
Greener Bits:
Formal Analysis of Demand Response

Christel Baier1, Sascha Klüppelholz1, Hermann de Meer2,
Florian Niedermeier2, and Sascha Wunderlich1 ?

1 Technische Universität Dresden
{baier,klueppel,wunder}@tcs.inf.tu-dresden.de

2 University of Passau
{hermann.demeer,florian.niedermeier}@uni-passau.de

Abstract. Demand response is a promising approach to deal with the
emerging power generation fluctuations introduced by the increasing
amount of renewable energy sources fed into the grid. Consumers need
to be able to adapt their energy consumption with respect to the given
demand pattern and at the same time ensure that their adaptation (i.e.,
response) does not interfere with their various operational objectives.
Finding, evaluating and verifying adaptation strategies which aim to
be optimal w.r.t. multiple criteria is a challenging task and is currently
mainly addressed by hand, heuristics or guided simulation. In this paper
we carry out a case study of a demand response system with an energy
adaptive data center on the consumer side for which we propose a formal
model and perform a quantitative system analysis using probabilistic
model checking. Our first contribution is a fine-grained formal model and
the identification of significant properties and quantitative measures (e.g.,
expected energy consumption, average workload or total penalties for
violating adaptation contracts) that are relevant for the data center as
an adaptive consumer. The formal model can serve as a starting point
for the application of different formal analysis methods. The second
contribution is an evaluation of our approach using the prominent model
checker PRISM. We report on the experimental results computing various
functional properties and quantitative measures that yield important
insights into the viability of given adaptation strategies and how to find
close-to-optimal strategies.

1 Introduction

In modern society, a permanent and reliable availability of electrical power has
become an indispensable good for many aspects of life. However, the continuously
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increasing demand for electrical energy comes at a price: guaranteeing stabil-
ity under almost any load condition requires a constant adaptation of power
generation to keep production and volatile demand in equilibrium. However,
power plants capable of quickly adapting their power output to balance the
grid are usually driven by fossil fuels and therefore carbon-intensive. From an
environmental perspective, this is highly undesirable and an increased feed-in of
renewable energy is encouraged. Energy sources like wind or solar are exhibiting
volatile availability patterns and can therefore not provide the same balancing
capabilities as fossil fuel based power plants. A promising approach to cope with
these shortcomings is demand response (DR) exerting control over power demand
on the consumer side. DR is widely recognized as a promising approach to reduce
the costs for mitigating operational instability of power grids when incorporating
renewable energy sources, but standardization is still underway [5]. Many recent
works focus on the design of DR-programs that define the communication protocol
between power producers and power consumers. Current DR-programs can be
classified into three categories: price-based, incentive-/event-based and demand
reduction bids (see, e.g., [29]).

For participants in a DR-system to be a valuable asset to a distribution
system operator, the adaptation to a DR-request needs to be enacted reliably. At
the same time, the respective participant needs to ensure the power adaptation
does not interfere with operational objectives. The quantitative impact of a DR-
interaction on power demand and operational performance on the consumer side
needs to be foreseeable and is well suited for analysis via formal methods, as it
may impact critical processes on both power grid and consumer side. Data centers
are particularly well-suited for participation in DR as they consume large amounts
of energy and provide many opportunities in dynamically adapting to external
demands by applying advanced resource and workload management strategies.
Data center DR-systems have been considered from several perspectives, e.g.,
pricing [22,31], implementation [10], communication [6], and contract design [7].
Working prototypes of DR-systems for data centers were implemented in EU
FP7 projects ALL4Green [6] and DC4Cities [20, 25], where the latter focuses on
the possibility of continuously adapting to a given power plan.

Despite wide recognition of the potential of DR, data centers are currently
hardly participating in DR, mainly due to the fact that the design of efficient
adaptation strategies is a non-trivial task. The goal of this paper is to show that
formal methods can contribute to this task, e. g. , by providing guarantees on
cost/utility requirements in worst-case scenarios and by evaluating existing re-
source management strategies to gain insights for the design of efficient scheduling
strategies.

Contribution. In this paper we provide a detailed formal model for DR-systems
with data centers on the consumer side. The model is compositional and uses
Markov decision processes (MDPs) equipped with reward functions to capture
various quantitative measures. The choices in the MDP stand for the possible
workload scheduling. The base model consists of components for the data center,
a request generator, the service load, and a component for green energy forecast.
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For the sake of simplicity we assume a simple incentive-based DR-program and
present possible extensions that allow for addressing alternative and more complex
DR-scenarios by refining the components of the base model. For the analysis
we use probabilistic model checking (PMC) to compute minimal and maximal
probabilities and expectations that provide guarantees in worst-case scenarios
as well as insights for the design of efficient scheduling strategies maximizing or
minimizing various performance and costs objectives. The class of considered
measures subsumes conventional cost-/utility indices important for DR-systems
(e.g., Power Usage Efficiency (PUE) [28], and Energy-Response Time Product
(ERP) [15]). We illustrate the feasibility of the modeling and analysis approach
in experimental studies on the base model and report here on the scalability and
insights gained in the process. The experiments were carried out using extensions
of the prominent probabilistic model checker PRISM [21].
Related work. We are not aware of any work describing a quantitative analysis
of DR-systems using PMC. Currently, load adjustment in data centers under
DR-programs is usually not formally modeled or analyzed. Planning and verifica-
tion in power grids is often performed via special simulators (e.g., PowerWorld
Simulator [18]). However, these are mostly used for strategic decisions on power
grid development in the long term or to find solutions to the question which
electrical loads to shed in an emergency (see, e.g., [9, 16, 23]). The latter problem
is closely related to demand response, however loads are assigned priorities and
decisions on power generation side are made only in case of emergencies. Other
existing work focuses on coordination between different energy sources (e.g., [30])
with the goal to optimize a performance index such as PUE or ERP. Solutions
are found by solving equality constrained optimization problems or mixed integer
linear programs and then evaluated using simulation of large real-world workload
traces and current energy prices (e.g., [11,30,31]). Other formal approaches in
the context of DR address, e. g. , the stability of a given Markov model [8] or
provide uncertainty models in which Markov chains are combined with additional
random transition matrices [24]. Model checking and in particular PMC has
been applied to related problems, e.g., for energy-aware task scheduling [17] and
dynamic power management [26], but also for controller synthesis (e.g., [13]).

2 Scenario

Especially in future smart grid scenarios, in which high amounts of renewable
power generation are to be expected, both events of energy surplus and scarcity
have to be considered as the controllability of many renewable sources is very
limited. Therefore, demand response requests (DR-requests) are considered as
a mechanism to trigger increasing or decreasing power demands. In this work,
we visit a demand response scenario, in which an energy management authority
is creating DR-requests for power adaptation in order to influence the power
demand on consumer side. In the following, we will assume a demand response
request to contain (1) the start and the end of the adaptation time-interval and
(2) a target power demand range during this time period.
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A DR-request may arrive at the consumer side at any point in time (typically
probabilities are non-uniformly distributed). Failing to adhere to the power
bounds during the demand response interval will cause a penalty. Figure 1 shows
the high level interaction diagram in the assumed DR-system.

Power
Grid

Energy Management
Authority

Consumer/
Actuator

Grid state
monitoring

DR
request

DR decision Adaptation

Fig. 1: High level DR-system overview.

Consumer side. On the consumer side, we assume that parts of the load can
be shifted for a certain time. For simplicity we assume that processing workload
causes a proportional increase in the power demand. In general, one needs to
be aware of the correlation between workload and the corresponding power
demand, which is in turn directly influenced by the (re)scheduling of workload.
To reliably reach the power demand requested in the DR-request workload has
to be rescheduled in such a way as to reach target power demand, while at the
same time ensuring, e.g., that all work is scheduled until a given deadline. Here,
we assume that all workload has to be processed until the end of a day. Failing
to schedule workload until the deadline will result in a (load-specific) penalty.
Apart from work which can be rescheduled (batch load), we assume that certain
work (service load) has to be immediately processed. The fraction of workload to
be processed immediately is assumed to be varying in time, however always less
than the total load capacity. This type of workload can neither be rescheduled
nor canceled. Figure 2 shows an example of the rescheduling process.

Additionally, we assume that - in line with our future smart grid setting - the
consumer side is equipped with local renewable energy generation capabilities
(e.g., small wind turbine or solar panels). The power generated at different
points in time can be forecasted by utilizing weather data and/or information on
historical generation. However, due to possible fluctuation (e.g., solar radiation
on cloudy days), forecasting errors are common and will cause deviations of
actual generation from the forecast values.
Objectives. Generally, objectives may fall into one of the following categories.
One can either optimize cost or utility measures (1) on the consumer side, (2)
on the energy management authority side, or (3) on both sides given certain

Fig. 2: Example adaptation of a flexible load.
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additional constraints. In this paper we focus on the consumer side, but the
methods are also applicable for optimization on the energy management authority
side and mixtures thereof.
Data centers. A specific use case of demand response are data centers. Partici-
pation of data centers within demand response systems is highly attractive, as
they have automation frameworks already in place, making automated processing
of demand response requests possible. Additionally, data centers consume large
amounts of electrical energy and therefore are well suited to create a significant
impact when adapting their power demand. We assume data centers to process
two basic types of load: interactive and batch. Interactive load is characterized
by service level agreements which require strict bounds on response time for
users to have a high quality of experience. Therefore interactive load cannot be
rescheduled and has to be processed immediately. Typical examples include web
servers, stock traders and virtualized desktop environments. In contrast, batch
load may be processed at any time while completing before its deadline. Batch
jobs may therefore be arranged in a way as to adapt data center power demand
according to demand response requests.

3 Theoretical foundations

Throughout the paper, we assume the reader is familiar with Markovian models. A
brief summary of the relevant concepts for Markov decision processes is provided
below. For more details, we refer to, e. g. , [27].
Markov decision processes. An MDP is a tuple M = (S,Act, P,AP, L),
with a finite set of states S, a finite set of actions Act, transition probabilities
P : S × Act× S → [0, 1], a finite set of atomic propositions AP and a labeling
function L : S → 2AP. We require that the values P (s, α, s′) are rational and∑
s′∈S P (s, α, s′) ∈ {0, 1} for all states s ∈ S and actions α ∈ Act. The triples

(s, α, s′) with P (s, α, s′) > 0 are called transitions. Action α is said to be enabled
in state s if P (s, α, s′) > 0 for some state s′. Act(s) denotes the set of actions that
are enabled in s ∈ S. To avoid terminal behaviors, we require that Act(s) 6= ∅
for all states s. Paths in an MDP M can be seen as sample runs. Formally,
they are finite or infinite sequences where states and actions alternate, i. e. , π =
s0 α0 s1 α1 . . . ∈ (S×Act)∗S∪(S×Act)ω with αi ∈ Act(si) and P (si, αi, si+1) > 0
for all i. In the following, we assume that an initial state s is given. For a path
property φ, we write PrσM(φ) for the probability of φ inM under scheduler σ.
Additionally, we write Prmin

M (φ) and Prmax
M (φ) for the minimal and maximal

probabilities for φ among all schedulers σ. In case the action set Act is a singleton
it can be omitted, since the behavior is then completely deterministic and the
MDP degenerates to a Markov chain (MC).
Reward functions. A reward function rew : S×Act→ N, annotates state-action
pairs with a natural number. Each reward function can be lifted to assign to each
finite path its accumulated value rew(s0α0s1α1 . . . snαn) =

∑n−1
i=0 rew(si, αi).

For a set of states G and a scheduler σ such that PrσM(♦G) = 1 we can then
introduce the expected reward until reaching G. To define the expected reward,
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we let P rG be the set of paths π = s0α0s1 . . . such that there exists an n ∈ N
with sn ∈ G, si 6∈ G for all i < n and rew(s0 . . . sn) = r. Then ExσM[rew](♦G) =∑∞

r=0 r · PrσM(P rG). As before we define the extremal expectations Exmin
M and

Exmax
M for minimizing and maximizing schedulers.

4 Formal model

In this section we present an MDP-based compositional model for demand
response formalized for the use case of a data center. As described in Section 2
the scenario consists of the data center on the consumer side and an energy
authority sending DR-requests. The data center needs to schedule batch work and
interactive work, it reacts to DR-requests and can have additional green energy
sources available. In our model those influences are formalized using stochastic
distributions and the nondeterministic choices within the data center constitute
an MDP model that yields the basis for further formal analysis. Based on this
setting, the goal is to find appropriate adaptation strategies (i.e., resolving the
nondeterminism in the MDP) that optimize for various cost/utility objectives, as
introduced later in this section.

In our model we fix the number of batch work jobs J0 ∈ N that the data
center can schedule over one day, as well as a number T ∈ N of discrete time
steps into which the day is divided, which can be seen as the resolution of the
time domain. At every time point the data center can decide which batch work
should be scheduled next. The maximal number of simultaneous jobs is fixed as
capacity ∈ N. The data center’s scheduling decision is influenced by the amount of
interactive work (service load), the available energy and the received DR-requests
from the energy authority, which can arrive at any time. In the base model it is
assumed that requests can not be refused. Furthermore, all jobs and services are
already in the shape of an independent least schedulable unit (LSU), i.e., work
packages which cannot be interrupted, have no dependencies and require one
energy unit over its lifetime.

The model is equipped with simple reward functions to capture the amount
of green energy that was produced, the amount of brown energy that had to
be bought, the number of time steps, and penalties for violating DR-requests.
For the latter, rather simple functions are used, but in general one could use
arbitrary complex functions to capture penalties.

4.1 Component model

The base model consists of the following four components, each represented
as individual Markov chains or MDPs: stochastic service load and DR-request
generators Mserv and Mreq, a green-energy forecast Mfc and the data center
itself Mdc. From those components one large MDP is then composed for the
composite model, i.e.,M =Mserv ⊗Mfc ⊗Mreq ⊗Mdc.

The compositional modeling approach allows to easily generate variants, e. g. ,
with less, more or other participants and hence it facilitates the maintainability of
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the model. In Section 4.2 we will discuss some possible refinements and extensions
of our base model. We now consider the details of the four base components.
Mserv - service load generator. The service load of a data center is assumed
to be stochastically distributed. For any point in time t ∈ { 0, 1, . . . , T } a
random variable service(t) ∈ { 0, 1, . . . , capacity } is given, signifying the number
of interactive jobs to be executed at time t. From this, a Markov chainMserv can
be derived, with states of the form (t, c) for c = service(t). The probability of a
transition (t, c)→ (t+ 1, c′) inMserv is the probability of service(t+ 1)(c′).
Mfc - green-energy forecast. To reflect the probabilistic green-energy produc-
tion, another random variable produce(t) ∈ { 0, 1, . . . , prodmax } is introduced
for each point in time t ∈ { 0, 1, . . . , T }. Intuitively, this variable represents the
possible energy production values at time t, which may depend on the weather,
season or time of day. Similar to the service load, a Markov chainMfc with states
(t, e) for e = produce(t) can be derived. The probability for (t, e)→ (t+ 1, e′) is
the probability of produce(t+ 1)(e′).
Mreq - request generator. We are given statistical information on the arrival
of DR-requests and their format. A DR-request arriving at some time point
t with rate r ∈ [0, 1] is represented by a triple (I, l, u) with a discrete time
interval I ⊆ [t, T ] and lower and upper resource bounds l, u ∈ N such that
0 ≤ l ≤ u ≤ capacity. Intuitively, a DR-request (I, l, u) signifies that at each time
point t ∈ I the resource requirements should be between l and u. Hence, the
number of jobs executed at time t should be in that interval. A single DR-request
Ri = ([t1, t2], l, u) can be modeled as a degenerated Markov chain (i. e. , all
probabilities are 1) Ai as follows:

l, u 0, capacity

t2 − t1 times

The request generator then has an initial state with outgoing transitions to each
DR-request Ri with probability ri and a self-loop with probability 1−

∑n
i=0 ri.

Mdc - data center. The data center keeps track of the current time step value
t ∈ { 0, 1, . . . , T } and the number J of jobs that are still to be processed. Initially
at time point t = 0, J = J0 and J will decrease until either J = 0 or the
day is over, i.e., t = T . At each point in time, the data center can choose to
schedule a number j ≤ min{ J, capacity } of jobs. These choices are modeled
nondeterministically. Whether or not the action of choosing j jobs at time point t
will be enabled depends on the produced service load service(t). Hence, the enabled
actions in the composite modelM will be the following. Let s = (t, c, e, l, u, J)
be a state ofM. Then, the action of choosing j ∈ N jobs should be enabled in
M iff c+ j ≤ min{ J, capacity }, i.e., iff the interactive load plus the number of
scheduled jobs is not larger than the capacity and enough jobs are still available.
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Penalties and other reward functions. For modeling the costs of violating
a DR-request at time t we introduce a reward function penalty. The penalty to
be paid in state s = (t, c, e, l, u, J) ofM when scheduling j ∈ N jobs is defined as

penalty(s, j) = lpenalty(s, j) + upenalty(s, j)

i.e., the sum of a penalty for violating the lower or upper bound given as two
separate reward functions defined as follows:

lpenalty(s, j) = max{ c+ j − l, 0 } upenalty(s, j) = max{ u− c− j, 0 }
for state is s = (t, c, e, l, u, J) inM. In general, the penalty function (and other
cost/utility functions) can be nearly any complex arithmetic expression over
variables in the model. In particular, the reward functions do not affect the state
space ofM and hence do not contribute to the complexity of the model.

Besides the reward function for penalties we introduce reward functions that
can then be used inside formulas for various objectives as detailed in Section 4.3.
Specifically, we use #steps, #jobs and #requests for the number of time steps,
finished jobs and accepted DR requests. The latter is only relevant in the model
variants where the data center can refuse incoming DR-requests. Furthermore,
green signifies the produced green energy and brown the bought grid energy.

4.2 Model variants

In the following we introduce several variants which allow modifying the scenario
to be considered by replacing components of the compositional model. More
variants can be found in the extended version [4].
Heterogenous jobs and dependencies. Instead of assuming that every job
can be decomposed into uniform LSUs, we can introduce a more general case.
There, each job j ∈ J ⊆ N× N carries a length and a energy-per-time-unit value.
The data center component is then more complicated. Intuitively, each state in
Mdc now carries two pieces of information: a set W of jobs currently worked
on and a set O of jobs which are still pending. The energy consumed in a state
is the sum of the energy-per-time-unit values of the jobs in its working set W .
Outgoing transitions of a state s inMdc are then labeled by a subset A ⊆ O of
open jobs and lead to a state s′, in which A becomes the set of jobs currently
worked on and O \A becomes the new set of open jobs. To allow dependencies
among jobs, they are partially ordered in a set (J,≤) where j1 ≤ j2 if j1 has to
be completed before j2 can be scheduled. This variant introduces a combinatorial
blowup in the data center component and hence the composed model.
Hard limits. It is possible to represent hard limits on the DR-requests, i. e. ,
for a request (I, l, u) to disallow using less energy than l or more energy than
u while the request is active. This can be modeled by modifying the enabled
actions of M as follows. In a state s = (t, c, l, u, J), the action j is enabled iff
c+ j ≤ min{ J, capacity } as before and additionally l ≤ c+ j ≤ u must hold.
Accepting and refusing DR-requests. Instead of forcing DR-request, we may
equip the data center with additional non-deterministic choices for accepting or
refusing DR-requests. Adaptation strategies for the data center may then refuse a
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DR-request by not scheduling the corresponding action. In this setting additional
reward functions are of interest, e.g., a reward function for tracking the bounties
for accepted DR-requests.
Adding an adaptation strategy. Another important variant allows for ana-
lyzing specific adaptation strategies. This way, a consumer can formally evaluate
currently implemented strategies with respect to various objectives. This amounts
to adding a (possibly randomized) scheduler that resolves the nondeterministic
choices in Mdc, resulting in a Markov chain M′. One can then compare the
results forM′ with theoretically optimal strategies inM w.r.t. a given objective.
Multiple data centers and different DR-protocols. It is possible to intro-
duce copies and variants ofMdc to model multiple data centers. DR-protocols
which do not require interaction between the energy authority and the data
center like incentive-based and price-based ones can be modeled by modifying
the enabled actions or by introducing further reward functions.

4.3 Objectives

In this section we introduce different kinds of evaluation criteria that are impor-
tant in the given setting, in particular for optimizing various cost and performance
measures. We illustrate their relevance for demand response with example objec-
tives formulated for the data center scenario. For the formulas, we use the usual
temporal operators ♦ (eventually) and � (always).

The first class of objectives is concerned with the confidence in our model.
Model checking of such purely functional properties can be applied in addition
to, e.g., simulation of the model. Typically, one is concerned with whether the
minimal or maximal probability of certain temporal events is either zero or one,
or with probabilities and expected values for costs/utility being within reasonable
bounds. We present here a few examples that can be computed using standard
PMC-methods. E.g., to search for unintended deadlocks, one can check whether
the minimal probability of reaching the end of the day (eod) is one, as then no
scheduler can avoid reaching the end of the day.

Prmin
M (♦ eod) = 1 (1)

The above formula can be enriched, e. g. , with a step bound, to ensure that the
end of the day will be reached within the desired number of steps.

Prmin
M (♦#steps=T eod) = 1 (2)

It is also of interest to compute the probability to finish all jobs using an optimal
scheduler and to check whether the result is within reasonable boundaries.

Prmax
M (♦ (J = 0)) (3)

Furthermore, the maximal probability for surviving the day without using brown
energy (and to complete all jobs) is significant, although in general very low.

Prmax
M (� green_only)(4) Prmax

M (� green_only ∧ ♦ (J = 0)) (5)

The atomic proposition green_only signifies that no brown energy was used.
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The second important class of objectives concerns the optimization of a
single quantitative measure addressing either cost or utility, both either from
the consumer perspective or the energy authority perspective. Within this class
of properties we cannot address trade-offs. As utility measures one could, for
example, compute the probability for finishing at least n ∈ N jobs by the end of
the day, or the expected numbers of jobs that could be finished by the end of the
day assuming optimal schedulers.

Prmax
M (♦#jobs≥n eod)(6) Exmax

M [#jobs](♦ eod) (7)

On the cost side there is, e. g. , the probability of surviving the day when the
amount of brown energy used is bounded by n ∈ N, or the minimal and maximal
expected penalty when a DR-request was not fulfilled either until the end of the
day or until all jobs are done.

Prmax
M (♦brown≤n eod)(8)

Exmax
M [penalty] (♦ eod)(9)

Exmin
M [penalty] (♦ eod)(10)

Exmax
M [penalty] (♦ (J = 0)) (11)

Exmin
M [penalty] (♦ (J = 0)) (12)

Another important cost measure is the minimal and maximal expected time
(number of steps) until all jobs are done or the end of the day has been reached.

Exmin
M [#steps] (♦((J = 0) ∨ eod)) (13)

Exmax
M [#steps] (♦((J = 0) ∨ eod)) (14)

Considering utility and cost measures, one is typically interested in their trade-off,
ideally (although impossible) for maximizing the utility and minimizing the cost
at the same time. In the following we will consider quantiles and conditional
probabilities as important instances of this class and illustrate their relevance in
the demand response setting again with a few examples.

Quantile queries ask for the maximal or minimal value of a variable such
that the probability threshold for a property is still within a defined range. They
can be computed by the techniques in [1]. Interesting quantiles are, e. g. , the
maximum number of jobs that can be finished within one day with probability
at least p ∈ (0, 1) or the maximum number of DR-requests that can be accepted
such that the probability of finishing all jobs by the end of the day is sufficiently
high. An analogous quantile can be formulated considering the minimal penalty
rather than the maximum number of DR-requests.

max{ j ∈ N : Prmax
M (♦#jobs≥j eod) ≥ p } (15)

max{ r ∈ N : Prmax
M (♦#requests<r (J = 0)) > p } (16)

min{ y ∈ N : Prmax
M (♦penalty≤y (J = 0)) > p } (17)

An alternative way of combining multiple simple measures are conditional prob-
abilities in which one measure serves as condition and another serves as the
objective of interest. They can be solved using the techniques in [2].

Prmax
M (� green_only | ♦ (J = 0)) (18)

Prmax
M (♦ (J = 0) | � green_only) (19)
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This formula queries the maximum probability for consuming green energy only
given the condition that all jobs will be finished eventually. In Formula (19) the
roles of the objective of interest and the condition are swapped. The following
are formulas conditional versions of Formulas (8) and (6).

Prmax
M (♦brown≤n eod | � (J > 0)) Prmax

M (♦#jobs≥n eod | � green_only)

Additional objectives. While the above values can be computed with standard
PMC-techniques, the following objectives require special PMC-algorithms.

A simple objective is to finish all queued jobs with minimal expected accu-
mulated penalty. Formally, one wants to find a scheduler σ for M such that
PrσM(♦ (J = 0)) = 1 and the expected accumulated penalty is minimal among all
schedulers τ with PrτM(♦ (J = 0)) = 1. This task can be solved by the techniques
in [14]. Another example objective for which no PMC-methods are available so
far is to find the minimal q and a scheduler σ such that PrσM(♦ (J = 0)) = 1 and
the penalty is at most q in each step, i. e. , PrσM (�(penalty ≤ q) ∧ ♦ (J = 0)) .
To solve this, we first assign the minimal value q0(s) to each state such that
there is a path originating in s which has at most q0(s) penalty in each step and
reaches (J = 0), i.e., s |= ∃(penalty ≤ q0(s) U (J = 0)), which can be calculated
by a modified version of Dijkstra’s algorithm in polynomial time. The series
(qi(s))i∈N with qi+1 = minα∈Act(s){ penalty(s, α) + maxs′,P (s,α,s′)>0 qi(s

′) } then
converges to a value q(s) which is the minimal value q in question. Note that in
an acyclic MDP as given here, there is actually no iteration necessary and the
value q can be calculated directly via back-propagation from the terminal states,
i.e., the states with (J = 0).

Further objectives based on the accumulation techniques in [3] can be found
in Appendix B. Among others, the common index Power Usage Efficiency (PUE)
can be expressed by them.

5 Experiments

We used the tool ProFeat [12] for specifying a parameterized version of the base
model as described in Section 4. ProFeat is then used for creating the relevant
instances for fixed parameter sets. Throughout this section we will report on
three instances as shown in Table 1a.

With its parameters,M24 can be thought of as having a time resolution of
one hour steps over one day. Similarly,M96 has a time resolution of 15 minutes.
The capacity and the maximal production of green energy are fixed to 4 for all

Table 1: Considered instances of models, formulas and requests.
(a) Model and formula instances

time T jobs J0 n in Form.(6) n in Form.(8)
M24 24 60 40 6

M48 48 120 80 12

M96 96 240 160 24

(b) Requests

shape probability
R0 no request 0.7
R1 ([t, t+ 2], 0, 2) 0.12
R2 ([t, t+ 2], 2, 4) 0.18
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instances. We considered here two possible DR-requests with time-independent
distribution as shown in Table 1b. The probability distributions for the service
load are modeled in a time-independent fashion and are given by binomial dis-
tributions with a trail success probability of 0.4. The probability distributions
for the load are time-dependent and pre-generated with random values. Table 2
shows the number of reachable states in the MDP for the three instances.

The model instances generated by ProFeat are in the input format of the
prominent probabilistic model checker PRISM [21]. We used PRISM’s symbolic
engine, which uses multi-terminal binary decision diagrams (MTBDDs) for
representing MDPs. As the size of MTBDDs crucially depends on the order
in which variables occur in the MTBDD, we applied the reordering techniques
described in [19] to end up with more compact model representations. This step
was very effective, as the number of MTBDD nodes and hence the memory
consumption could be reduced by up to 95%. This is reflected in Table 2 where
the number of MTBDD nodes before and after reordering and the time for
reordering is depicted. For the analysis we used the development version of
PRISM 4.3 with additional implementations of the algorithms for computing
conditional probabilities and quantiles. For the entire result section we used
ε = 10−4 (absolute values) for the convergence check of the numerical methods.
Our experiments were run on a machine with an Intel Xeon E5-2680 CPU with 16
physical cores clocked at 2.7 GHz. The symbolic engine never exceeded the 1GB
memory limit. The models together with the tools are available with the extended
version [4] under https://wwwtcs.inf.tu-dresden.de/ALGI/PUB/ATVA16/.

5.1 Results

Table 2 shows the sizes of the generated models and the time for composing the
model. It can be seen that our model scales well with increasing time resolution.
A general overview of the model checking results is given in Table 3. It shows
the result for each numbered non-quantile query in Section 4.3 and the time it
took to process it. Again, we can see that the model checking times scale well
with the time resolution of the model. Even for 96 time steps the model checking
times are acceptable. Formulas 1-5 show that the basic confidence in our model
is high. There are no deadlock states as can be seen in Formulas 1 and 2, i. e. ,
the time always progresses to its final value. The probability to globally use
green energy only is very low (Formula 4) and even lower when we are trying to
finish all jobs (Formula 5), which is to be expected in this scenario. Similarly, the
maximal probability for finishing all jobs in time (Formula 3) is smaller than 1

Table 2: Model sizes and build times.
reachable states transitions BDD nodes reordered reorder time build time

M24 931,401 18,947,025 327,320 31,609 3.5 s 0.2 s
M48 3,841,426 81,269,400 551,716 39,203 6.9 s 0.3 s
M96 15,546,726 338,279,825 1,014,437 59,686 15.0 s 1.0 s
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but positive which is expected under the given parameters. The value decreases
with increasing model size due to the fixed capacity of 4 in each model instance
even though the proportion between time and jobs stays the same.

The results for the Formulas 6-14 describe optimal values for single measures
in the system. The probability for finishing two thirds of the total job pool (see
Table 1a) is very high as can be seen in Formula 6. Accordingly, the expected
number of finished jobs at the end of the day as seen in Formula 7 is close to
the maximum. Formula 8 gives the probability to survive using at most 1/4
brown energy units on average per time step, which is almost impossible in
the given setting. The expected total penalty until the end of the day is given
in the Formulas 9 (maximal) and 10 (minimal). While the minimal penalty
is low but non-zero, the maximal penalty is almost 1/2 units on average per
two time step. The minimal penalty can be achieved by never scheduling any
jobs. The expected total penalties until finishing all jobs is however infinite (see
Formulas 11 and 12) since it is not guaranteed that all jobs will be finished (see
Formula 3). Formulas 13 and 14 give the expected number of time steps until
all jobs are finished or time runs out. The reason for these numbers being so
close to the maximal number of time steps is that the job pool size is very close
to the expected number of jobs to be finished (see Formula 7). Figure 3 shows
quantile values for a variant ofM24 with 120 initial jobs. Figure 3b shows the
maximal probabilities for finishing a certain number of jobs until the end of the
day. As expected, the probability is decreasing with higher job requirements
and drops around the expected number of jobs calculated in Formula 7. The
maximal probabilites for finishing all jobs with a given penalty bound is shown
in Figure 3a. Probabilities of at least 0.6 cannot be reached, independent of

Table 3: PMC-results (see Section 5.1).
24 steps / 60 jobs 48 steps / 120 jobs 96 steps / 240 jobs

formula result time result time result time
(1) true 0.1 s true 0.0 s true 0.1 s
(2) true 0.4 s true 0.2 s true 0.7 s
(3) 0.543 31.5 s 0.392 104.2 s 0.244 748.4 s
(4) 1 · 10−4 1.7 s 7 · 10−5 2.4 s 5 · 10−5 6.8 s
(5) 0 3.8 s 0 0.9 s 0 2.3 s
(6) 0.999 25.9 s 0.999 128.9 s 0.999 1062.8 s
(7) 56.66 52.5 s 114.252 68.2 s 229.610 569.8 s
(8) 0.059 5.4 s 0.012 25.0 s 6 · 10−4 244.5 s
(9) 12.737 26.0 s 25.617 27.7 s 51.380 239.3 s
(10) 0.897 1.3 s 1.805 31.8 s 3.620 275.5 s
(11) ∞ 0.0 s ∞ 0.0 s ∞ 0.0 s
(12) ∞ 0.6 s ∞ 1.3 s ∞ 9.3 s
(13) 23.376 3.5 s 47.431 19.9 s 95.559 421.8 s
(14) 23.999 0.4 s 48.000 0.7 s 95.999 4.1 s
(18) 1.0 51.7 s 1.0 111.0 s 1.0 317.5 s
(19) 1.0 81.9 s 1.0 121.6 s 1.0 292.9 s
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Fig. 3: Probability values for φy and φj .

the penalty bound. This is immediately obvious from the results of Formula 3.
The calculated quantile values are also useful for protocol design, since they
give optimal parameters for jobs and penalties while retaining guarantees on the
system reliability. A detailed overview of the quantile values for Formulas 15 and
17 can be found in [4]. The conditional probabilities for Formulas 18 and 19 are
always 1. Intuitively, a maximizing scheduler for Formula 18 can try to work
as many jobs as possible with green energy and can choose not to schedule any
jobs anymore as soon as brown energy needs to be used. On the other hand, a
scheduler for Formula 19 can start using brown energy as soon as the jobs cannot
be finished anymore.

6 Conclusion

The purpose of the paper was to show the general feasibility of probabilistic
model checking techniques for the analysis of demand-response systems. We
provided a compositional model with components for the service load, the green-
energy forecast, a request generator and an abstract model for the data center.
Each components can easily be adapted and refined. We identified a series of
important functional properties and performance measures that can serve as
evaluation criteria for different strategies for scheduling jobs and provide useful
insights for the design and refinement of the energy-aware workload management
in data centers. The report on the experimental studies carried out with the
model checker PRISM shows that several performance measures relevant to real
systems are computable in reasonable time frames, up to a time resolution of
15 minutes. At the same time, this scenario can be seen as a stress test for the
calculation of quantile values, in which the reordering techniques of [19] were
crucial. Future work will include the consideration of variants of the model as
discussed in Section 4 for different DR protocols with distributions that are
derived from a real-world data center.
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A Additional Model Variants

We introduce another variant for the weather forecast component in this section.
Non-linear forecast. We can introduce a branching variant of the green energy
forecast to achieve a more realistic model of its behavior. There, distributions
for a time step can depend on the values of previous time steps. For example,
we can express dependencies like “if it rains at noon, the probability for rain in
the afternoon is high.” Formally, we modify the random production variable to
depend on the history, i. e. , produce(t, v0, ..., vt) ∈ { 0, 1, . . . , prodmax } where
v0, ..., vt are the actual production values for the previous time steps.

B Accumulation Objectives

To have finer control over resource bounds, we can formulate accumulation
objectives in the spirit of [3]. There, an operator filter(constr) is given which
forces the accumulated resources along any path fragment matching filter to
match the constr. It allows to talk about the restricted accumulation of resources
over a specific time frame or process. For example, a sliding window objective
may be the requirement that over any t time steps there are always at least 5
jobs scheduled.

� #steps≤t(#jobs ≥ 5)

These accumulation assertions can be embedded in more complex formulas, such
as this one stating that whenever a request with time interval I arrives, not more
than 5 brown energy units are used while it is active.

�(requestI →
#steps∈I(brown ≤ 5))

Accumulation objectives also allow the combination of resources in a constraint.
For example, we can require the average penalty per finished job or per request
taken to be smaller than c.

=T

(
penalty
#jobs

< c

)
=T

(
penalty

#requests
< c

)
Similarly, guarantees on the Power Usage Efficiency can be expressed with
additional reward functions energy and energyIT capturing the energy used in
total and only by the IT equipment.

=T

(
energy

energyIT

> c

)
The following formula states that always more green energy than brown energy
is used.

=T (green > brown)
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C Additional Results

The concrete quantile values for Formulas 15 and 17 are given in Table 4b below.
They correspond to the graphs seen in Figure 3

Table 4: Quantile values for φy and φj
(a)

p 0.1 0.2 0.3 0.4 0.5 0.6
y 0 3 6 9 14 ∞

(b)

p 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
j 66 64 63 61 60 59 57 56 54 12
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