Grofler Beleg

Calculation of Inside and Outside
Weights of Weighted Hypergraphs by
Newton’s Method

(revised version)

Tobias Denkinger
tobias.denkinger@mailbox.tu-dresden.de

5. Dezember 2012

Technische Universitat Dresden
Fakultat Informatik
Institut fur Theoretische Informatik
Lehrstuhl fiir Grundlagen der Programmierung

Betreuer: Dipl.-Inf. Toni Dietze
Verantwortlicher Hochschullehrer: Prof. Dr.-Ing. habil. Heiko Vogler

Aufgabenstellung fiir den Grollen Beleg

»,Newton-Verfahren zur Berechnung von Inside- und
Outside-Gewichten in gewichteten Hypergraphen*

Technische Universitat Dresden
Fakultat Informatik

Student: Tobias Denkinger
Studiengang: Diplom Informatik (Priifungsordnung 2004)
Matrikelnummer: 3478448

Inside- und Outside-Gewichte spielen beispielsweise beim uniiberwachten Training
probabilistischer kontextfreier Grammatiken mittels des Expectation-Maximization-
Algorithmus eine wichtige Rolle. Sie konnen leicht mit Hilfe einer Fixpunktiteration
angendhert werden, jedoch konvergiert dieses Verfahren im Allgemeinen relativ lang-
sam. Eine andere Moglichkeit zur Bestimmung der Gewichte ist das Newton-Verfahren,
welches eine bessere Néherung in weniger Iterationsschritten verspricht.

Im Rahmen der Belegarbeit soll die Berechnung von Inside- und Outside-Gewichten
fiir gewichtete Hypergraphen mittels Newton-Verfahren implementiert werden. Die
Implementierung soll méglichst zeit- und speicherplatzeffizient in Haskell umgesetzt
werden und in das System Vanda einbettbar sein. Die formalen Grundlagen sollen im
schriftlichen Teil der Arbeit dokumentiert werden. Dazu zéhlen

e die Definition der Inside- und Outside-Gewichte [NS08, MS99, Abschnitt 11.3]
fiir gewichtete Hypergraphen,

e die Herleitung der Fixpunktiteration und die Instanziierung des Newton-Ver-
fahrens und

e das Zeigen der Korrektheit der Verfahren [EKLOS].

Anhand geeigneter Beispiele soll die Berechnungszeit und die Geschwindigkeit der Kon-
vergenz des implementierten Newton-Verfahrens untersucht und dokumentiert werden.
Die Ergebnisse sollen mit einer beim Lehrstuhl vorhandenen Implementierung der Fix-
punktiteration verglichen werden.

Optional kann untersucht werden, ob sich eine Zerlegung des Hypergraphen in
strongly connected components und eine anschlieffende komponentenweise Berechnung
der Gewichte praktisch lohnt. Aufierdem kénnen weitere Verfahren zur Bestimmung
der Gewichte untersucht und implementiert werden.

Die Arbeit muss den iiblichen Standards wie folgt geniigen. Die Arbeit muss in sich
abgeschlossen sein und alle nétigen Definitionen und Referenzen enthalten. Die Struk-
tur der Arbeit muss klar erkenntlich sein, und der Leser soll gut durch die Arbeit
gefithrt werden. Die Darstellung aller Begriffe und Verfahren soll mathematisch formal
fundiert sein. Fiir jeden wichtigen Begriff sollen Beispiele angegeben werden, ebenso
fiir die Abldufe der beschriebenen Verfahren. Wo es angemessen ist, sollten Illustratio-
nen die Darstellung vervollstdndigen. Fiir die Implementierung soll eine ausfiihrliche
Dokumentation erfolgen, die sich angemessen auf den Quelltext und die schriftliche
Ausarbeitung verteilt. Dabei muss die Funktionsfihigkeit des Programms glaubhaft
gemacht werden.

Verantwortlicher Hochschullehrer: Prof. Dr.-Ing. habil. Heiko Vogler
Betreuer: Toni Dietze

Beginn am: 10. April 2012

Einzureichen 10. Oktober 2012

Dresden, 04. April 2012

Unterschrift von Heiko Vogler Unterschrift von Tobias Denkinger

Literatur

[EKLO08] Javier Esparza, Stefan Kiefer, and Michael Luttenberger. Convergence thres-
holds of Newton’s method for monotone polynomial equations. In Pascal Weil
and Susanne Albers, editors, Proceedings of the 25th International Sympo-
stum on Theoretical Aspects of Computer Science (STACS), pages 289-300,
Bordeaux, France, 2008. http://arxiv.org/abs/0802.2856.

[MS99] Christopher D. Manning and Hinrich Schiitze. Foundations of statisti-
cal natural language processing. MIT Press, Cambridge, MA, USA, 1999.
http://dl.acm.org/citation.cfm?id=311445.

[NSO08] Mark-Jan Nederhof and Giorgio Satta. Computing par-
tition functions of pcfgs. Research on Language and
Computation, 6:139-162, 2008. 10.1007/s11168-008-9052-8,

http://dx.doi.org/10.1007/s11168-008-9052-8.

http://arxiv.org/abs/0802.2856
http://dl.acm.org/citation.cfm?id=311445
http://dx.doi.org/10.1007/s11168-008-9052-8

Contents

421 Approach 1 (svmbolic JEYo 16
4 Approach alculate in each iteration) 18
4 Approach else or several iterations) 19
4 Decomposed Newton’s Method 19

5 Resultd 21

1 Introduction

Inside and outside weights are the basis for many algorithms in statistical machine trans-
lation (SMT). Vanda, developed by the Chair of Foundations of Programming at TU
Dresden, is an SMT toolkit. It utilizes the expectation mazimization algorithm in order
to train weights for language and translation models. This algorithm requires the com-
putation of inside and outside weights. But often, these weights can not be computed
analytically, therefore we need to develop efficient algorithms to approximate them.

Vanda already implements the fized-point method for that purpose. This work will
explore two additional methods, Newton’s method and decomposed Newton’s method,
which are known to have a faster convergence.

2 Preliminaries

In this section, we introduce basic notations and formalisms used in this work. The
natural numbers are elements of the set N = {0,1,2,3,...}. Let a € N, then [a] is the set
la] ={neN|n<a}.

For any set A, we define the set of all finite sequences of A, denoted by A*. Let a = (ay,
ay,...,an) € A* be a finite sequence, we define the length of a as |a| = n + 1, the contains
relation € by a € a <= i € [n]: a; = a and the element at index i in a by a.i = a;. Let
B C A, we define the removal of all elements of B from a as a\ B = (a; € a | a; ¢ B).

Let A, B be arbitrary sets, we denote {m | m: A — B} by BA. If A is totally ordered
and finite, we also call such a mapping m € B4 a B-vector indezed by A and write it down
as a simple line vector over B.

Let ¥ be a ranked alphabet, i.e. there is a mapping rk: ¥ — N that assigns a rank to
every symbol. The set of trees over X, denoted by Ty, is the smallest set T' such that
{oc €% |1k(c) =0} C T and {o(t1,....t) | 0 € tk™*(n),t1,....,t, € T} C T. For every
tree t = o(t1, ..., tn) € Tx we define the mappings root(t) = o and children(t) = (1, ..., t,).
The mapping yield(¢) is the sequence of leaves of ¢t read from left to right. The set of all
subtrees of t is the set Sub(o(t1,...tn)) = {o(t1, ..., tn)} U U;ep, Sub(ti).

Let ¥ and V be a ranked alphabets with rk: ¥ — N and rky: V' — {0}. We define the
V-contexts over ¥ as the set Cyyy C Ty such that for every ¢ € Cx vy : |yield(c) \ X| = 1.

2.1 Directed graphs

A directed graph G = (V, E) consists of a set V' of vertices and a set E C V x V of directed
edges. We call an edge e = (v,v") € E the edge from v tov' in G. We define the projections
head(e) = v’ and tail(e) = v.

Let v,v' € V. For some n € N, a path from v to v/ with length n is the sequence of
edges (e, ..., e,) such that tail(eg) = v, head(e,) = v’ and for every i € [n—1]: head(e;) =
tail(e;11). If there exists a path from v to v" and one from v’ to v, we call v and v’ strongly
connected. A strongly connected component is a maximal subset of V such that every pair
of vertices in this subset is strongly connected. All strongly connected components of G
can be calculated by Tarjan’s algorithm [Tar72].

2.2 Hypergraphs

Hypergraphs are a generalization of directed graphs. In hypergraphs, edges contain a
sequence of tail vertices (which can be empty) and a label.

Figure 1: example hypergraph

Definition 1 (weighted hypergraph) Let ¥ be an alphabet. A weighted X-hypergraph
is a tuple H = (V, E, u) where

e V is a finite set (of vertices),
e £ CV*x X xV is a finite set (of edges) and

e 111 B — R>(assigns a weight to every edge. O

Let e = (t,0,h) € E, we define the projections tail(e) = t,label(e) = o and head(e) =
h.

Example 1 (hypergraph) Let ¥ = {a, 3,0} be an alphabet and H = (V, E,) be a
weighted Y-hypergraph with

V ={A,B,C,D}, E ={eo,...,e5},
w: B — R,

eo = ({), o, A), p(eo) = 0.25,
= ((,a,B), p(er) = 1.0,
=(0,8.0), p(ez) = 0.25,
= (0.8, D), p(es) = 1.0,
= ((B, > A), p(eq) = 0.25,
:(<D,A>,O',C), ples) = 0.25

We will use the weighted hypergraph H as a running example. A graphical representation
of H is shown in Figure [Every vertex is represented by a circle and hyperedges are
represented by boxes. Connections from vertices to edges are drawn as line and connections
from edges to vertices are drawn as arrow. o

Definition 2 (path of a weighted hypergraph) Let H = (V, E, 1) be a weighted hy-
pergraph. The direct path relation is the relation g CV x V=g = {(v, head(e)) | e €
E,v € tail(e)}. The path relation —%5; CV x V is the reflexive and transitive closure on
—p. We call v' reachable from v if v —7; v'. o

€4 €4 €4

er C e1 es e1 €5
P /\
€« e3 eq
PN /\
(&) C ey es

/\

€3 €4
/\
€1 C

Figure 2: some A-rooted C-contexts of H

Definition 3 (hyperpaths) Let H = (V| E, 1) be a weighted hypergraph. Then F is
a ranked alphabet where for every e € E: rk(e) = [tail(e)|. The hyperpaths of H are
elements of the set HP(H) = {t € Tg | Ve(t1,...,tn) € Sub(t),Vi € [n]: tail(e).i =
head(root(t;))} o

Definition 4 (fragment of hyperpaths) Let H = (V, E, i) be a weighted hypergraph
and v € V. The v-fragment of HP(H) is the set HP(H,v) = {t € HP(H) | head(root(t)) =
v}. 0

Definition 5 (weight of a hyperpath) Let H = (V, E, u) be a weighted hypergraph
and t € HP(H) a hyperpath in H. The weight of t in H is defined by

wt(t) = p(root(t)) - [wt(t).

t’ echildren(t) O

Definition 6 (v-rooted v’-context of a hypergraph) Let H = (V, E, i) be a weighted
hypergraph and v,v" € V. The set F is a ranked alphabet where for every e € E: rk(e) =
[tail(e)|. The set of v-rooted v'-contexts in H is the set

Ch (") :{c € Cg vy | head(root(c)) = v, Ve(ty, ..., t,) € Sub(c)

. . . t; ift,; eV
i € [n]: tail(e).s = i .
head(root(¢;)) otherwise

Example 2 (context) Let H be the hypergraph from Example [[I Some A-rooted C-
contexts in H are shown in Figure 2 O

Definition 7 (weight of a context) Let H = (V, E, 1) be a weighted hypergraph and
c € Cg,v a context in H. The weight of ¢ in H is defined by
1 ifceV

wt(c) = u(root(c)) - H wt(c’) otherwise.
¢’ €children(c) |

2.3 Inside and outside weights

Inside and outside weights are properties of a vertex v in a weighted hypergraph H. The
inside weight is the sum of the weights of all hyperpaths in H leading to v and the outside
weight is the sum of the weights of all v-contexts in H that have the starting symbol as
head of their root.

Definition 8 (inside weights of a hypergraph) Let H = (V, E, i) be a weighted hy-

pergraph. Then the inside weights of H are defined by
inside(A) = Z wt(t).

tcHP(H,A) 0

Since the set HP(H, A) is potentially not finite, we may not be able to compute the
inside weights directly. Therefore we define a function inner that calculates the value of
inside recursively.

Definition 9 (recursive system for inside weights) Let H = (V, E, 1) be a weighted

hypergraph. The recursive system for the inside weights of H is
Vv € V: inner(v) =

ecl
e=(w,o,v)

Lemma 1 (inside = inner) Let H =

> ule)

H inner(w;).

1€|w|—1]

(V,E, u) be a weighted hypergraph, v,v' € V and

1 ifA=v
:V —={0,1},5(0) =
° {01}, 5(v) {0 otherwise,
then inside(v) = inner(v).
Proor
inside(v)
= > wt(t)
teHP(v)
= > e) [wt(t:)
teHP(v) i€[n]
t=e(to,.rtn)
SN CIED DD Sl § £
_?EE) to€HP(wg) tn€HP(wy) i€[n]
DN CHED SRS DI B | IRT(A) R
_fEE) to€HP(wp) tn€HP(wyn) \i€[n—1]
= Z wie) - Z Z H wt(t Z wt(ty)
7€€E) to€HP(wg) tn—1€HP(wy—1)i€[n—1] t, €HP (wy)
= Y we [X witw) S wilt)
_fEE) to€HP (wop) tn €HP(wy)

- Y we- I wue)

jeE i€[Jw|] t €HP(w;)
— Z u(e) - H inside(w;)
eckE i€[|w]]
e=(w,o,v
= inner(v)

Definition 10 (outside weights of a hypergraph) Let H = (V, E,) be a weighted
hypergraph and v € V. Then the v-rooted outside weights of H are defined by

Vo' € Vi outside’(v') = Z wt(c).

ceCy(v') o

We can define a function outer that calculates the value of outside recursively.

Definition 11 (recursive system for the outside weights) Let H = (V, E, u) be a
weighted hypergraph, v € V and
1 ifdv =
8:V—>{0,1},S(U’):{ nu=y

0 otherwise,

then the recursive system for v-rooted outside weights of H is defined by

outer”(v') = s(v') + Z outer’(v) - u(e) - H inner(w,)

e€ll JE(lwl]
e=(w,0,0) Gi
Fi: w;=A O

Lemma 2 (outside = outer) Let H = (V, E, i) be a weighted hypergraph, v,v" € V and
1 afv =w
0 otherwise,

s: V —={0,1},s(¢') = {

then outside’(v") = outer?(v’).

ProOOF
outside” (v")
= Z wt(c)
ceCy(v')
=wi(v) - s(@W)+ > wi(o)
c€CY (V')
eckE
c=(e(to;--tn))
=s(v') + Z wt(c)
c€CY (V')
eck
C:(e(t07"'7tn))
—s(v/) + Z w(e) - H wt(t;)
ceCy (V') Jj€ln]
eclk

C:(e(t07-"7tn))

=s(v") + Z pie) - Z Z

ecE tQGHP(wO) tifler(wifl)
e=(w,o,v)

> D D | (%)

t;€CY (V') tip1€HP(wiy1) tn€HP(wn) j€[n]

=s()+ Y ule) D> Y Y

ecE tiec;_”{'i (v") to€HP (wo) ti—1€HP(w;_1)
e=(w,o,v)

> DY T e

t2‘+1€HP(’u)¢+1) tnEHP(wn)]E[n]

=s()+ > ule) | D wt(t) S wit(h)

e:fgli v) tieCy (v) to€HP(Ao)
> wi(ti) | - > wttir) | > wh(ta)

ti—1€HP(w;_1) tiv1€HP(wiy1) tn €HP (wy)
S X e [E we | IS we

e:?f,ff) t;€C (V') jg?} t€HP (w;)
=s(v') + Z wie) - Z wt(t;) H inner(w,)

eck cC™i(y! jE[n

e=(w,o,v) t€Cy' () jgé[j}
=s(v') + Z u(e) - outside™ (v') - H inner(w,)

_fEE) J€[n]

i 7
=outer” (v')

3 Calculating Inside and Outside Weights

In the following, we introduce several methods to obtain the inside and outside weights
of a weighted hypergraph. Due to the fact that the inside weights are hard to obtain
analytically, we will use iterative algorithms to approximate them.

3.1 Fixed-point method
Since inside and outside weights can be defined recursively, it is natural to consider fixed-
point method for their calculation.

3.1.1 Calculating the fixed point

Because of the facts, that we start with the zero vector and that iterations of the recursive
functions inner and outer are monotonically increasing, we will compute the least fixed
point of these functions [EKLO0S].

Definition 12 (least fixed point) Let f: A — A be a function and < C A x A a total
order on A. A value a € A is a fized point of f,if f(a) = a holds. The value a € A is the
least fized point of f with respect to < if there is no a’ € A such that o’ is a fixed point of
f and d’ < a. o

Definition 13 (fixed-point method) Let f: A — A be a function with (at least) one
fixed point, xg € A (be a starting value) and ¢: A x A — B be a predicate (breaking
condition). We define the Kleene sequence (xo,x1,...) where Vi > 1: x; = f(x;—1). The
fized-point method determines the smallest i such that ¢(x;, z;+1) holds and returns x; as
result. o

3.1.2 Inside weights as fixed-point problem

Given Definition 23, we can easily define a function in: RY — RY such that the least
fixed-point of in is the vector of inside weights. Let V' = { Ay, ..., A;,} and i be the vector
of inside weights. Since i is a fixed point of in we have that in(i) = i. By Definition
then we have the fixed point function for inside weights.

Definition 14 (fixed-point function of the inside weights) Let H = (V, E, u) be a
weighted hypergraph with V' = {4y, ..., Ay, }. Then the fized-point function of the inside
weights is

in: RV - RV

> ule) T itw,
e€E Jelwl]
e=(w,0,Am

We start with the zero vector. Since in only has coefficients greater 0 and we start with
the zero vector, every value in the vector grows with every application of in. Therefore
we calculate in fact the least fixed point.

Example 3 (fixed-point function of the inside weights) Let H be the hypergraph
of Example[ll Then the fixed-point function of its inside weights is

p(eo) + ples) -ic - in 0.25+0.25 - i - ip
Y — pler) -~ 1.0
in(i) = M(€2)+M(e5) cip-ia| 0254025 -ip-ia
p(es) 1.0

We can solve the equation analytically to gather the (least) fixed point i
.71 1 T
By applying fixed point method, we also compute the (least) fixed point as shown in

Table [l We truncate the values after 2 decimals. Due to the fact that iy = i5, we stop
the iteration ending up with approximately the same (least) fixed point. O

10 71 19 13 4 15
0.00 | 0.25 | 0.31 | 0.32 | 0.33 | 0.33
0.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00
0.00 | 0.25 | 0.31 | 0.32 | 0.33 | 0.33
0.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00

gQw»

Table 1: fixed point method for inside weights on example hypergraph

(s} 01 09 03 04
0.00 | 1.00 | 1.00 | 1.06 | 1.06
0.00 | 0.00 | 0.08 | 0.08 | 0.08
0.00 | 0.00 | 0.25 | 0.25 | 0.26
0.00 | 0.00 | 0.00 | 0.02 | 0.02

UQw

Table 2: fixed-point method for outside weights on example hypergraph

3.1.3 OQOutside weights as fixed-point problem

Definition 15 (fixed-point function of the outside weights) Let H = (V, E, 1) be
a weighted hypergraph with V' = {Ay, ..., A, }, the starting symbol S and s the function
from Definition [[Il Then the fized-point function of the outside weights is

out: RV - RV
s(Ag)+ > op-ple)- [inner(w;)

ecl J€lwl]
e=(w,0,B it
w(q-,:Ao) #J
out(o) = :
s(Am)+ > op-p(e)- [inner(w;)
e:(eufg B) J€lwl]
P 73

Example 4 (fixed-point function of outside weights) For the hypergraph H from
Example [I, the fixed-point function for the outside weights is

1+ oc - p(es) - inner(D) 1+0.25- o,

_ 04 - 4(eq) - inner(C) + o4
out(0) = o4 - 1(eq) - inner(B) 104
oc - p(es) - inner(A) &5 0C

By analytically solving the equation we get the (least) fixed point o

T
o=(1 % & ®

The fixed-point method computes approximately the same (least) fixed point, shown in
Table 2l We truncated the values after 2 decimals. o

3.2 Newton’'s Method

Newton’s method converges, compared to fixed-point iteration, faster. In our case, we
have quadratic convergence [EKLOS].

10

3.2.1 Inside weights as root of a function

We can define a function in’ such that the (least) solution of in’(i) = 0 is the (least)
fixed point of the function in Definition Let V' = {Ay,..., A} be the set of vertices
of H and assume i € RY to be the fixed point of in, then in(i) = i. We then have that
0 = —i +in(i). More verbose we get

> ple)r 1w, —iagt X p(e) TT i,

iAo e=(10.0,Ao) selvl e= (10,0, Ao) selel
0=— : + . =
A > ule) I dw, i, + > p(e) I dw
e€ek JE[|wl] e€eF JE[|wl]
e=(w,0,Am e=(w,0,Am

Definition 16 Let H = (V, E, 1) be a weighted hypergraph, V = {Ay, ..., A;n }. Then in’
is the function
in: RV - RY

it X w1 i,

_iAm + E :u(e) : H iwj
eck JE(lwl]
e=(w,0,Am)

Example 5 (Inside weights as root of a function) For the hypergraph G in Exam-
ple Il we get the following function in’:

—ia + p(eo) + ples) - ic - ip
" —ip + pler)
ZTL, 1) = ZB
=1 Zic + uea) + ples) - in - ia
—ip + p(es) o

3.2.2 Newton’s Method

Newton’s method has instances for a variety of functions. It is especially used in mathe-
matical analysis to get the root of functions in RE. But since its definition is more general,
we can also use it in our case.

Definition 17 (Newton’s method) Let f: RV — RY be a function with (at least) one
root, o € RV (be a starting value) and c: RV x RY — B be a predicate (breaking condi-
tion). We define the sequence (zq,x1,...) where z;11 = x; — (f'(2;))~! - f(x;). Newton’s
method determines the smallest ¢ such that ¢(x;, z;41) holds and returns x; as result. o

The function, we need to find the root of, has the type f: RY — RY. The derivation
for such a function is the Jacobian matrix.

Definition 18 (Jacobian matrix) Without loss of generality, let V' = {vp,..., v} be
the index values, f: RV — RV a function over real vectors indexed by V with f =

11

k in in’ (iy,) Jin! (iy,) ikt
0 0.25 -1 0 0 0 0.25

0 (0 1 0 -1 0 0 1
0 0.25 0 0 -1 0 0.25

0 1 0 0 0 -1 1
0.25 0.06 —1 0.06 025 0 0.33

. 1 0 0 -1 0 0 1
0.25 0.06 025 0 —1 0.06 0.33

1 0 o 0 0 -1 1
0.33 0 —1 008 025 0 0.33

) 1 0 0 -1 0 0 1
0.33 0 025 0 —1 0.08 0.33

1 0 o 0 0 -1 1

Table 3: Newton’s method for inside weights on example hypergraph

(fvo ka)T and r = (xvo a:vk)T € RY. The Jacobian matriz of f in x is
dfvo (z) L. dfvo (z)
dxy, dmvk
Jf(x) = : - :
dka (z) dka(x)
z'uo x’vk]

Example 6 (Newton’s method) For the function in’ in Example Bl we get the Jacobian
matrix

-1 plea)-ic ples) -in 0

0 1 0 0
Jin' (i) =) .
D=1 es)-in 0 1 pes) - ia

0 0 0 -1

We us the predicate c: RV xRY — B with c¢(z,2') = T <= x =~ 2/ as breaking condition.
The iteration steps of Newton’s method are shown in Table Bl We truncate the shown
values after 2 decimals for better readability. o

3.3 Decomposed Newton’s method

The idea of decomposed Newton’s method (DNM) is to decompose the hypergraph into
strongly connected components and then run Newton’s method for every component. The
components must be in topological order. Hence, for every instance of Newton’s method,
only the inside weights for the vertices inside the component are unknown while the weights
of all incoming vertices outside the component have already been calculated.

3.3.1 Decomposing the hypergraph

Generally speaking, a strongly connected component is a set of vertices where every pair of
vertices is mutually reachable. We generalize the definition for directed graphs to weighted
hypergraphs.

12

®O——®
F——~®

Figure 3: directed graph constructed from the example hypergraph

Definition 19 (strongly connected components) Let H = (V| E,) be a weighted
Y-hypergraph. Then for every v € V the strongly connected component associated with v
is SCC(H,v) = {v' € V | v =7 v ANV <% v}. The strongly connected components of H
are elements of the set SCCs(H) = {SCC(H,v) |v € V}. o

Example 7 (strongly connected components of a hypergraph) By Definition [I9]
our example hypergraph has the strongly connected components SCCs(H) = {{4,C},

{B}, {D}}- o

In order to calculate the SCCs of a hypergraph H, we will use Tarjan’s algorithm [Tar72].
Due to the fact that Tarjan’s algorithm is designed for directed graphs, we construct a
directed graph G such that SCCs(H) = SCCs(G).

Construction 1 (weighted hypergraph to directed graph) Let H = (V, E, u) be a
weighted -hypergraph. We construct the directed graph G = (V, —p).

Example 8 (weighted hypergraph to directed graph) By applying Construction Il
to the hypergraph in Example [, we get a Graph G = (V, E) with E = {(B, A), (4, C),
(C,A),(D,C)}. A graphical representation is shown in Figure Bl o

Theorem 1 Let H = (V, E, u) be a weighted X-hypergraph and G = (V, E') the directed
graph by construction[d. Then SCCs(H) = SCCs(G).

ProOOF Given the fact, that — g = —q, =} = —¢ holds. Furthermore SCCs(H) only
depends on V' and —7};, and SCCs(G) only depends on V' and —¢. Hence SCCs(H) =
SCCs(G). =

Construction 2 (directed acyclic graph of SCCs) Given a graph G = (V, E) and
the set of strongly connected components SCCs(G), we can associate a directed acyclic
graph G’ by constructing G’ = (SCCs(H), E') where E' = {(SCC(G,v),SCC(G,w)) | (v,
w) € E,v ¢ SCC(G,w)}.

Since all cyclic paths are removed during Construction 2, the generated G’ is in fact a
directed acyclic graph. Tarjan’s algorithm computes SCCs(G) in a reversed topological
order of G'. Therefore we only need to reverse the calculated sequence of SCCs to get a
topological order.

Example 9 (directed acyclic graph of SCCs) Given the graph G constructed in Ex-
ample B, Tarjan’s algorithm calculates the strongly connected components SCCs(G) =
{{A4,C},{B},{D}}. First we recognize, they are in fact equal to the strongly connected
components of the hypergraph H. By applying Construction 2] we get the directed acyclic
graph G’ = (SCCs(G), E") with E"” = {({B},{A,C}),({D},{A,C})}, shown in Figure
M Hence, a topologically sorted sequence of the strongly connected components of H is

({B},{D},{A,C}). o

13

E—)—®

Figure 4: directed acyclic graph by hypergraph

E 1 ik | il Ge) [Jinfp Ge) [ien
01(0)] (1) (=1) | (1)
1@] (0 -y [

Table 4: Newton’s method for Hypy

3.3.2 Applying Newton’s method

Let H = (V,E,u) be the given weighted Y-hypergraph and S a topologically sorted
sequence of all SCCs of H. We initialize DNM method with an empty variable assignment
i: R‘Z/O,i = (). Then for every s € S, we intersect H with s leading to H.

Definition 20 (intersection of weighted hypergraph and a set of verties) Let H
(V, E, 1) be a weighted X-hypergraph and S C V. The intersection of H with S is defined
by Hg = (V',E',1/) where E' = {e € E | head(e) € S}, V' ={v eV |Jeec EF:v €
tail(e) Vv = head(e)} and for all e € E': p/(e) = p(e). o

For Hg we calculate the function in’ by Definition Then we use the variable as-
signment to substitute the variables that are not in S with values and remove the lines
corresponding to the substituted values from in’. Now we got a system of dimension
|S| x |S| for which we can use standard Newton’s method.

Example 10 (decomposed Newton’s method) By intersecting the example hyper-
graph H with the SCCs from Example[@ ({ B}, {D},{A,C}), we get a sequence of hyper-
graphs (Hygy, Hpy, Hya,cy)- Then we apply Newton’s method to each hypergraph in the
sequence in order.

For the hypergraph H(p) we get

Hipy = ({B},{e1})
mf{B} = (—ip + u(er))
= (1—ip)
Jinpy = (-1)
(Jingp) ™ = (~1).

14

AR 1oy (k) [ki1
01 () (=1) | (1)
1M 0 1) @)

Table 5: Newton’s method for Hypy

k ik oy (i) | Jindy oy (in) b1
0 <0> (0.25) (—1 0.25) (0.33
0 0.25 0.25 —1 0.33

) <0.33) <0> (-1 0.25> (0.33
0.33 0 025 -1 0.33

Table 6: Newton’s method for Hypy

For the hypergraph Hp, we get

For the hypergraph Hyy ¢y we get

Hipy =

{B}, {es})

o~ o~ o~ o~ —~

H{A,C} = ({A7 B7 Ca D}7 {607 €2, €4, 65})

./
Miacy =

g

(Jin’{B})_l =

(

(029
s (

15

Then by Newton’s method in Table

1A

ic

Y

Wl =Wl =

0.25

=)
4 1>.

1 4

15

—ia+ pleo) + ples) -ic - ip
—ic + p(e2) + ples) - ip - ia
—i4 +0.254+0.25 - i¢
—1c+0.2540.25-14

)

)

4 Implementation

The following algorithms give a procedural overview of the approaches made, as well as
the Haskell functions in charge of each step (denoted in square brackets).

4.1 Convergence

The fixed-point method and Newton’s method both require a break condition in the sense
of Definition [I5 and Definition [I7in order to select the result. For that purpose we define
the correction ratio which should give us a measure on how much the method improved
the value during its last iteration.

Definition 21 (correction ratio) Let z,2’ € R>o be two values. The correction ratio
_ lz'—=|

e from x to ' is defined as the value e(z, ') =

O

By Definition 2] every step of the iteration is associated with a correction ratio e(z;,
xi+1). The methods break the iteration if that ratio drops below a threshold &g.

1 converged e0 x y = if X >y
2 then (x - y) / x < e0
3 else (y - x) / x < e0

We represent converged e0 by the relation =~ C R x R. In order to evaluate the
convergence of vectors, we need to extend ~ to RV .

Definition 22 (=) Let ~ C R x R be a relation and z,y € RV two vectors, then ~ C
RY x RY is a relation where z ~ y <= Yo € V: 2, = 4.

[m}

We then use Data.Foldable.all (converged e0) on two vectors (of the type Data.Map,
which is an instance of Data.Foldable) to determine if we are done iterating.

4.2 Newton’s method

Since Newton’s method computes derivations of the multivariate function, the implemen-
tation computes a representation of that function and stores it as a List of Polynomials.
For the implementation of Newton’s method, we considers three approaches. The first one
implements Newton’s method as it is and reuses a symbolic Jacobian matrix, the second
one calculates an (evaluated) Jacobian matrix in every iteration and the third one reuses
the (evaluated) Jacobian matrix in several consecutive steps.

4.2.1 Approach 1 (symbolic JF)

We calculate a symbolic Jacobian matrix. Then we evaluate and invert it in each step
(Figure [B).

simpleDerive Calculates the symbolic derivation of a polynomial given a variable to

derive by
1 -- | Computes the derivation of a given function
2 simpleDerive
3 (0rd v, Num w, Integral i)
4 = Polynomial v w i
5 — v
6 — Polynomial v w i
7 simpleDerive pol x

= let dy = [(w * (fromIntegral a), list)

16

1. define a starting vector iy [0-vector]
2. calculate the symbolic Jacobian matrix JF' [derive]

3. for ke[l,.] do

a) evaluate the Jacobian matrix JFj = JF(i;_1) [evalPolyMatrix]

o

invert JF} [inv]

8. o

calculate iy. ip = ip_1 — JF,;1 - Fy,

)
)
) evaluate the function Fj, = F'(ix_1) [evalPolyVec|
)
e)

break if i and i;_; are close enough [converged]

4. output the last calculated iy

Figure 5: Newton’s method, approach 1

9 | (w, oldList) < pol

10 , let a = M.findWithDefault 0 x

11 . M.fromList

12 $ oldList

13 , let list = [(v, i)

14 | (v, i01d) <« oldList

15 , let i = if (v =— x)
16 then i01d - 1
17 else i01d

18 , 1 >0

19]

20]

21 in dy

derive Calculates the symbolic Jacobian matrix given vectors of polynomials and vari-

ables.
1 -- | Computes the Jabobian Matrix of a given Function
2 derive
3 (0rd v, Num w, Integral i)
4 = [Polynomial v w i]
5 — [v]
6 — [[Polynomial v w i]]
7 derive vec vars
8 = [list
9 | partialFunction < vec
10 , let list = [simpleDerive partialFunction x
11 | x « vars
12]
13]

evalPoly Evaluates a polynomial given a variable assignment.

-- | Evaluates a ’Polynomial’ by the given ’M.Map’
evalPoly
(0rd v, Num w, Eq w, Integral i)

= M.Map v w

— Polynomial v w i

— W
evalPoly w p

= let

© 00 N O A W N

£f k1 []

17

1. define a starting vector iy [0-vector]

2. for ke€[l,.] do

a) calculate and evaluate the Jacobian matrix JF [deriveEval]

o

invert JF} [inv]

@)

[N

calculate i;. i = ip_1 — JF,;1 - Fy,

)
)
) evaluate the function Fy, = F(iy_1) [evalPolyVec]
)
e)

break if i, and i;_; are close enough [converged]

3. output the last calculated i

Figure 6: Newton’s method, approach 2

10 = ki1

11 f k1 ((w1l,1):xs)

12 = g k1 wl 1 xs

13 g k1 k2 [] xs

14 = let k’ = (k1 + k2)

15 in seq k’ (f k’ xs)

16 g k1 k2 ((v,i):ys) xs

17 = let k2’ = (k2 * (w M.! v) ~ i)
18 in seq k2’ (g k1 k2’ ys xs)
19 r=1f 0p

20 in r

evalVec, evalMatrix Extension of evalPoly to vectors and matrices of polynomials.

-- | Evaluates a ’List’ of ’Polynomial’s
evalPolyVec
(0rd v, Num w, Eq w, Integral i)
= M.Map v w
— [Polynomial v w il
— [w]
evalPolyVec w = map $ evalPoly w

© 0 N O A W N

-- | Evaluates a Matrix of ’Polynomial’s
evalPolyMatrix
(0rd v, Num w, Eq w, Integral i)
= M.Map v w
— [[Polynomial v w ill
— [[wl]
evalPolyMatrix w = map $ evalPolyVec w

e e e
G W N = O

inv Inverts a Matrix using Numeric.LinearAlgebra.Algorithms.inv.

4.2.2 Approach 2 (calculate JF' in each iteration)

In each step we calculate the inverted Jacobian matrix from scratch (Figure [6).

deriveEval Calculates and evaluates the Jacobian matrix given a function and variable

assignment.
1 -- | Computes the Jabobian Matrix of a given Function
2 deriveEval
3 :: (0rd v, Num w, Integral i)

18

1. define a starting vector iy [0-vector]
2. define a step size n [n = 5]

3. for ke[l,.] do

a) if k modn=1
then calculate the inverted Jacobian matrix JF; ' [deriveEval, inv]
else reuse it JF,;1 = J'F/,:_l1

b) evaluate the function Fy, = F(iy_1) [evalPolyVec]
c) balculate iy. i = ix_1 — JF/,;]L - Fy

d) break if i and i1 are close enough [converged|

4. output the last calculated iy,

Figure 7: Newton’s method, approach 3

4 = M.Map v w

5 — [Polynomial2 v w il

6 — [v]

7 — [[w]]

8 deriveEval w vec vars

9 = let

10 hkab=(x)Db. flip (7) a . (M.!) w $ k
11 g x p = if M.notMember x p

12 then 0

13 else ((w M.! x) =~ ((p M.! x) - 1))
14 % (M.foldrWithKey’ h 1 . M.delete x $ p)
15 * (fromIntegral . (M.!) p $ x)
16 iv (x,y) =(x) x . gv$y

17 in [val

18 | partialFunction < vec

19 , let val = [L.foldl’ (4+) O

20 . map (i x)

21 $ partialFunction

22 | x < vars

23]

24]

This approach has advantages to the previous one for big matrices or small numbers
of iterations. In both cases, the time saved due to reusing the symbolic Jacobian matrix
does not justify the overhead of creating and evaluating it.

4.2.3 Approach 3 (reuse JF for several iterations)

Now we only calculate and invert the Jacobian matrix every n steps. The algorithm saves
time for big matrices (Figure[7]). According to my runs and [NSO8], n = 5 works. However,
we use Approach 2 for Vanda, because it has a highter performance than Approach 1 and
Approach 3 is not formally correct.

4.3 Decomposed Newton’s Method

As decomposed Newton’s method (DNM) is based on splitting the hypergraph into its
strongly connected components (SCCs), topologically sorting them and then apply regu-

19

1. calculate SCCs of hypergraph h. | = sces(h) C 22"
2. sort SCCs topologically. " = topSort(l) C (2")* [topSortedSCCs]
3. set w € RY; to 0

4. for every s €I’ do
a) intersect h and s. hs = intersect(h, s) [intersectHypergraph)]

b) run regular Newton’s method on h4 considering already calculated weights.
ws = newton,,(hs) [newton]

c) set w:=wUws

5. output w

Figure 8: Decomposed Newton’s method

lar Newton’s method to the hypergraphs consisting of the SCCs in order of the sorting
(Figure {).

topSortedSCCs Converts the hypergraph to a graph, then calculated its SCCs and sorts
them topologically using Data.Graph

-- | Computes a topologically sorted list of SCCs
-= of a ’Hypergraph’
topSortedSCCs
(0rd v)
= H.Hypergraph v 1 w i
— [[v]1]
topSortedSCCs hg
= let es = map (A (a,b) — (a, a, S.tolList b))
. M.tolList
. M.map S.fromList
. M.fromListWith (++)
. map (A e — (H.eHead e, H.eTail e))
. H.edges
$ hg
sccs = map G.flattenSCC . G.stronglyConnComp $ es
in sccs

© 0 N O UkAe W N

e e e e =
Gk W N = O

intersectHypergraph Only keeps edges if the head is in the list

-- | Intersect a ’Hypergraph’ with a ’List’ of
o head vertices
intersectHypergraph
(0rd v)
= H.Hypergraph v 1 w i
— [v]
— H.Hypergraph v 1 w i
intersectHypergraph hg 1
= H.hypergraph . L.foldl’ (4++) I[]
. map ((M.!) (H.edgesM hg)) $ 1

© 00 N O s W N

fun
o

newton Utilizes one of the algorithms described in the previous section.

20

100000 [T T T T T T T

fp +
nm X
dnm
10000 " .
R
n +
1000 |

iterations

100 |

0 500 1000 1500 2000 2500 3000 3500 4000
vertices

Figure 9: iterations by vertices for random hypergraphs, blue: fixed-point iteration, red:
Newton’s method, green: decomposed Newton’s method

5 Results

The three proposed methods to calculate inside and outside weights in weighted hyper-
graphs have been implemented in Haskell as part of the natural language processing tool-
box Vanda, which is being developed at the Chair of Foundations of Programming, Faculty
of Computer Science, TU Dresden. They have been tested on 1000 randomly generated
hypergraphs with up to 4000 vertices, 2 edges per vertex and, since most hypergraphs in
statistical machine translation are binarized, a maximum of 2 tail nodes per edge. The
number of vertices of those hypergraphs is equally distributed in [0,4000]. We investigated
the number of iterations needed as well as the time needed to compute the weights.

The number of iterations needed for the algorithms to terminate are shown in Figure [0l
For decomposed Newton’s method, we used the arithmetic mean of the iterations of all
instantiated Newton’s methods instead of the total count.

The fixed-point iteration is significantly more scattered than the the other algorithms,
visible even on the used logarithmic scale. With a maximum of 12000 and an average of
about 100 iterations, fixed-point method also needs much more steps to converge. Both
the other clusters are very dense and only need up to 10 (average 8 for Newton’s method
and 2 for decomposed Newton’s method) iterations. Also for more than 1500 vertices,
the average number of iterations needed to compute the weights in any of the algorithms
stops to grow. In the matter of steps, Newton’s method and decomposed Newton’s method
clearly converge much faster than fixed-point method.

In Figure [I0, we see the time needed by the algorithms to terminate. All clusters are
dense. Since Newton’s method depends on matrix inversion, which is very expensive, and

21

1000 ¢ T T T T T T T
100

10 ¢

0.1

time/s

0.01

0.001

I
0.0001 i
le-05 fo -:
nm
1e-06 1 1 1 1 1 1 dnlrn]
0

500 1000 1500 2000 2500 3000 3500 4000
vertices

* X +

Figure 10: time by vertices for random hypergraphs, blue: fixed-point iteration, red: New-
ton’s method, green: decomposed Newton’s method

even the significantly smaller number of iterations can not compensate for that, Newton’s
method and decomposed Newton’s method needs more time to converge than fixed-point
method. Decomposed Newton’s methods run time additionally depends on the sizes of
the strongly connected components. The average ratio between the run time of fixed-
point method to Newton’s method to decomposed Newton’s method is show in Table [7l
Depending on the number of vertices, for decomposed Newton’s method, the ratio grows
linear, for Newton’s method it grows super linear.

For randomly generated hypergraphs, fixed-point method proofs to be the best of the
three methods. However, for special cases of hypergraphs, e.g. such generated by tools for
statistical machine translation, decomposed Newton’s method may proof more effective
than here.

22

number of | avg ratio | avg ratio
vertices fp tonm | fp to dnm
[900, 1100] 1:89 1:29
[1900,2100] | 1:21.7 1:7.0
[2900,3100] | 1:29.0 1:10.0
[3900,4000] | 1:44.2 1:13.2

Table 7: average ratio of runtime for fixed-point method, Newton’s method and decom-
posed Newton’s method

23

References

[EKLO8] Javier Esparza, Stefan Kiefer, and Michael Luttenberger. Convergence thresholds

[NS08]

[Tar72]

of Newton’s method for monotone polynomial equations. In Pascal Weil and
Susanne Albers, editors, Proceedings of the 25th International Symposium on
Theoretical Aspects of Computer Science (STACS), pages 289-300, Bordeaux,
France, 2008. http://arxiv.org/abs/0802.2856.

Mark-Jan Nederhof and Giorgio Satta. Computing partition functions of pcfgs.
Research on Language and Computation, 6:139-162, 2008. 10.1007/s11168-008-
9052-8, http://dx.doi.org/10.1007/s11168-008-9052-8.

Robert Tarjan. Depth-first search and linear graph algo-
rithms. SIAM Journal on Computing, 1(2):146-160, 1972.
http://ieeexplore.ieee.org/xpls/abs_all. jspTarnumber=4569669.

24

http://arxiv.org/abs/0802.2856
http://dx.doi.org/10.1007/s11168-008-9052-8
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4569669

