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Inside- und Outside-Gewihte spielen beispielsweise beim unüberwahten Training

probabilistisher kontextfreier Grammatiken mittels des Expetation-Maximization-

Algorithmus eine wihtige Rolle. Sie können leiht mit Hilfe einer Fixpunktiteration

angenähert werden, jedoh konvergiert dieses Verfahren im Allgemeinen relativ lang-

sam. Eine andere Möglihkeit zur Bestimmung der Gewihte ist das Newton-Verfahren,

welhes eine bessere Näherung in weniger Iterationsshritten verspriht.

Im Rahmen der Belegarbeit soll die Berehnung von Inside- und Outside-Gewihten

für gewihtete Hypergraphen mittels Newton-Verfahren implementiert werden. Die

Implementierung soll möglihst zeit- und speiherplatze�zient in Haskell umgesetzt

werden und in das System Vanda einbettbar sein. Die formalen Grundlagen sollen im

shriftlihen Teil der Arbeit dokumentiert werden. Dazu zählen

• die De�nition der Inside- und Outside-Gewihte [NS08, MS99, Abshnitt 11.3℄

für gewihtete Hypergraphen,

• die Herleitung der Fixpunktiteration und die Instanziierung des Newton-Ver-

fahrens und

• das Zeigen der Korrektheit der Verfahren [EKL08℄.

Anhand geeigneter Beispiele soll die Berehnungszeit und die Geshwindigkeit der Kon-

vergenz des implementierten Newton-Verfahrens untersuht und dokumentiert werden.

Die Ergebnisse sollen mit einer beim Lehrstuhl vorhandenen Implementierung der Fix-

punktiteration verglihen werden.

Optional kann untersuht werden, ob sih eine Zerlegung des Hypergraphen in

strongly onneted omponents und eine anshlieÿende komponentenweise Berehnung

der Gewihte praktish lohnt. Auÿerdem können weitere Verfahren zur Bestimmung

der Gewihte untersuht und implementiert werden.



Die Arbeit muss den üblihen Standards wie folgt genügen. Die Arbeit muss in sih

abgeshlossen sein und alle nötigen De�nitionen und Referenzen enthalten. Die Struk-

tur der Arbeit muss klar erkenntlih sein, und der Leser soll gut durh die Arbeit

geführt werden. Die Darstellung aller Begri�e und Verfahren soll mathematish formal

fundiert sein. Für jeden wihtigen Begri� sollen Beispiele angegeben werden, ebenso

für die Abläufe der beshriebenen Verfahren. Wo es angemessen ist, sollten Illustratio-

nen die Darstellung vervollständigen. Für die Implementierung soll eine ausführlihe

Dokumentation erfolgen, die sih angemessen auf den Quelltext und die shriftlihe

Ausarbeitung verteilt. Dabei muss die Funktionsfähigkeit des Programms glaubhaft

gemaht werden.
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1 Introduction

Inside and outside weights are the basis for many algorithms in statistical machine trans-
lation (SMT). Vanda, developed by the Chair of Foundations of Programming at TU
Dresden, is an SMT toolkit. It utilizes the expectation maximization algorithm in order
to train weights for language and translation models. This algorithm requires the com-
putation of inside and outside weights. But often, these weights can not be computed
analytically, therefore we need to develop efficient algorithms to approximate them.
Vanda already implements the fixed-point method for that purpose. This work will

explore two additional methods, Newton’s method and decomposed Newton’s method,
which are known to have a faster convergence.

2 Preliminaries

In this section, we introduce basic notations and formalisms used in this work. The
natural numbers are elements of the set N = {0, 1, 2, 3, ...}. Let a ∈ N, then [a] is the set
[a] = {n ∈ N | n ≤ a}.
For any set A, we define the set of all finite sequences of A, denoted by A∗. Let a = 〈a0,

a1, ..., an〉 ∈ A∗ be a finite sequence, we define the length of a as |a| = n+ 1, the contains
relation ∈ by a ∈ a ⇐⇒ ∃i ∈ [n] : ai = a and the element at index i in a by a.i = ai. Let
B ⊆ A, we define the removal of all elements of B from a as a \B = 〈ai ∈ a | ai /∈ B〉.
Let A,B be arbitrary sets, we denote {m | m : A → B} by BA. If A is totally ordered

and finite, we also call such a mapping m ∈ BA a B-vector indexed by A and write it down
as a simple line vector over B.
Let Σ be a ranked alphabet , i.e. there is a mapping rk: Σ → N that assigns a rank to

every symbol. The set of trees over Σ, denoted by TΣ, is the smallest set T such that
{σ ∈ Σ | rk(σ) = 0} ⊆ T and {σ(t1, ..., tn) | σ ∈ rk−1(n), t1, ..., tn ∈ T} ⊆ T . For every
tree t = σ(t1, ..., tn) ∈ TΣ we define the mappings root(t) = σ and children(t) = 〈t1, ..., tn〉.
The mapping yield(t) is the sequence of leaves of t read from left to right. The set of all
subtrees of t is the set Sub(σ(t1, ...tn)) = {σ(t1, ..., tn)} ∪

⋃

i∈[n] Sub(ti).
Let Σ and V be a ranked alphabets with rk: Σ → N and rkV : V → {0}. We define the

V -contexts over Σ as the set CΣ,V ⊆ TΣ∪V such that for every c ∈ CΣ,V : |yield(c)\Σ| = 1.

2.1 Directed graphs

A directed graph G = (V,E) consists of a set V of vertices and a set E ⊆ V ×V of directed
edges. We call an edge e = (v, v′) ∈ E the edge from v to v′ in G. We define the projections
head(e) = v′ and tail(e) = v.
Let v, v′ ∈ V . For some n ∈ N, a path from v to v′ with length n is the sequence of

edges 〈e0, ..., en〉 such that tail(e0) = v, head(en) = v′ and for every i ∈ [n−1] : head(ei) =
tail(ei+1). If there exists a path from v to v′ and one from v′ to v, we call v and v′ strongly
connected. A strongly connected component is a maximal subset of V such that every pair
of vertices in this subset is strongly connected. All strongly connected components of G
can be calculated by Tarjan’s algorithm [Tar72].

2.2 Hypergraphs

Hypergraphs are a generalization of directed graphs. In hypergraphs, edges contain a
sequence of tail vertices (which can be empty) and a label.
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Figure 1: example hypergraph

Definition 1 (weighted hypergraph) Let Σ be an alphabet. A weighted Σ-hypergraph
is a tuple H = (V,E, µ) where

• V is a finite set (of vertices),

• E ⊆ V ∗ × Σ× V is a finite set (of edges) and

• µ : E → R≥0 assigns a weight to every edge. ✷

Let e = (t, σ, h) ∈ E, we define the projections tail(e) = t, label(e) = σ and head(e) =
h.

Example 1 (hypergraph) Let Σ = {α, β, σ} be an alphabet and H = (V,E, µ) be a
weighted Σ-hypergraph with

V = {A,B,C,D}, E = {e0, ..., e5},

µ : E → R≥0,

e0 = (〈〉, α, A), µ(e0) = 0.25,

e1 = (〈〉, α,B), µ(e1) = 1.0,

e2 = (〈〉, β, C), µ(e2) = 0.25,

e3 = (〈〉, β,D), µ(e3) = 1.0,

e4 = (〈B,C〉, σ, A), µ(e4) = 0.25,

e5 = (〈D,A〉, σ, C), µ(e5) = 0.25

We will use the weighted hypergraph H as a running example. A graphical representation
of H is shown in Figure 1. Every vertex is represented by a circle and hyperedges are
represented by boxes. Connections from vertices to edges are drawn as line and connections
from edges to vertices are drawn as arrow. ✷

Definition 2 (path of a weighted hypergraph) Let H = (V,E, µ) be a weighted hy-
pergraph. The direct path relation is the relation →֒H ⊆ V × V, →֒H = {(v, head(e)) | e ∈
E, v ∈ tail(e)}. The path relation →֒∗H ⊆ V × V is the reflexive and transitive closure on
→֒H . We call v′ reachable from v if v →֒∗H v′. ✷
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Figure 2: some A-rooted C-contexts of H

Definition 3 (hyperpaths) Let H = (V,E, µ) be a weighted hypergraph. Then E is
a ranked alphabet where for every e ∈ E : rk(e) = |tail(e)|. The hyperpaths of H are
elements of the set HP(H) = {t ∈ TE | ∀e(t1, ..., tn) ∈ Sub(t), ∀i ∈ [n] : tail(e).i =
head(root(ti))} ✷

Definition 4 (fragment of hyperpaths) Let H = (V,E, µ) be a weighted hypergraph
and v ∈ V . The v-fragment of HP(H) is the set HP(H, v) = {t ∈ HP(H) | head(root(t)) =
v}. ✷

Definition 5 (weight of a hyperpath) Let H = (V,E, µ) be a weighted hypergraph
and t ∈ HP(H) a hyperpath in H. The weight of t in H is defined by

wt(t) = µ(root(t)) ·
∏

t′∈children(t)

wt(t′).

✷

Definition 6 (v-rooted v
′-context of a hypergraph) LetH = (V,E, µ) be a weighted

hypergraph and v, v′ ∈ V . The set E is a ranked alphabet where for every e ∈ E : rk(e) =
|tail(e)|. The set of v-rooted v′-contexts in H is the set

Cv
H(v′) =

{

c ∈ CE,{v′} | head(root(c)) = v, ∀e(t1, ..., tn) ∈ Sub(c)

, i ∈ [n] : tail(e).i =

{

ti if ti ∈ V

head(root(ti)) otherwise

}

.

Example 2 (context) Let H be the hypergraph from Example 1. Some A-rooted C-
contexts in H are shown in Figure 2. ✷

Definition 7 (weight of a context) Let H = (V,E, µ) be a weighted hypergraph and
c ∈ CE,V a context in H. The weight of c in H is defined by

wt(c) =







1 if c ∈ V

µ(root(c)) ·
∏

c′∈children(c)

wt(c′) otherwise.
✷
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2.3 Inside and outside weights

Inside and outside weights are properties of a vertex v in a weighted hypergraph H. The
inside weight is the sum of the weights of all hyperpaths in H leading to v and the outside
weight is the sum of the weights of all v-contexts in H that have the starting symbol as
head of their root.

Definition 8 (inside weights of a hypergraph) Let H = (V,E, µ) be a weighted hy-
pergraph. Then the inside weights of H are defined by

inside(A) =
∑

t∈HP(H,A)

wt(t).

✷

Since the set HP(H,A) is potentially not finite, we may not be able to compute the
inside weights directly. Therefore we define a function inner that calculates the value of
inside recursively.

Definition 9 (recursive system for inside weights) LetH = (V,E, µ) be a weighted
hypergraph. The recursive system for the inside weights of H is

∀v ∈ V : inner(v) =
∑

e∈E
e=(w,σ,v)

µ(e) ·
∏

i∈[|w|−1]

inner(wi).

✷

Lemma 1 (inside = inner) Let H = (V,E, µ) be a weighted hypergraph, v, v′ ∈ V and

s : V → {0, 1}, s(v′) =

{

1 if A = v

0 otherwise,

then inside(v) = inner(v).

Proof

inside(v)

=
∑

t∈HP(v)

wt(t)

=
∑

t∈HP(v)
t=e(t0,...,tn)

µ(e) ·
∏

i∈[n]

wt(ti)

=
∑

e∈E
e=(w,σ,v)

µ(e) ·
∑

t0∈HP(w0)

...
∑

tn∈HP(wn)

∏

i∈[n]

wt(ti)

=
∑

e∈E
e=(w,σ,v)

µ(e) ·
∑

t0∈HP(w0)

...
∑

tn∈HP(wn)





∏

i∈[n−1]

wt(ti)



 · wt(tn)

=
∑

e∈E
e=(w,σ,v)

µ(e) ·





∑

t0∈HP(w0)

...
∑

tn−1∈HP(wn−1)

∏

i∈[n−1]

wt(ti)



 ·
∑

tn∈HP(wn)

wt(tn)

=
∑

e∈E
e=(w,σ,v)

µ(e) ·





∑

t0∈HP(w0)

wt(t0)



 · ... ·





∑

tn∈HP(wn)

wt(tn)
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=
∑

e∈E
e=(w,σ,v)

µ(e) ·
∏

i∈[|w|]

∑

t′∈HP(wi)

wt(t′)

=
∑

e∈E
e=(w,σ,v)

µ(e) ·
∏

i∈[|w|]

inside(wi)

= inner(v)

�

Definition 10 (outside weights of a hypergraph) Let H = (V,E, µ) be a weighted
hypergraph and v ∈ V . Then the v-rooted outside weights of H are defined by

∀v′ ∈ V : outsidev(v′) =
∑

c∈Cv
H
(v′)

wt(c).

✷

We can define a function outer that calculates the value of outside recursively.

Definition 11 (recursive system for the outside weights) Let H = (V,E, µ) be a
weighted hypergraph, v ∈ V and

s : V → {0, 1}, s(v′) =

{

1 if v′ = v

0 otherwise,

then the recursive system for v-rooted outside weights of H is defined by

outerv(v′) = s(v′) +
∑

e∈E
e=(w,σ,v̂)
∃i : wi=A

outerv(v̂) · µ(e) ·
∏

j∈[|w|]
j 6=i

inner(wj)

✷

Lemma 2 (outside = outer) Let H = (V,E, µ) be a weighted hypergraph, v, v′ ∈ V and

s : V → {0, 1}, s(v′) =

{

1 if v′ = v

0 otherwise,

then outsidev(v′) = outerv(v′).

Proof

outsidev(v′)

=
∑

c∈Cv
H
(v′)

wt(c)

=wt(v) · s(v′) +
∑

c∈Cv
H
(v′)

e∈E
c=(e(t0,...,tn))

wt(c)

=s(v′) +
∑

c∈Cv
H
(v′)

e∈E
c=(e(t0,...,tn))

wt(c)

=s(v′) +
∑

c∈Cv
H
(v′)

e∈E
c=(e(t0,...,tn))

µ(e) ·
∏

j∈[n]

wt(tj)
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=s(v′) +
∑

e∈E
e=(w,σ,v)

µ(e) ·
∑

t0∈HP(w0)

...
∑

ti−1∈HP(wi−1)

∑

ti∈Cv
H
(v′)

∑

ti+1∈HP(wi+1)

...
∑

tn∈HP(wn)

∏

j∈[n]

wt(tj)

=s(v′) +
∑

e∈E
e=(w,σ,v)

µ(e) ·
∑

ti∈C
wi
H

(v′)

∑

t0∈HP(w0)

...
∑

ti−1∈HP(wi−1)

∑

ti+1∈HP(wi+1)

...
∑

tn∈HP(wn)

∏

j∈[n]

wt(tj)

=s(v′) +
∑

e∈E
e=(w,σ,v)

µ(e) ·





∑

ti∈C
wi
H

(v′)

wt(ti)









∑

t0∈HP(A0)

wt(t1)



 · ...

·





∑

ti−1∈HP(wi−1)

wt(ti−1)



 ·





∑

ti+1∈HP(wi+1)

wt(ti+1)



 ...





∑

tn∈HP(wn)

wt(tn)





=s(v′) +
∑

e∈E
e=(w,σ,v)

µ(e) ·





∑

ti∈C
wi
H

(v′)

wt(ti)





∏

j∈[n]
i 6=j

∑

t∈HP(wj)

wt(t)

=s(v′) +
∑

e∈E
e=(w,σ,v)

µ(e) ·





∑

ti∈C
wi
H

(v′)

wt(ti)





∏

j∈[n]
i 6=j

inner(wj)

=s(v′) +
∑

e∈E
e=(w,σ,v)
wi=A

µ(e) · outsidewi(v′) ·
∏

j∈[n]
i 6=j

inner(wj)

= outerv(v′)

�

3 Calculating Inside and Outside Weights

In the following, we introduce several methods to obtain the inside and outside weights
of a weighted hypergraph. Due to the fact that the inside weights are hard to obtain
analytically, we will use iterative algorithms to approximate them.

3.1 Fixed-point method

Since inside and outside weights can be defined recursively, it is natural to consider fixed-
point method for their calculation.

3.1.1 Calculating the fixed point

Because of the facts, that we start with the zero vector and that iterations of the recursive
functions inner and outer are monotonically increasing, we will compute the least fixed
point of these functions [EKL08].
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Definition 12 (least fixed point) Let f : A → A be a function and ≤ ⊆ A×A a total
order on A. A value a ∈ A is a fixed point of f , if f(a) = a holds. The value a ∈ A is the
least fixed point of f with respect to ≤ if there is no a′ ∈ A such that a′ is a fixed point of
f and a′ < a. ✷

Definition 13 (fixed-point method) Let f : A → A be a function with (at least) one
fixed point, x0 ∈ A (be a starting value) and c : A × A → B be a predicate (breaking
condition). We define the Kleene sequence 〈x0, x1, ...〉 where ∀i ≥ 1: xi = f(xi−1). The
fixed-point method determines the smallest i such that c(xi, xi+1) holds and returns xi as
result. ✷

3.1.2 Inside weights as fixed-point problem

Given Definition 2.3, we can easily define a function in : RV → R
V such that the least

fixed-point of in is the vector of inside weights. Let V = {A0, ..., Am} and i be the vector
of inside weights. Since i is a fixed point of in we have that in(i) = i. By Definition 2.3
then we have the fixed point function for inside weights.

Definition 14 (fixed-point function of the inside weights) Let H = (V,E, µ) be a
weighted hypergraph with V = {A0, ..., Am}. Then the fixed-point function of the inside
weights is

in : RV → R
V

in(i) =

















∑

e∈E
e=(w,σ,A0)

µ(e) ·
∏

j∈[|w|]

iwj

...
∑

e∈E
e=(w,σ,Am)

µ(e) ·
∏

j∈[|w|]

iwj

















.

We start with the zero vector. Since in only has coefficients greater 0 and we start with
the zero vector, every value in the vector grows with every application of in. Therefore
we calculate in fact the least fixed point.

Example 3 (fixed-point function of the inside weights) Let H be the hypergraph
of Example 1. Then the fixed-point function of its inside weights is

in(i) =









µ(e0) + µ(e4) · iC · iB
µ(e1)

µ(e2) + µ(e5) · iD · iA
µ(e3)









=









0.25 + 0.25 · iC · iB
1.0

0.25 + 0.25 · iD · iA
1.0









.

We can solve the equation analytically to gather the (least) fixed point i

i =
(

1
3 1 1

3 1
)T

.

By applying fixed point method, we also compute the (least) fixed point as shown in
Table 1. We truncate the values after 2 decimals. Due to the fact that i4 = i5, we stop
the iteration ending up with approximately the same (least) fixed point. ✷
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i0 i1 i2 i3 i4 i5
A 0.00 0.25 0.31 0.32 0.33 0.33
B 0.00 1.00 1.00 1.00 1.00 1.00
C 0.00 0.25 0.31 0.32 0.33 0.33
D 0.00 1.00 1.00 1.00 1.00 1.00

Table 1: fixed point method for inside weights on example hypergraph

o0 o1 o2 o3 o4
A 0.00 1.00 1.00 1.06 1.06
B 0.00 0.00 0.08 0.08 0.08
C 0.00 0.00 0.25 0.25 0.26
D 0.00 0.00 0.00 0.02 0.02

Table 2: fixed-point method for outside weights on example hypergraph

3.1.3 Outside weights as fixed-point problem

Definition 15 (fixed-point function of the outside weights) Let H = (V,E, µ) be
a weighted hypergraph with V = {A0, ..., Am}, the starting symbol S and s the function
from Definition 11. Then the fixed-point function of the outside weights is

out : RV → R
V

out(o) =





















s(A0) +
∑

e∈E
e=(w,σ,B)
wi=A0

oB · µ(e) ·
∏

j∈[|w|]
i 6=j

inner(wj)

...
s(Am) +

∑

e∈E
e=(w,σ,B)
wi=Am

oB · µ(e) ·
∏

j∈[|w|]
i 6=j

inner(wj)





















.

Example 4 (fixed-point function of outside weights) For the hypergraph H from
Example 1, the fixed-point function for the outside weights is

out(o) =









1 + oC · µ(e5) · inner(D)
oA · µ(e4) · inner(C)
oA · µ(e4) · inner(B)
oC · µ(e5) · inner(A)









=









1 + 0.25 · oc
1
12 · oA
1
4 · oA
1
12 · oC









By analytically solving the equation we get the (least) fixed point o

o =
(

16
15

4
45

4
15

1
45

)T
.

The fixed-point method computes approximately the same (least) fixed point, shown in
Table 2. We truncated the values after 2 decimals. ✷

3.2 Newton’s Method

Newton’s method converges, compared to fixed-point iteration, faster. In our case, we
have quadratic convergence [EKL08].
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3.2.1 Inside weights as root of a function

We can define a function in′ such that the (least) solution of in′(i) = 0 is the (least)
fixed point of the function in Definition 15. Let V = {A0, ..., Am} be the set of vertices
of H and assume i ∈ R

V to be the fixed point of in, then in(i) = i. We then have that
0 = −i+ in(i). More verbose we get

0 = −







iA0

...
iAm






+

















∑

e∈E
e=(w,σ,A0)

µ(e) ·
∏

j∈[|w|]

iwj

...
∑

e∈E
e=(w,σ,Am)

µ(e) ·
∏

j∈[|w|]

iwj

















=

















−iA0
+

∑

e∈E
e=(w,σ,A0)

µ(e) ·
∏

j∈[|w|]

iwj

...
−iAm

+
∑

e∈E
e=(w,σ,Am)

µ(e) ·
∏

j∈[|w|]

iwj

















.

Definition 16 Let H = (V,E, µ) be a weighted hypergraph, V = {A0, ..., Am}. Then in′

is the function

in′ : RV → R
V

in′(i) =

















−iA0
+

∑

e∈E
e=(w,σ,A0)

µ(e) ·
∏

j∈[|w|]

iwj

...
−iAm

+
∑

e∈E
e=(w,σ,Am)

µ(e) ·
∏

j∈[|w|]

iwj

















.

Example 5 (Inside weights as root of a function) For the hypergraph G in Exam-
ple 1 we get the following function in′:

in′(i) =









−iA + µ(e0) + µ(e4) · iC · iB
−iB + µ(e1)

−iC + µ(e2) + µ(e5) · iD · iA
−iD + µ(e3)









.

✷

3.2.2 Newton’s Method

Newton’s method has instances for a variety of functions. It is especially used in mathe-
matical analysis to get the root of functions in R

R. But since its definition is more general,
we can also use it in our case.

Definition 17 (Newton’s method) Let f : RV → R
V be a function with (at least) one

root, x0 ∈ R
V (be a starting value) and c : RV × R

V → B be a predicate (breaking condi-
tion). We define the sequence 〈x0, x1, ...〉 where xi+1 = xi − (f ′(xi))

−1 · f(xi). Newton’s
method determines the smallest i such that c(xi, xi+1) holds and returns xi as result. ✷

The function, we need to find the root of, has the type f : RV → R
V . The derivation

for such a function is the Jacobian matrix.

Definition 18 (Jacobian matrix) Without loss of generality, let V = {v0, ..., vk} be
the index values, f : RV → R

V a function over real vectors indexed by V with f =

11



k ik in′(ik) Jin′(ik) ik+1

0









0
0
0
0

















0.25
1

0.25
1

















−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

















0.25
1

0.25
1









1









0.25
1

0.25
1

















0.06
0

0.06
0

















−1 0.06 0.25 0
0 −1 0 0

0.25 0 −1 0.06
0 0 0 −1

















0.33
1

0.33
1









2









0.33
1

0.33
1

















0
0
0
0

















−1 0.08 0.25 0
0 −1 0 0

0.25 0 −1 0.08
0 0 0 −1

















0.33
1

0.33
1









Table 3: Newton’s method for inside weights on example hypergraph

(

fv0 . . . fvk
)T

and x =
(

xv0 . . . xvk
)T

∈ R
V . The Jacobian matrix of f in x is

Jf (x) =











dfv0 (x)
dxv0

· · ·
dfv0 (x)
dxvk

...
. . .

...
dfvk (x)

xv0
· · ·

dfvk (x)

xvk











.

✷

Example 6 (Newton’s method) For the function in′ in Example 5 we get the Jacobian
matrix

Jin′(i) =









−1 µ(e4) · iC µ(e4) · iB 0
0 −1 0 0

µ(e5) · iD 0 −1 µ(e5) · iA
0 0 0 −1









.

We us the predicate c : RV ×R
V → B with c(x, x′) = ⊤ ⇐⇒ x ≈ x′ as breaking condition.

The iteration steps of Newton’s method are shown in Table 3. We truncate the shown
values after 2 decimals for better readability. ✷

3.3 Decomposed Newton’s method

The idea of decomposed Newton’s method (DNM) is to decompose the hypergraph into
strongly connected components and then run Newton’s method for every component. The
components must be in topological order. Hence, for every instance of Newton’s method,
only the inside weights for the vertices inside the component are unknown while the weights
of all incoming vertices outside the component have already been calculated.

3.3.1 Decomposing the hypergraph

Generally speaking, a strongly connected component is a set of vertices where every pair of
vertices is mutually reachable. We generalize the definition for directed graphs to weighted
hypergraphs.

12



B A

C D

Figure 3: directed graph constructed from the example hypergraph

Definition 19 (strongly connected components) Let H = (V,E, µ) be a weighted
Σ-hypergraph. Then for every v ∈ V the strongly connected component associated with v
is SCC(H, v) = {v′ ∈ V | v →֒∗H v′ ∧ v′ →֒∗H v}. The strongly connected components of H
are elements of the set SCCs(H) = {SCC(H, v) | v ∈ V }. ✷

Example 7 (strongly connected components of a hypergraph) By Definition 19,
our example hypergraph has the strongly connected components SCCs(H) = {{A,C},
{B}, {D}}. ✷

In order to calculate the SCCs of a hypergraphH, we will use Tarjan’s algorithm [Tar72].
Due to the fact that Tarjan’s algorithm is designed for directed graphs, we construct a
directed graph G such that SCCs(H) = SCCs(G).

Construction 1 (weighted hypergraph to directed graph) Let H = (V,E, µ) be a
weighted Σ-hypergraph. We construct the directed graph G = (V, →֒H).

Example 8 (weighted hypergraph to directed graph) By applying Construction 1
to the hypergraph in Example 1, we get a Graph G = (V,E) with E = {(B,A), (A,C),
(C,A), (D,C)}. A graphical representation is shown in Figure 3. ✷

Theorem 1 Let H = (V,E, µ) be a weighted Σ-hypergraph and G = (V,E′) the directed
graph by construction 1. Then SCCs(H) = SCCs(G).

Proof Given the fact, that →֒H = →֒G, →֒
∗
H = →֒∗G holds. Furthermore SCCs(H) only

depends on V and →֒∗H , and SCCs(G) only depends on V and →֒∗G. Hence SCCs(H) =
SCCs(G). �

Construction 2 (directed acyclic graph of SCCs) Given a graph G = (V,E) and
the set of strongly connected components SCCs(G), we can associate a directed acyclic
graph G′ by constructing G′ = (SCCs(H), E′) where E′ = {(SCC(G, v), SCC(G,w)) | (v,
w) ∈ E, v /∈ SCC(G,w)}.

Since all cyclic paths are removed during Construction 2, the generated G′ is in fact a
directed acyclic graph. Tarjan’s algorithm computes SCCs(G) in a reversed topological
order of G′. Therefore we only need to reverse the calculated sequence of SCCs to get a
topological order.

Example 9 (directed acyclic graph of SCCs) Given the graph G constructed in Ex-
ample 8, Tarjan’s algorithm calculates the strongly connected components SCCs(G) =
{{A,C}, {B}, {D}}. First we recognize, they are in fact equal to the strongly connected
components of the hypergraph H. By applying Construction 2, we get the directed acyclic
graph G′ = (SCCs(G), E′′) with E′′ = {({B}, {A,C}), ({D}, {A,C})}, shown in Figure
4. Hence, a topologically sorted sequence of the strongly connected components of H is
〈{B}, {D}, {A,C}〉. ✷

13



{B} {A,C} {D}

Figure 4: directed acyclic graph by hypergraph

k ik in′{B}(ik) Jin′{B}(ik) ik+1

0
(

0
) (

1
) (

−1
) (

1
)

1
(

1
) (

0
) (

−1
) (

1
)

Table 4: Newton’s method for H{B}

3.3.2 Applying Newton’s method

Let H = (V,E, µ) be the given weighted Σ-hypergraph and S a topologically sorted
sequence of all SCCs of H. We initialize DNM method with an empty variable assignment
i : RV

≥0, i = ∅. Then for every s ∈ S, we intersect H with s leading to Hs.

Definition 20 (intersection of weighted hypergraph and a set of verties) LetH =
(V,E, µ) be a weighted Σ-hypergraph and S ⊆ V . The intersection of H with S is defined
by HS = (V ′, E′, µ′) where E′ = {e ∈ E | head(e) ∈ S}, V ′ = {v ∈ V | ∃e ∈ E′ : v ∈
tail(e) ∨ v = head(e)} and for all e ∈ E′ : µ′(e) = µ(e). ✷

For HS we calculate the function in′ by Definition 16. Then we use the variable as-
signment to substitute the variables that are not in S with values and remove the lines
corresponding to the substituted values from in′. Now we got a system of dimension
|S| × |S| for which we can use standard Newton’s method.

Example 10 (decomposed Newton’s method) By intersecting the example hyper-
graph H with the SCCs from Example 9 〈{B}, {D}, {A,C}〉, we get a sequence of hyper-
graphs 〈H{B}, H{D}, H{A,C}〉. Then we apply Newton’s method to each hypergraph in the
sequence in order.

For the hypergraph H{B} we get

H{B} = ({B}, {e1})

in′{B} =
(

−iB + µ(e1)
)

=
(

1− iB
)

Jin′{B} =
(

−1
)

(Jin′{B})
−1 =

(

−1
)

.

Then by Newton’s method in Table 4

iB = 1.
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k ik in′{D}(ik) Jin′{D}(ik) ik+1

0
(

0
) (

1
) (

−1
) (

1
)

1
(

1
) (

0
) (

−1
) (

1
)

Table 5: Newton’s method for H{D}

k ik in′{A,C}(ik) Jin′{A,C}(ik) ik+1

0

(

0
0

) (

0.25
0.25

) (

−1 0.25
0.25 −1

) (

0.33
0.33

)

1

(

0.33
0.33

) (

0
0

) (

−1 0.25
0.25 −1

) (

0.33
0.33

)

Table 6: Newton’s method for H{B}

For the hypergraph H{D} we get

H{D} = ({B}, {e3})

in′{D} =
(

−iD + µ(e3)
)

=
(

1− iD
)

Jin′{D} =
(

−1
)

(Jin′{D})
−1 =

(

−1
)

.

Then by Newton’s method in Table 5

iD = 1.

For the hypergraph H{A,C} we get

H{A,C} = ({A,B,C,D}, {e0, e2, e4, e5})

in′{A,C} =

(

−iA + µ(e0) + µ(e4) · iC · iB
−iC + µ(e2) + µ(e5) · iD · iA

)

=

(

−iA + 0.25 + 0.25 · iC
−iC + 0.25 + 0.25 · iA

)

Jin′{A,C} =

(

−1 0.25
0.25 −1

)

(Jin′{B})
−1 = −

4

15

(

4 1
1 4

)

.

Then by Newton’s method in Table 6

iA =
1

3
,

iC =
1

3
.

✷
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4 Implementation

The following algorithms give a procedural overview of the approaches made, as well as
the Haskell functions in charge of each step (denoted in square brackets).

4.1 Convergence

The fixed-point method and Newton’s method both require a break condition in the sense
of Definition 15 and Definition 17 in order to select the result. For that purpose we define
the correction ratio which should give us a measure on how much the method improved
the value during its last iteration.

Definition 21 (correction ratio) Let x, x′ ∈ R≥0 be two values. The correction ratio

ε from x to x′ is defined as the value ε(x, x′) = |x′−x|
x . ✷

By Definition 21 every step of the iteration is associated with a correction ratio ε(xi,
xi+1). The methods break the iteration if that ratio drops below a threshold ε0.

1 converged e0 x y = if x ≥ y

2 then (x - y) / x < e0

3 else (y - x) / x < e0

We represent converged e0 by the relation ≈ ⊆ R × R. In order to evaluate the
convergence of vectors, we need to extend ≈ to R

V .

Definition 22 (≈) Let ≈ ⊆ R × R be a relation and x, y ∈ R
V two vectors, then ≈ ⊆

R
V × R

V is a relation where x ≈ y ⇐⇒ ∀v ∈ V : xv ≈ yv. ✷

We then use Data.Foldable.all (converged e0) on two vectors (of the type Data.Map,
which is an instance of Data.Foldable) to determine if we are done iterating.

4.2 Newton’s method

Since Newton’s method computes derivations of the multivariate function, the implemen-
tation computes a representation of that function and stores it as a List of Polynomials.
For the implementation of Newton’s method, we considers three approaches. The first one
implements Newton’s method as it is and reuses a symbolic Jacobian matrix, the second
one calculates an (evaluated) Jacobian matrix in every iteration and the third one reuses
the (evaluated) Jacobian matrix in several consecutive steps.

4.2.1 Approach 1 (symbolic JF )

We calculate a symbolic Jacobian matrix. Then we evaluate and invert it in each step
(Figure 5).

simpleDerive Calculates the symbolic derivation of a polynomial given a variable to
derive by

1 -- | Computes the derivation of a given function

2 simpleDerive

3 :: (Ord v, Num w, Integral i)

4 ⇒ Polynomial v w i

5 → v

6 → Polynomial v w i

7 simpleDerive pol x

8 = let dy = [ (w ∗ (fromIntegral a), list)

16



1. define a starting vector i0 [0-vector]

2. calculate the symbolic Jacobian matrix JF [derive]

3. for k ∈ [1, ..] do

a) evaluate the Jacobian matrix JF k = JF (ik−1) [evalPolyMatrix]

b) invert JF k [inv]

c) evaluate the function Fk = F (ik−1) [evalPolyVec]

d) calculate ik. ik = ik−1 − JF−1k · Fk

e) break if ik and ik−1 are close enough [converged]

4. output the last calculated ik

Figure 5: Newton’s method, approach 1

9 | (w, oldList) ← pol

10 , let a = M.findWithDefault 0 x

11 . M.fromList

12 $ oldList

13 , let list = [ (v, i)

14 | (v, iOld) ← oldList

15 , let i = if (v == x)

16 then iOld - 1

17 else iOld

18 , i > 0

19 ]

20 ]

21 in dy

derive Calculates the symbolic Jacobian matrix given vectors of polynomials and vari-
ables.

1 -- | Computes the Jabobian Matrix of a given Function

2 derive

3 :: (Ord v, Num w, Integral i)

4 ⇒ [Polynomial v w i]

5 → [v]

6 → [[ Polynomial v w i]]

7 derive vec vars

8 = [ list

9 | partialFunction ← vec

10 , let list = [ simpleDerive partialFunction x

11 | x ← vars

12 ]

13 ]

evalPoly Evaluates a polynomial given a variable assignment.

1 -- | Evaluates a ’Polynomial’ by the given ’M.Map’

2 evalPoly

3 :: (Ord v, Num w, Eq w, Integral i)

4 ⇒ M.Map v w

5 → Polynomial v w i

6 → w

7 evalPoly w p

8 = let

9 f k1 []

17



1. define a starting vector i0 [0-vector]

2. for k ∈ [1, ..] do

a) calculate and evaluate the Jacobian matrix JF k [deriveEval]

b) invert JF k [inv]

c) evaluate the function Fk = F (ik−1) [evalPolyVec]

d) calculate ik. ik = ik−1 − JF−1k · Fk

e) break if ik and ik−1 are close enough [converged]

3. output the last calculated ik

Figure 6: Newton’s method, approach 2

10 = k1

11 f k1 ((w1 ,l):xs)

12 = g k1 w1 l xs

13 g k1 k2 [] xs

14 = let k’ = (k1 + k2)

15 in seq k’ (f k’ xs)

16 g k1 k2 ((v,i):ys) xs

17 = let k2’ = (k2 ∗ (w M.! v) ^ i)

18 in seq k2’ (g k1 k2’ ys xs)

19 r = f 0 p

20 in r

evalVec, evalMatrix Extension of evalPoly to vectors and matrices of polynomials.

1 -- | Evaluates a ’List’ of ’Polynomial’s

2 evalPolyVec

3 :: (Ord v, Num w, Eq w, Integral i)

4 ⇒ M.Map v w

5 → [Polynomial v w i]

6 → [w]

7 evalPolyVec w = map $ evalPoly w

8

9 -- | Evaluates a Matrix of ’Polynomial’s

10 evalPolyMatrix

11 :: (Ord v, Num w, Eq w, Integral i)

12 ⇒ M.Map v w

13 → [[ Polynomial v w i]]

14 → [[w]]

15 evalPolyMatrix w = map $ evalPolyVec w

inv Inverts a Matrix using Numeric.LinearAlgebra.Algorithms.inv.

4.2.2 Approach 2 (calculate JF in each iteration)

In each step we calculate the inverted Jacobian matrix from scratch (Figure 6).

deriveEval Calculates and evaluates the Jacobian matrix given a function and variable
assignment.

1 -- | Computes the Jabobian Matrix of a given Function

2 deriveEval

3 :: (Ord v, Num w, Integral i)

18



1. define a starting vector i0 [0-vector]

2. define a step size n [n = 5]

3. for k ∈ [1, ..] do

a) if k mod n ≡ 1
then calculate the inverted Jacobian matrix JF−1k [deriveEval, inv]
else reuse it JF−1k = JF−1k−1

b) evaluate the function Fk = F (ik−1) [evalPolyVec]

c) balculate ik. ik = ik−1 − JF−1k · Fk

d) break if ik and ik−1 are close enough [converged]

4. output the last calculated ik

Figure 7: Newton’s method, approach 3

4 ⇒ M.Map v w

5 → [Polynomial2 v w i]

6 → [v]

7 → [[w]]

8 deriveEval w vec vars

9 = let

10 h k a b = (∗) b . flip (^) a . (M.!) w $ k

11 g x p = if M.notMember x p

12 then 0

13 else ((w M.! x) ^ ((p M.! x) - 1))

14 ∗ (M.foldrWithKey’ h 1 . M.delete x $ p)

15 ∗ (fromIntegral . (M.!) p $ x)

16 i v (x,y) = (∗) x . g v $ y

17 in [ val

18 | partialFunction ← vec

19 , let val = [ L.foldl’ (+) 0

20 . map (i x)

21 $ partialFunction

22 | x ← vars

23 ]

24 ]

This approach has advantages to the previous one for big matrices or small numbers
of iterations. In both cases, the time saved due to reusing the symbolic Jacobian matrix
does not justify the overhead of creating and evaluating it.

4.2.3 Approach 3 (reuse JF for several iterations)

Now we only calculate and invert the Jacobian matrix every n steps. The algorithm saves
time for big matrices (Figure 7). According to my runs and [NS08], n = 5 works. However,
we use Approach 2 for Vanda, because it has a highter performance than Approach 1 and
Approach 3 is not formally correct.

4.3 Decomposed Newton’s Method

As decomposed Newton’s method (DNM) is based on splitting the hypergraph into its
strongly connected components (SCCs), topologically sorting them and then apply regu-
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1. calculate SCCs of hypergraph h. l = sccs(h) ⊆ 22
V

2. sort SCCs topologically. l′ = topSort(l) ⊆ (2V )∗ [topSortedSCCs]

3. set w ∈ R
V
≥0 to ∅

4. for every s ∈ l′ do

a) intersect h and s. hs = intersect(h, s) [intersectHypergraph]

b) run regular Newton’s method on hs considering already calculated weights.
ws = newtonw(hs) [newton]

c) set w := w ∪ ws

5. output w

Figure 8: Decomposed Newton’s method

lar Newton’s method to the hypergraphs consisting of the SCCs in order of the sorting
(Figure 8).

topSortedSCCs Converts the hypergraph to a graph, then calculated its SCCs and sorts
them topologically using Data.Graph

1 -- | Computes a topologically sorted list of SCCs

2 -- of a ’Hypergraph’

3 topSortedSCCs

4 :: (Ord v)

5 ⇒ H.Hypergraph v l w i

6 → [[v]]

7 topSortedSCCs hg

8 = let es = map (λ (a,b) → (a, a, S.toList b))

9 . M.toList

10 . M.map S.fromList

11 . M.fromListWith (++)
12 . map (λ e → (H.eHead e, H.eTail e))

13 . H.edges

14 $ hg

15 sccs = map G.flattenSCC . G.stronglyConnComp $ es

16 in sccs

intersectHypergraph Only keeps edges if the head is in the list

1 -- | Intersect a ’Hypergraph’ with a ’List’ of

2 -- head vertices

3 intersectHypergraph

4 :: (Ord v)

5 ⇒ H.Hypergraph v l w i

6 → [v]

7 → H.Hypergraph v l w i

8 intersectHypergraph hg l

9 = H.hypergraph . L.foldl’ (++) []

10 . map ((M.!) (H.edgesM hg)) $ l

newton Utilizes one of the algorithms described in the previous section.
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Figure 9: iterations by vertices for random hypergraphs, blue: fixed-point iteration, red:
Newton’s method, green: decomposed Newton’s method

5 Results

The three proposed methods to calculate inside and outside weights in weighted hyper-
graphs have been implemented in Haskell as part of the natural language processing tool-
box Vanda, which is being developed at the Chair of Foundations of Programming, Faculty
of Computer Science, TU Dresden. They have been tested on 1000 randomly generated
hypergraphs with up to 4000 vertices, 2 edges per vertex and, since most hypergraphs in
statistical machine translation are binarized, a maximum of 2 tail nodes per edge. The
number of vertices of those hypergraphs is equally distributed in [0, 4000]. We investigated
the number of iterations needed as well as the time needed to compute the weights.
The number of iterations needed for the algorithms to terminate are shown in Figure 9.

For decomposed Newton’s method, we used the arithmetic mean of the iterations of all
instantiated Newton’s methods instead of the total count.
The fixed-point iteration is significantly more scattered than the the other algorithms,

visible even on the used logarithmic scale. With a maximum of 12000 and an average of
about 100 iterations, fixed-point method also needs much more steps to converge. Both
the other clusters are very dense and only need up to 10 (average 8 for Newton’s method
and 2 for decomposed Newton’s method) iterations. Also for more than 1500 vertices,
the average number of iterations needed to compute the weights in any of the algorithms
stops to grow. In the matter of steps, Newton’s method and decomposed Newton’s method
clearly converge much faster than fixed-point method.
In Figure 10, we see the time needed by the algorithms to terminate. All clusters are

dense. Since Newton’s method depends on matrix inversion, which is very expensive, and
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Figure 10: time by vertices for random hypergraphs, blue: fixed-point iteration, red: New-
ton’s method, green: decomposed Newton’s method

even the significantly smaller number of iterations can not compensate for that, Newton’s
method and decomposed Newton’s method needs more time to converge than fixed-point
method. Decomposed Newton’s methods run time additionally depends on the sizes of
the strongly connected components. The average ratio between the run time of fixed-
point method to Newton’s method to decomposed Newton’s method is show in Table 7.
Depending on the number of vertices, for decomposed Newton’s method, the ratio grows
linear, for Newton’s method it grows super linear.
For randomly generated hypergraphs, fixed-point method proofs to be the best of the

three methods. However, for special cases of hypergraphs, e.g. such generated by tools for
statistical machine translation, decomposed Newton’s method may proof more effective
than here.
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number of avg ratio avg ratio
vertices fp to nm fp to dnm

[900, 1100] 1 : 8.9 1 : 2.9

[1900, 2100] 1 : 21.7 1 : 7.0

[2900, 3100] 1 : 29.0 1 : 10.0

[3900, 4000] 1 : 44.2 1 : 13.2

Table 7: average ratio of runtime for fixed-point method, Newton’s method and decom-
posed Newton’s method
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