
rely on Corollary 34 and show that δ(C, u) is nonempty for all words u ∈ Σ+.

We first observe that there is some cut R that contains C. For this, we may
pick any cut R′ with q ∈ R′. Then, R = δ(R′, z) is a cut with C ⊆ R. For each

state p ∈ R \ {q}, there is some finite word y with q
y−→ q

y−→ p (see Lemma
37). Since there exists no extension for (q, z), we have δ(p, z) = ∅ for all states
p ∈ R \ C. This yields:

C = δ(q, z) = δ(C, z) = δ(R, z)

Therefore, for each word u ∈ Σ+:

δ(C, u) = δ
(
δ(R, z), u

)
= δ

(
R, zu

)

As R is a cut, we have δ(R, zu) 6= ∅. This yields δ(C, u) 6= ∅. �

D.4 Proofs for Section 3.2

We now turn to the soundness of the linear equation system that has been
presented for the computation of the values Pr(Lω(q)) for q ∈ Q \QBSCC where
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we suppose that all BSCCs of U are non-trivial and positive. Recall that for
q ∈ Q \QBSCC :

βq =
1

|Σ| ·
∑

a∈Σ

∑

p∈δ(q,a)∩QBSCC

Pr(Lω(p) )

provided that δ(q, a) ∩QBSCC 6= ∅ for some a ∈ Σ. Otherwise, βq = 0.
We now show that the probabilities Pr(Lω(q) ) for q ∈ Q \QBSCC are com-

putable by the linear equation system shown in Figure 7 with |Q \ QBSCC |
equations and variables ζq for q ∈ Q \QBSCC .

ζq =
1

|Σ| ·
∑
a∈Σ

∑
r ∈ δ(q, a)
r /∈ QBSCC

ζr + βq for q ∈ Q \QBSCC

Fig. 7. Linear equation system for computing Pr(Lω(q)) in UBA

Theorem 43 (See Theorem 13). If all BSCCs of U are non-trivial and pos-
itive, then the linear equation system in Figure 7 has a unique solution, namely
ζ∗q = Pr(Lω(q) ).

Proof. Write Q for Q \QBSCC . Define a matrix M ∈ [0, 1]Q×Q by

Mq,p =
|{a ∈ Σ : p ∈ δ(q, a)}|

|Σ| for all q, p ∈ Q.

Further, define a vector β ∈ [0, 1]Q with β = (βq)q∈Q. Then the equation system
in Figure 7 can be written as

ζ = Mζ + β ,

where ζ = (ζq)q∈Q is a vector of variables. By reasoning similarly as at the
beginning of the proof of Lemma 5 one can show that the values ζ∗q = Pr(Lω(q))

for q ∈ Q satisfy this equation system. That is, defining ζ∗ = (ζ∗q )q∈Q we have
ζ∗ = Mζ∗ + β.

It remains to show uniqueness. Since M and β are nonnegative, it follows
from monotonicity that we have

ζ∗ > Mζ∗ > M2ζ∗ > . . . , (4)

where the inequalities hold componentwise. For i > 1, let Qi be the set of states
in Q that have a path in U of length i or shorter to a BSCC of U . We prove by
induction on i that for all i ≥ 1:

(
M iζ∗

)
q

< ζ∗q for all q ∈ Qi. (5)
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For i = 1, note that βq > 0 for all q ∈ Q1, hence (Mζ∗)q < (Mζ∗ + β)q = ζ∗q for
all q ∈ Q1. For the step of induction, let q ∈ Qi+1 for i > 1. Then, there exist
a ∈ Σ and p ∈ δ(q, a) ∩Qi. Hence, Mq,p > 0. By induction hypothesis we have(
M iζ∗

)
p
< ζ∗p . This yields:

(
M i+1ζ∗

)
q

=
∑

r∈Q
Mq,r

(
M iζ∗

)
r

= Mq,p︸︷︷︸
>0

(
M iζ∗

)
p︸ ︷︷ ︸

<ζ∗p

+
∑

r∈Q\{p}
Mq,r

(
M iζ∗︸ ︷︷ ︸

6ζ∗ by (4)

)
r

< Mq,p · ζ∗p +
∑

r∈Q\{p}
Mq,rζ

∗

= (Mζ∗)q

6 ζ∗q by (4)

This shows (5). Since Q|Q| = Q it follows

M |Q|ζ∗ < ζ∗ , (6)

where the equality is strict in all components. So there is 0 < a < 1 with

M |Q|ζ∗ ≤ aζ∗. By induction, it follows M |Q|·iζ∗ 6 aiζ∗ for all i > 0. Thus,
limi→∞M iζ∗ = 0, where 0 denotes the zero vector. By (6) the vector ζ∗ is
strictly positive. It follows that limi→∞M i = [0], where [0] denotes the zero
matrix.

Let x ∈ RQ be an arbitrary solution of the equation system in Figure 7, i.e.,
x = Mx+ β. Since ζ∗ = Mζ∗ + β, subtracting the two solutions yields

x−ζ∗ = M(x−ζ∗) = M2(x−ζ∗) = . . . = lim
i→∞

M i(x−ζ∗) = [0](x−ζ∗) = 0 ,

where 0 denotes the zero vector. Hence x = ζ∗, which proves uniqueness of the
solution. �

D.5 Proofs for Section 3.3

The techniques and proofs presented for reasoning about Pr(Lω(U)) in a UBA
can be adapted for the case where a Markov chain M = (S, P, ι) and a UBA
U = (Q,Σ, δ,Q0, F ) over the alphabet Σ = S is given. For this we consider the
product automaton P =M⊗U and adapt the techniques presented in Section
3.3 as outlined in Section 3.3.

Recall that for A to be an NBA over the alphabet S, we write PrMs (A) for
PrMs (Π) where Π denotes the set of infinite paths s0 s1 s2 s3 . . . in the Markov
chain M such that s0 = s and s1 s2 s3 . . . ∈ Lω(A). Thus, PrMs (A) = PrMs (L)
where L = {sw : w ∈ Lω(A)}. In contrast, PrMs (Lω(A)) denotes the probability
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of the set of infinite paths w inM that start in s and are accepted by A. Thus,
PrMs (Lω(A)) and PrM(A) might be different.

As explained in Section 3.3:

PrM(Lω(U) ) =
∑

s∈S
ι(s) ·

∑

q∈δ(Q0,s)

PrMs (P[s, q] )

where P[s, q] denotes the UBA (S × Q,S,∆,Q′0, S × F ). We then adapted the
algorithm for computing Pr(U [q]) to the case where the task is to compute the
values PrMs (P[s, q] ). To adapt the soundness proofs accordingly we need to
“relativize” the probabilities for words in S∗ according to the paths inM. That
is, we have to switch from the uniform probability measure Pr over the sigma-
algebra spanned by the cylinder sets of the finite words Cyl(x) = {xw : w ∈ Σω}
to the measures PrMs induced by the states of M.

We now illustrate how the proofs can be adapted by a few central statements.

Lemma 44 (cf. Lemma 1 = Lemma 16). Let s ∈ S be a state of M and
L ⊆ Sω be an ω-regular language with PrMs (L) > 0. Then, there exists a finite
path x ∈ S∗ starting in state s such that almost all extensions of x belong to L
according to the measure PrMs , i.e.,

PrMs
{
w ∈ L : x ∈ Pref (w)

}
= PrMs

(
Cyl(x)

)

where Pref (w) denotes the set of finite prefixes of w.

Proof. The argument is fairly the same as in the proof of Lemma 16. We regard a
deterministic automaton D for L and consider the product Markov chainM⊗D.
In this context, we consider M as a transition-labeled Markov chain where all
outgoing transitions of state s are labeled with s. If PrMs (L) is positive then there
is a finite path x from s such that the lifting of x from 〈s, qinit〉 in the product
ends in a state that belongs to some BSCC where the acceptance condition of D
holds. But then, w ∈ L for almost all infinite paths w inM with x ∈ Pref (w). �

The product construction presented in Section 3.3 can be adapted for NBA
and Markov chains. Formally, if M = (S, P, ι) is a Markov chain M and A =
(Q,S, δ,Q0, F ) an NBA with the alphabet S then

M⊗A = (S ×Q,S,∆,Q′0, S × F )

where
Q′0 =

{
〈s, q〉 ∈ S ×Q : ι(s) > 0, q ∈ δ(Q0, s)

}

and for s, t ∈ S with P (s, t) > 0 and q ∈ Q:

∆(〈s, q〉, t) =
{
〈t, p〉 : p ∈ δ(q, t)

}

If P (s, t) = 0 then ∆(〈s, q〉, t) = ∅. Given thatM viewed as an automaton over
the alphabet S behaves deterministically, the NBAM⊗A is unambiguous if A
is a UBA.
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Lemma 45 (Generalization of Lemma 4). For each NBA A over the al-
phabet S where M⊗A is strongly connected we have:

PrM
(
Lω(A)

)
= 1− PrM

{
w ∈ Sω : δ(Q0, x) = ∅ for some x ∈ Pref (w)

}

In particular, PrM(Lω(A) ) = 1 if and only if δ(Q0, x) 6= ∅ for all finite words
x ∈ S+ where x is a finite path in M starting in s.

Proof. The arguments are fairly the same as in the proof of Lemma 4. In-
stead of Fact 20, we can rely on the original result of [15] for checking whether
PrM(Lω(A)) > 0 for a given Markov chain M. Note that the only reference to
the probability measure is in the form “almost all words in L enjoy property
XY” which simply means “the words in L not satisfying XY constitute a null
set”. At a few places we used 1/2|x| as the measure of (the cylinder set spanned
by) the finite word x as label of some path from state p to q. The value 1/2|x|

has to be replaced with Prs(Cyl(x)) for the corresponding state s inM. Note if

〈s, p〉 x−→ 〈t, q〉 in M⊗A then Prs(Cyl(x)) is positive. �

We now turn the soundness of the positivity check of the BSCCs in the product-
UBA P =M⊗U . Recall that δC(q, t) = {p ∈ Q : 〈t, p〉 ∈ C}. Then, for 〈s, q〉 ∈ C
and t ∈ S:

∆C(〈s, q〉, t) =
{
〈t, p〉 : t ∈ Post(s), p ∈ δC(q, t)

}

and ∆C(〈s, q〉, t) = ∅ if 〈s, q〉 /∈ C. The extension ∆C : (S × Q) × S∗ → 2C

is defined in the standard way. Then, for 〈s, q〉 ∈ C and x ∈ S∗ we have:
∆C(〈s, q〉, x) 6= ∅ if and only if there exists a finite path 〈s0, p0〉 〈s1, p1〉 . . . 〈sm, pm〉
in C with 〈s0, p0〉 = 〈s, q〉 and s1 s2 . . . sm = x. Recall that a BSCC C of P is
said to be positive if PrMs (P[s, q] ) > 0 for some/any pair 〈s, q〉 ∈ C.
Lemma 46 (cf. Lemma 5). Let C be a BSCC of P and

(∗) ζs,q =
∑

t∈Post(s)

∑

p∈δC(q,t)
P (s, t) · ζt,p for all 〈s, q〉 ∈ C

Then, the following statements are equivalent:

(1) C is positive,
(2) the linear equation system (∗) has a positive solution,
(3) the linear equation system (∗) has a non-zero solution.

Proof. The proof of Lemma 5 presented in Section 3.1 is directly applicable here
as well by considering the |C| × |C|-matrix M with

M〈s,q〉,〈t,p〉 =

{
P (s, t) : if p ∈ δ(q, t)
0 : otherwise

Note that the matrix M is non-negative and irreducible and the entry in the n-th
power of M for state 〈s, q〉 and 〈t, p〉 is the probability with respect to PrMs of
all infinite paths w = s0 s1 s2 . . . inM with s0 = s such that p ∈ ∆C(q, s1 . . . sn).
(Recall that ∆C denotes the transition relation of P restricted to C.) �
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Analogously we can adapt the proof of Theorem 12 to obtain:

Theorem 47 (cf. Theorem 12). Let C be a positive BSCC of P and C a pure
cut for C. Then, the probability vector ( PrMs (Lω(P[s, q]) )〈s,q〉∈C is the unique
solution of the following linear equation system:

(1) ζs,q =
∑

t∈Post(s)

∑

p∈δC(q,t)
P (s, t) · ζt,p for all 〈s, q〉 ∈ C

(2)
∑

〈s,q〉∈C
ζs,q = 1

Proof. It is easy to see that the vector (ζ∗〈s,q〉)〈s,q〉∈C with

ζ∗〈s,q〉 = PrMs (Lω(P[s, q]) )

is indeed a solution of (1) and (2). For the uniqueness, we rely on the proof
presented for Theorem 12 in Section 3.1 with the |C| × |C|-matrix M defined by
M〈s,q〉,〈t,p〉 = P (s, t) if p ∈ δ(q, t) and M〈s,q〉,〈t,p〉 = 0 otherwise. �

Using Lemma 45 we can now adapt Corollary 34 and obtain:

Corollary 48 (Pure cuts in BSCCs of the product; cf. Corollary 34).
Let C be a positive BSCC of P with at least one final state. Then, for each state
〈s, q〉 ∈ C and each finite word x, the following two statements are equivalent:

(a) {〈s, p〉 : p ∈ δC(q, x)} is a pure cut.

(b) For each y ∈ S∗, there is some p ∈ δC(q, x) such that ∆C(〈s, p〉, y) 6= ∅.

As before, let C be a positive BSCC of the product-UBA P. Given a state 〈s, q〉
in C and a word z ∈ S∗, a word y ∈ S∗ is said to be an extension of (〈s, q〉, z) if
the following two conditions hold:

(1) s y is a cycle in the Markov chain M
(2) there exists a state p ∈ Q \ {q} in U such that ∆C(〈s, p〉, z) 6= ∅ and
{〈s, q〉, 〈s, p〉} ⊆ ∆C(〈s, q〉, y).

Note that (1) implies, if y = t0 t1 . . . tm then t0 ∈ Post(s) and tm = s. In what
follows, for s, t ∈ S, q, p ∈ Q and x ∈ S∗, we often write

〈s, q〉 x−→C 〈t, p〉

to indicate that 〈t, p〉 ∈ ∆C(〈s, q〉, x).

Lemma 49 (cf. Lemma 41). If y is an extension of (〈s, q〉, z) then ∆C(〈s, q〉, yz)
is a proper superset of ∆C(〈s, q〉, z).
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Proof. Let p ∈ Q \ {q} in U such that ∆C(〈s, p〉, z) 6= ∅ and {〈s, q〉, 〈s, p〉} ⊆
∆C(〈s, q〉, y) (see condition (2)).

We first show that ∆C(〈s, q〉, z) ⊆ ∆C(〈s, q〉, yz). For this, we pick a pair
〈t, r〉 ∈ ∆C(〈s, q〉, z). By condition (2) of extensions, we have 〈s, q〉 ∈ ∆C(〈s, q〉, z).
Then:

〈s, q〉 y−→C 〈s, q〉 z−→C 〈t, r〉
and therefore 〈t, r〉 ∈ ∆C(〈s, q〉, yz).

To show that the inclusion is strict we prove that∆C(〈s, p〉, z)∩∆C(〈s, q〉, z) =
∅. We suppose by contradiction that 〈t, r〉 ∈ ∆C(〈s, p〉, z) ∩∆C(〈s, q〉, z). Then:

〈s, q〉 y−→C 〈s, q〉 z−→C 〈t, r〉 and 〈s, q〉 y−→C 〈s, p〉 z−→C 〈t, r〉

But then q
y−→ q

z−→ t and q
y−→ p

z−→ t in U . This is impossible by the
unambiguity of U . �

Lemma 50 (cf. Lemma 42). As before, let C be a positive BSCC of P. Then
for each 〈s, q〉 ∈ C and word z ∈ S+ where the last symbol is s:

∆C(〈s, q〉, z) is a pure cut iff the pair (〈s, q〉, z) has no extension

Proof. The proof is fairly similar to the proof of Lemma 42.
“=⇒”: Let C = ∆C(〈s, q〉, z) be a pure cut. Suppose by contradiction that

there exists an extension y for (〈s, q〉, z). Let p ∈ Q such that q 6= p,∆C(〈s, p〉, z) 6=
∅ and {〈s, q〉, 〈s, p〉} ⊆ ∆C(〈s, q〉, y). By Lemma 49, the set ∆C(〈s, q〉, yz) is a
proper superset of ∆(〈s, q〉, z). As C is positive, we have PrMu (P[u, r] ) > 0 for
all 〈u, r〉 ∈ C. With an argument as in the proof of Lemma 42 we obtain:

PrMs
(
P[∆C(〈s, q〉, yz)]

)
> PrMs

(
P[∆C(〈s, q〉, z)]

)

Hence, PrMs
(
P[∆C(〈s, q〉, z)] < 1. But then ∆C(〈s, q〉, z) cannot be a pure cut.

Contradiction.
“⇐=”: Suppose now that (〈s, q〉, z) has no extension. To prove that C =

∆C(〈s, q〉, z) is a cut we rely on the second part of Lemma 45. Thus, the task is
to show that ∆C(C, x) 6= ∅ for all finite words x ∈ S+ where x is a finite path in
M starting in s. To prove this, one can first show that C is contained in some
pure cut R of the form ∆C(〈s, r〉, z) for some state r ∈ Q. As the last symbol
of z is s, the elements of R have the form 〈s, r〉 for some r ∈ Q. For each state
p ∈ Q \ {q} where 〈s, p〉 /∈ R, there is some finite word y with

〈s, q〉 y−→C 〈s, q〉 y−→C 〈s, p〉

For this we can rely on an adaption of Lemma 37. Since there exists no extension
for (〈s, q〉, z), we have ∆C(〈s, p〉, z) = ∅ for all states p ∈ Q where 〈s, p〉 /∈ C.
This yields:

C = ∆C(〈s, q〉, z) = ∆C(C, z) = ∆C(R, z)

Using that R is a pure cut, we can now apply Lemma 45 to obtain the claim.
�
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Given a non-trivial, non-bottom SCC of P and a state 〈s, q〉 ∈ C, we write
C[s, q] to denote the sub-UBA of P that arises when declaring 〈s, q〉 as initial
state and restricting the transitions of P to those inside C. That is, C[t, p] =
(C, S,∆C , 〈s, q〉, F ∩ C). Then, C is positive iff PrMs (C[s, q]) > 0 for some state
〈s, q〉 ∈ C iff PrMs (C[s, q]) > 0 for all states 〈s, q〉 ∈ C.

Recall that we assume a preprocessing that treats the SCCs of P in a bottom-
up manner and turns P into a UBA where all BSCCs are non-trivial and positive.
QBSCC denotes the set of states that are contained in some BSCC of P and Q?

be the states of (the modified UBA) P not contained in QBSCC . For 〈s, q〉 ∈ Q?,
let βs,q = 0 if ∆(〈s, q〉, t) ∩QBSCC = ∅ for all t ∈ S. Otherwise:

βs,q =
∑

t∈Post(s)

∑

p ∈ δ(q, t) s.t.
〈t, p〉 ∈ QBSCC

P (s, t) · PrMt (P[t, p] )

Theorem 51 (cf. Theorem 13 = Theorem 43). Notations and assumptions
as before. Then, the vector (PrMs (P[s, q]))〈s,q〉∈Q?

is the unique solution of the
following linear equation system:

ζs,q =
∑

t∈Post(s)

∑

p ∈ δ(q, t) s.t.
〈t, p〉 /∈ QBSCC

P (s, t) · ζt,p + βs,q for 〈s, q〉 ∈ Q?

Proof. It is easy to see that the vector (PrMs (P[s, q]))〈s,q〉∈Q?
indeed solves the

linear equation system. For the uniqueness of the solution, we can apply the same
arguments as in the proof of Theorem 43, but now for the |Q?| × |Q?|-matrix M
given by M〈s,q〉,〈t,p〉 = P (s, t) if p ∈ δ(q, t) and M〈s,q〉,〈t,p〉 = 0 otherwise, where
〈s, q〉 and 〈t, p〉 range over all states in Q?. �

E Separated Büchi automata

Recall that an NBA is called separated if the languages of its states are pairwise
disjoint. Obviously, each separated NBA is unambiguous. Although separated
Büchi automata are as powerful as the full class of NBA [11] and translations of
LTL formulas into separated UBA of (single) exponential time complexity exist
[42,17], non-separated UBA and even deterministic automata can be exponen-
tially more succinct than separated UBA [9].

We now explain in which sense our algorithm for (possibly non-separated)
UBA can be seen as a conservative extension of the approach presented by Cou-
vreur, Saheb and Sutre [17]. To keep the presentation simple, we consider the
techniques to compute Pr(Lω(U)). Analogous statements hold for the computa-
tion of PrM(Lω(U)) for a given Markov chain M.

Given a separated, strongly connected UBA U = (Q,Σ, δ,Q0, F ) with at
least one initial and one final state, we have:

Pr(Lω(U)) > 0 iff Q is a reachable cut
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Furthermore, Q is a cut iff δ(Q, a) = Q for all a ∈ Σ (Lemma 4). Thus, for the
special case where the given UBA is separated and positive, there is no need
for the inductive construction of a cut as outlined in Section 3.1. Instead, we
can deal with C = Q. The linear equations in Theorem 12 can be derived from
the results presented in [17]. More precisely, equation (1) corresponds to the
equation system in Proposition 5.1 of [17], while equation (2) can be rephrased
to
∑
q∈Q ζq = 1, which corresponds to the equation used in Proposition 5.2 of

[17].
To check whether Q is a cut for a given (possibly non-positive) separated,

strongly connected UBA, [17] presents a simple criterion that is based on a count-
ing argument. Lemma 4.14 in [17] yields that for separated, strongly connected
UBA we have:

Q is a cut iff |Σ| · |Q| = |δ|

where |δ| is the total number of transitions in U given by
∑
q∈Q

∑
a∈Σ

|δ(q, a)|.

F Implementation and Experiments

We have considered and implemented two variants for the handling of SCCs. The
first variant relies on an explicit rank computation using the COLT library (via
QR decomposition) to determine whether the equation system for checking the
positivity of an SCC has a strictly positive solution (explained in Section F.1). If
this is the case, then subsequently we solve the equation system with the added
cut constraint to actually obtain the probabilities for the SCC states.

Another method combines both steps by an iterative eigenvector algorithm
that allows simultaneously to check whether the SCC is positive and to compute
the probabilities as well. In Section F.2, we explain that approach. Section F.3
reports on experiments.

F.1 Positivity check via rank computation

Let U be a strongly connected UBA with at least one final state and let M be
the n×n-matrix from the proof of Theorem 12, where n = |Q| is the number of
states in U . We compute rank(M ′) of the matrix M ′ = M − I, where I is the
identity matrix. If M ′ has full rank, i.e., rank(M ′) = n, then U is non-positive.

If M ′ does not have full rank, we know that U is positive by the following
argument. As M ′ does not have full rank n, there is a vector v such that (M−I)v
is the zero vector; in other words, v is an eigenvector of M with eigenvalue 1.
So the spectral radius of M is at least 1. But by Lemma 6 the spectral radius
of M is at most 1, so it is equal to 1. Since M is irreducible, it follows from the
Perron-Frobenius theorem [8, Theorem 2.1.4 (b)] that M has a strictly positive
eigenvector v′ with eigenvalue 1, i.e., Mv′ = v′. Lemma 5 then yields that U is
positive.
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F.2 Foundations of the eigenvalue algorithm

Let U be a strongly connected UBA with at least one final state. Let M be the
matrix from the proof of Theorem 12. Define M = (I + M)/2 where I denotes
the Q × Q identity matrix. Denote by 1 = (1)q∈Q the column vector all whose

components are 1. Define 0 similarly. For i ≥ 0 define v(i) = M
i
1. Our algorithm

is as follows. Exploiting the recurrence v(i+ 1) = Mv(i) compute the sequence
v(0), v(1), . . . until we find i > 0 with either v(i + 1) < v(i) (by this inequality
we mean strict inequality in all components) or v(i + 1) ≈ v(i). In the first
case we conclude that Pr(Lω(U)) = 0. In the second case we compute a cut C
and multiply v(i) by a scalar c > 0 so that c ·∑q∈C v(i)q = 1, and conclude
that ( Pr(Lω(q)) )q∈Q ≈ c · v(i). This algorithm is justified by the following two
lemmas.

Lemma 52. We have Pr(Lω(U)) = 0 if and only if there is i ≥ 0 with v(i+1) <
v(i).

Lemma 53. If Pr(Lω(U)) > 0 then v(∞) := limi→∞ v(i) > 0 exists, and
Mv(∞) = v(∞), and v(∞) is a scalar multiple of ( Pr(Lω(q)) )q∈Q.

For the proofs we need the following two auxiliary lemmas:

Lemma 54. For any v ∈ CQ and any c ∈ C we have Mv = cv if and only if
Mv = 1+c

2 v. In particular, M and M have the same eigenvectors with eigen-
value 1.

Proof. Immediate. ut

Lemma 55. Let ρ > 0 denote the spectral radius of M . Then the matrix limit

limi→∞
(
M/ρ

)i
exists and is strictly positive in all entries.

Proof. Since M is irreducible, M
|Q|

is strictly positive (in all entries). Then it
follows from [25, Theorem 8.2.7] that the matrix limit

lim
i→∞

(
M/ρ

)i
= lim
i→∞

((
M/ρ

)|Q|)i

exists and is strictly positive. ut

Proof (of Lemma 52). Let i ≥ 0 with v(i+ 1) < v(i). With [8, Theorem 2.1.11]
it follows that the spectral radius of M is < 1, hence by Lemma 54 the spectral
radius of M is < 1 as well. By Lemma 6 it follows Pr(Lω(U)) = 0.

For the converse, let Pr(Lω(U)) = 0. By Lemma 6, the spectral radius of M
is < 1. Let ρ denote the spectral radius of M . By Lemma 54, we have ρ < 1. If
ρ = 0 then M is the zero matrix and we have v(1) = 0 < 1 = v(0). Let ρ > 0.

It follows from Lemma 55 that there is i ≥ 0 such that ρ
(
M/ρ

)i+1
<
(
M/ρ

)i

(with the inequality strict in all components). Hence M
i+1

< M
i

and v(i+ 1) =

M
i+1

1 < M
i
1 = v(i). ut
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Fig. 8. UBA “complete automaton” (left) and “nearly complete automaton” (right)
for k = 2

Proof (of Lemma 53). Let Pr(Lω(U)) > 0. Then, by Lemma 6, the spectral
radius of M is 1. So, with Lemma 54 the spectral radius of M is 1. By Lemma 55

the limit v(∞) = limi→∞M
i
1 exists and is positive. From the definition of v(∞)

we have Mv(∞) = v(∞). By Lemma 54 also Mv(∞) = v(∞). So v(∞) solves
equation (1) from Theorem 12. There is a scalar c > 0 so that cv(∞) satisfies
both equations (1) and (2) from Theorem 12. By the uniqueness statement of
Theorem 12 it follows that cv(∞) = ( Pr(Lω(q)) )q∈Q. ut

F.3 Experiments

To assess the scalability of our implementation in the face of particularily difficult
UBA, we have considered two families of parametrized UBA. Both have an
alphabet defined over a single atomic proposition, resulting in a two-element
alphabet which we use to represent either a 0 or a 1 bit. The first automaton
(“complete automaton”), depicted in Figure 8 on the left for k = 2, is a complete
automaton, i.e., recognizes the full Σω. It consists of a single, accepting starting
state that non-deterministicially branches to one of 2k states, each one leading
after a further step to a gadget that only lets one particular of the k-bit bitstrings
pass, subsequently returning to the initial state. As all the k-bit bitstrings that
can occur have a gadget, the automaton is complete. Likewise, the automaton
is unambiguous as each of the bitstrings can only pass via one of the gadgets.

Our second automaton (“nearly complete automaton”), depicted in Figure 8
on the right for k = 2, arises from the first automaton by a modification to
the gadget for the “all zero” bitstring, inhibiting the return to the initial state.
Clearly, the automaton is not complete.

We use both kinds of automata in an experiment using our extension of PRISM
against a simple, two-state DTMC that encodes a uniform distribution between
the two “bits”, i.e., allowing us to determine whether the given automaton is
almost universal. As the PRISM implementation requires the explicit specification
of a DTMC, we end up with a product that is slightly larger than the UBA, even
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though we are essentially performing the UBA computations for the uniform
probability distribution. In particular, this experiment serves to investigate the
scalability of our implementation in practice for determining whether an SCC is
positive, for the cut generation and for computing the probabilities for the SCC
states. It should be noted that equivalent deterministic automata, e.g., obtained
by determinizing the UBA using the ltl2dstar tool are significantly smaller
(in the range of tens of states) due to the fact that the UBA in question are
explicitly constructed inefficiently.

Table 2. Benchmark results for “complete automaton” with parameter k

cut generation power iteration rank-based
k UBA size SCC size tcut ext. checks cut size teigen iter. tpositive tvalues
5 193 258 0.1 s 10124 32 <0.1 s 215 0.5 s 0.3 s
6 449 578 0.3 s 40717 64 0.1 s 282 4.1 s 4.0 s
7 1025 1282 0.6 s 163342 128 0.1 s 358 57.4 s 55.4 s
8 2305 2818 1.6 s 654351 256 0.1 s 443 900.1 s 905.7 s
9 5121 6146 9.0 s 2619408 512 0.3 s 537 - -

Table 2 presents statistics for our experiments with the “complete automa-
ton” with various parameter values k, resulting in increasing sizes of the UBA
and the SCC (number of states). We list the time spent for generating a cut
(tcut), the number of checks whether a given word is an extension during the
cut generation algorithm and the size of the cut. In all cases, the cut generation
required 2 iterations. We then compare the SCC handling based on the power
iteration with the SCC handling relying on a rank computation for determin-
ing positivity of the SCC and a subsequent computation of the values. For the
power iteration method, we provide the time spent for iteratively computing an
eigenvector (teigen) and the number of iterations (iters.). For the other method,
we provide the time spent for the positivity check by a rank computation with a
QR decomposition from the COLT library (tpositive) and for the subsequent com-
putation of the values via solving the linear equation system (tvalues). We used
an overall timeout of 60 minutes for each PRISM invokation and an epsilon value
of 10−10 as the convergence threshold.

As can be seen, the power iteration method for the numeric SCC handling
performed well, with a modest increase in the number of iterations for rising
k until converging on an eigenvector, as it can fully exploit the sparseness of
the matrix. In contrast, the QR decomposition for rank computation performs
worse. The time for cut generation exhibits a super-linear relation with k, which
is reflected in the higher number of words that where checked to determine that
they are a extension. Note that our example was chosen in particular to put
stress on the cut generation.

The results for the “nearly complete automaton”, depicted in Table 3, focus
on the computation in the “dominant SCC”, i.e., the one containing all the
gadgets that return to the initial state. For the other SCC, containing the self-
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Table 3. Benchmark results for “nearly complete automaton” with parameter k

power iteration rank-based
k UBA size SCC size teigen iter. tpositive
5 193 250 <0.1 s 52 0.4 s
6 449 569 <0.1 s 78 3.9 s
7 1025 1272 0.1 s 112 53.6 s
8 2305 2807 0.1 s 155 878.1 s
9 5121 6134 0.3 s 205 -

loop, non-positivity is immediately clear as it does not contain a final state. In
contrast to the “complete automaton”, no cut generation takes place, as the SCC
is not positive. The results roughly mirror the ones for the “complete automata”,
i.e., the power iteration method is quite efficient in determining that the SCC
is not positive, while the QR decomposition for the rank computation needs
significantly more time and scales worse.

F.4 NBA vs UBA

To gain some understanding on the cost of requiring unambiguity for an NBA,
we have compared the sizes of NBA and UBA generated by the ltl2tgba tool
of SPOT for the formulas of [21,38,20] used for benchmarking, e.g., in [30]. We
consider both the “normal” formula and the negated formula, yielding 188 for-
mulas.

Table 4. Number of formulas where the (standard) NBA and UBA has a number of
states ≤ x

Number of states ≤ x ≤ 1 ≤ 2 ≤ 3 ≤ 4 ≤ 5 ≤ 7 ≤ 10 ≤ 12 ≤ 15 ≤ 20 ≤ 25 ≥ 25

ltl2tgba NBA 12 49 103 145 158 176 181 185 187 188 188 0
ltl2tgba UBA 12 42 74 108 123 153 168 173 176 180 181 7

As can be seen in Table 4, both the NBA and UBA tend to be of quite
reasonable size. Most of the generated UBA (102) have the same size as the
NBA and for 166 of the formulas the UBA is at most twice the size as the
corresponding NBA. The largest UBA has 112 states, the second largest has 45
states.
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