Calculation of Inside and Outside Weights of Weighted Hypergraphs by Newton's Method

Tobias Denkinger

tobias.denkinger@mailbox.tu-dresden.de

Motivation

- Calculation of the corpus likelihood.
- Inside weight is needed in the E-step of the EM-algorithm
- Normalization, transformation of pCFGs [2]

Motivation

Task

Preliminaries
Hypergraphs
Inside and outside weights

Approximation
Fixed-point iteration
Newton's method
Decomposed Newton's method

Performance

Task

- Calculation of Inside and Outside weights in weighted hypergraphs

Task

- Calculation of Inside and Outside weights in weighted hypergraphs
- by Newton's method

Task

- Calculation of Inside and Outside weights in weighted hypergraphs
- by Newton's method
- embedded in Vanda

Hypergraphs

- weighted Σ-hypergraph $H=(V, E, \mu)$
- vertices V
- edges $E \subseteq V^{*} \times \Sigma \times V$
- weights $\mu: E \rightarrow \mathbb{R}_{\geq 0}$

Hypergraphs

hyperpath tree of edges, connected according to the hypergraph, leaves have a rank of 0

Hypergraphs

hyperpath tree of edges, connected according to the hypergraph, leaves have a rank of 0

Hypergraphs

context tree of edges and one vertex, connected according to the hypergraph, leaves have a rank of 0 , exactly one leave is a vertex

Hypergraphs

context tree of edges and one vertex, connected according to the hypergraph, leaves have a rank of 0 , exactly one leave is a vertex

Inside and outside weights

inside weight for a vertex v : sum of the weights of all hyperpaths in H leading to v

$$
\operatorname{inside}(v)=\sum_{t \in \operatorname{HP}(H, v)} w t(t)
$$

Inside and outside weights

inside weight for a vertex v : sum of the weights of all hyperpaths in H leading to v

$$
\operatorname{inside}(v)=\sum_{t \in \operatorname{HP}(H, v)} w t(t)
$$

outside weight for a vertex v^{\prime} and a target vertex v : sum of the weights of all v-rooted v^{\prime}-contexts in H

$$
\text { outside }^{v}\left(v^{\prime}\right)=\sum_{c \in C^{v}\left(H, v^{\prime}\right)} w t(c)
$$

Fixed-point iteration

- Recursive system

$$
\operatorname{inner}(v)=\sum_{\substack{e \in E \\ e=(w, \sigma, v)}} \mu(e) \cdot \prod_{i \in[|w|]} \operatorname{inner}\left(w_{i}\right)
$$

Fixed-point iteration

- Recursive system

$$
\begin{aligned}
\operatorname{inner}(v) & =\sum_{\substack{e \in E \\
e=(w, \sigma, v)}} \mu(e) \cdot \prod_{i \in[|w|]} \operatorname{inner}\left(w_{i}\right) \\
\text { outer }^{v^{\prime}}(v) & =s(v)+\sum_{\substack{e \in E \\
e=(w, \sigma, \hat{v}) \\
i \in \mathbb{N}: w_{i}=v}} \text { outer }^{v^{\prime}}(\hat{v}) \cdot \mu(e) \cdot \prod_{\substack{j \in[|w|] \\
j \neq i}} \operatorname{inner}\left(w_{j}\right) \\
s(v) & = \begin{cases}1 & \text { if } v=v^{\prime} \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

Newton's method

- inside and outside weights as root

$$
0=-i_{v}+\sum_{\substack{e \in E \\ e=(w, \sigma, v)}} \mu(e) \cdot \prod_{i \in[|w|]} i_{w_{i}}
$$

- uses multivariate Newton's method

Newton's method

- inside and outside weights as root

$$
\begin{aligned}
& 0=-i_{v}+\sum_{\substack{e \in E \\
e=(w, \sigma, v)}} \mu(e) \cdot \prod_{i \in[|w|]} i_{w_{i}} \\
& 0=-o_{v}+s(v)+\sum_{\substack{e \in E \\
e=(w, \sigma, \hat{v}) \\
i \in \mathbb{N}: w_{i}=v}} o_{\hat{v}} \cdot \mu(e) \cdot \prod_{\substack{j \in[|w|] \\
j \neq i}} \operatorname{inner}\left(w_{j}\right)
\end{aligned}
$$

- uses multivariate Newton's method

Univariate Newton's method (1 unknown)

Input a function $f: \mathbb{R} \rightarrow \mathbb{R}$, a starting value $x_{0} \in \mathbb{R}$

Univariate Newton's method (1 unknown)

Input a function $f: \mathbb{R} \rightarrow \mathbb{R}$, a starting value $x_{0} \in \mathbb{R}$
Output a root of f

Univariate Newton's method (1 unknown)

Input a function $f: \mathbb{R} \rightarrow \mathbb{R}$, a starting value $x_{0} \in \mathbb{R}$
Output a root of f
For every $n \in\{0,1, \ldots\}$

Univariate Newton's method (1 unknown)

Input a function $f: \mathbb{R} \rightarrow \mathbb{R}$, a starting value $x_{0} \in \mathbb{R}$
Output a root of f
For every $n \in\{0,1, \ldots\}$

1. Construct a tangent t at x_{n} to f.

Univariate Newton's method (1 unknown)

Input a function $f: \mathbb{R} \rightarrow \mathbb{R}$, a starting value $x_{0} \in \mathbb{R}$
Output a root of f
For every $n \in\{0,1, \ldots\}$

1. Construct a tangent t at x_{n} to f.
2. Calculate the root of t.

Univariate Newton's method (1 unknown)

Input a function $f: \mathbb{R} \rightarrow \mathbb{R}$, a starting value $x_{0} \in \mathbb{R}$
Output a root of f
For every $n \in\{0,1, \ldots\}$

1. Construct a tangent t at x_{n} to f.
2. Calculate the root of t.

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}
$$

Univariate Newton's method (1 unknown)

Input a function $f: \mathbb{R} \rightarrow \mathbb{R}$, a starting value $x_{0} \in \mathbb{R}$
Output a root of f
For every $n \in\{0,1, \ldots\}$

1. Construct a tangent t at x_{n} to f.
2. Calculate the root of t.

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}
$$

3. If $x_{n+1}=x_{n}$, output x_{n}.

Multivariate Newton's method (m unknowns) [1]

Input a function $f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$, a starting value $x_{0} \in \mathbb{R}^{m}$

Multivariate Newton's method (m unknowns) [1]

Input a function $f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$, a starting value $x_{0} \in \mathbb{R}^{m}$ Output a root of f

Multivariate Newton's method (m unknowns) [1]

Input a function $f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$, a starting value $x_{0} \in \mathbb{R}^{m}$
Output a root of f

- Jacobian matrix corresponds to the derivative

Multivariate Newton's method (m unknowns) [1]

Input a function $f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$, a starting value $x_{0} \in \mathbb{R}^{m}$
Output a root of f

- Jacobian matrix corresponds to the derivative
- multiplication with inverse Jacobian matrix replaces division

Multivariate Newton's method (m unknowns) [1]

Input a function $f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$, a starting value $x_{0} \in \mathbb{R}^{m}$
Output a root of f

- Jacobian matrix corresponds to the derivative
- multiplication with inverse Jacobian matrix replaces division

$$
x_{n+1}=x_{n}-\left(J f\left(x_{n}\right)\right)^{-1} \cdot f\left(x_{n}\right)
$$

Inside weights as root of a function

Inside weights as root of a function

Inside weights as root of a function

$$
\begin{array}{r}
{i n^{\prime}(i)_{v}=}=-i_{v}+\sum_{\substack{e \in E \\
e=(w, \sigma, v)}} \mu(e) \cdot \prod_{i \in[|w|]} i_{w_{i}} \\
i n^{\prime}(i)=\left(\begin{array}{c}
-i_{A}+\mu\left(e_{0}\right)+\mu\left(e_{4}\right) \cdot i_{C} \cdot i_{B} \\
-i_{B}+\mu\left(e_{1}\right) \\
-i_{C}+\mu\left(e_{2}\right)+\mu\left(e_{5}\right) \cdot i_{D} \cdot i_{A} \\
-i_{D}+\mu\left(e_{3}\right)
\end{array}\right)
\end{array}
$$

Decomposed Newton's method

Idea Decompose hypergraph into strongly connected components, then apply Newton's method to each component, memorize and reuse already computed inside weights.

Decomposed Newton's method

Idea Decompose hypergraph into strongly connected components, then apply Newton's method to each component, memorize and reuse already computed inside weights.
Steps

Decomposed Newton's method

Idea Decompose hypergraph into strongly connected components, then apply Newton's method to each component, memorize and reuse already computed inside weights.
Steps

1. Find SCCs of the hypergraph.

Decomposed Newton's method

Idea Decompose hypergraph into strongly connected components, then apply Newton's method to each component, memorize and reuse already computed inside weights.
Steps

1. Find SCCs of the hypergraph.
2. Sort them topologically.

Decomposed Newton's method

Idea Decompose hypergraph into strongly connected components, then apply Newton's method to each component, memorize and reuse already computed inside weights.
Steps

1. Find SCCs of the hypergraph.
2. Sort them topologically.
3. Intersect the hypergraph with the SCCs.

Decomposed Newton's method

Idea Decompose hypergraph into strongly connected components, then apply Newton's method to each component, memorize and reuse already computed inside weights.
Steps

1. Find SCCs of the hypergraph.
2. Sort them topologically.
3. Intersect the hypergraph with the SCCs.
4. (Compute polynomials.)

Decomposed Newton's method

Idea Decompose hypergraph into strongly connected components, then apply Newton's method to each component, memorize and reuse already computed inside weights.
Steps

1. Find SCCs of the hypergraph.
2. Sort them topologically.
3. Intersect the hypergraph with the SCCs.
4. (Compute polynomials.)
5. Substitute known inside weights in the polynomials with values.

Decomposed Newton's method

Idea Decompose hypergraph into strongly connected components, then apply Newton's method to each component, memorize and reuse already computed inside weights.
Steps

1. Find SCCs of the hypergraph.
2. Sort them topologically.
3. Intersect the hypergraph with the SCCs.
4. (Compute polynomials.)
5. Substitute known inside weights in the polynomials with values.
6. (Apply Newton's method.)

Decomposed Newton's method

1. Find SCCs of the hypergraph H.

Decomposed Newton's method

1. Find SCCs of the hypergraph H.

- Construct a graph G s.t. $\operatorname{SCCs}(G)=\operatorname{SCCs}(H)$

Decomposed Newton's method

1. Find SCCs of the hypergraph H.

- Construct a graph G s.t. $\operatorname{SCCs}(G)=\operatorname{SCCs}(H)$

Decomposed Newton's method

1. Find SCCs of the hypergraph H.

- Construct a graph G s.t. $\operatorname{SCCs}(G)=\operatorname{SCCs}(H)$

- Collapse the SCCs [3]

Decomposed Newton's method

1. Find SCCs of the hypergraph H.

- Construct a graph G s.t. $\operatorname{SCCs}(G)=\operatorname{SCCs}(H)$

- Collapse the SCCs [3]

Decomposed Newton's method

2. Sort the SCCs topologically.

Decomposed Newton's method

2. Sort the SCCs topologically.

Decomposed Newton's method

2. Sort the SCCs topologically.

$$
\mathrm{SCCs}=\langle\{B\},\{D\},\{A, C\}\rangle
$$

Decomposed Newton's method

2. Sort the SCCs topologically. SCCs $=\langle\{B\},\{D\},\{A, C\}\rangle$
3. Intersect H with SCCs.

Decomposed Newton's method

2. Sort the SCCs topologically.

$$
\mathrm{SCCs}=\langle\{B\},\{D\},\{A, C\}\rangle
$$

3. Intersect H with SCCs.

$$
H_{\{B\}}: e_{1} \longrightarrow(B
$$

Decomposed Newton's method

2. Sort the SCCs topologically.

$$
\mathrm{SCCs}=\langle\{B\},\{D\},\{A, C\}\rangle
$$

3. Intersect H with SCCs.

Decomposed Newton's method

2. Sort the SCCs topologically.

$$
\mathrm{SCCs}=\langle\{B\},\{D\},\{A, C\}\rangle
$$

3. Intersect H with SCCs.

Decomposed Newton's method

4. (Compute polynomials.)
5. Substitute known inside weights in the polynomials with values.
6. (Apply Newton's method.)

For the hypergraph $H_{\{B\}}$ we get

$$
\begin{aligned}
i n_{\{B\}}^{\prime} & =\left(-i_{B}+\mu\left(e_{1}\right)\right) \\
& =\left(1-i_{B}\right) \\
\left(\operatorname{Jin}_{\{B\}}^{\prime}\right)^{-1} & =(-1) .
\end{aligned}
$$

Then by Newton's method in:

$$
i_{B}=1
$$

Decomposed Newton's method

4. (Compute polynomials.)
5. Substitute known inside weights in the polynomials with values.
6. (Apply Newton's method.)

For the hypergraph $H_{\{D\}}$ we get

$$
\begin{aligned}
i n_{\{D\}}^{\prime} & =\left(-i_{D}+\mu\left(e_{3}\right)\right) \\
& =\left(1-i_{D}\right) \\
\left(\operatorname{Jin}_{\{D\}}^{\prime}\right)^{-1} & =(-1) .
\end{aligned}
$$

Then by Newton's method:

$$
i_{D}=1
$$

Decomposed Newton's method

4. (Compute polynomials.)
5. Substitute known inside weights in the polynomials with values.
6. (Apply Newton's method.)

For the hypergraph $H_{\{A, C\}}$ we get

$$
\begin{aligned}
\operatorname{in}_{\{A, C\}}^{\prime} & =\binom{-i_{A}+\mu\left(e_{0}\right)+\mu\left(e_{4}\right) \cdot i_{C} \cdot i_{B}}{-i_{C}+\mu\left(e_{2}\right)+\mu\left(e_{5}\right) \cdot i_{D} \cdot i_{A}} \\
& =\binom{-i_{A}+0.25+0.25 \cdot i_{C}}{-i_{C}+0.25+0.25 \cdot i_{A}} \\
\left(\operatorname{Jin}_{\{B\}}^{\prime}\right)^{-1} & =-\frac{4}{15}\left(\begin{array}{ll}
4 & 1 \\
1 & 4
\end{array}\right) .
\end{aligned}
$$

Then by Newton's method:

$$
i_{A}=\frac{1}{3}, i_{C}=\frac{1}{3} .
$$

Performance

Performance

Decomposed fixed-point method

The End

Thank you for your attention!

References

围 Javier Esparza, Stefan Kiefer, and Michael Luttenberger, Convergence thresholds of Newton's method for monotone polynomial equations, Proceedings of the 25th International Symposium on Theoretical Aspects of Computer Science (STACS) (Bordeaux, France) (Pascal Weil and Susanne Albers, eds.), 2008, http://arxiv.org/abs/0802.2856, pp. 289-300.
(Mark-Jan Nederhof and Giorgio Satta, Computing partition functions of pcfgs, Research on Language and Computation 6 (2008), 139-162, 10.1007/s11168-008-9052-8, http://dx.doi.org/10.1007/s11168-008-9052-8.

Robert Tarjan, Depth-first search and linear graph algorithms, SIAM Journal on Computing 1 (1972), no. 2, 146-160, http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=45

