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Motivation

◮ Calculation of the corpus likelihood.

◮ Inside weight is needed in the E-step of the EM-algorithm

◮ Normalization, transformation of pCFGs [2]
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Task

◮ Calculation of Inside and Outside weights in weighted
hypergraphs
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Hypergraphs

e1 α B A α e0

e4 σ

σ e5

e2 β C D β e3

◮ weighted Σ-hypergraph H = (V ,E , µ)

◮ vertices V

◮ edges E ⊆ V ∗ × Σ× V

◮ weights µ : E → R≥0
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Hypergraphs

e1 α B A α e0

e4 σ

σ e5

e2 β C D β e3

context tree of edges and one vertex, connected according
to the hypergraph, leaves have a rank of 0, exactly
one leave is a vertex
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Hypergraphs

e1 α B A α e0

e4 σ

σ e5

e2 β C D β e3

context tree of edges and one vertex, connected according
to the hypergraph, leaves have a rank of 0, exactly
one leave is a vertex

e4

e1 C

∈ CA(H,C ), e4

e1 e5

e3 A

∈ CA(H,A), e4

e1 e5

D e0

∈ CA(H,D).
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Inside and outside weights

inside weight for a vertex v : sum of the weights of all hyperpaths
in H leading to v

inside(v) =
∑

t∈HP(H,v)

wt(t)
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Inside and outside weights

inside weight for a vertex v : sum of the weights of all hyperpaths
in H leading to v

inside(v) =
∑

t∈HP(H,v)

wt(t)

outside weight for a vertex v ′ and a target vertex v : sum of the
weights of all v -rooted v ′-contexts in H

outsidev (v ′) =
∑

c∈Cv (H,v ′)

wt(c)
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Fixed-point iteration

◮ Recursive system

inner(v) =
∑

e∈E
e=(w ,σ,v)

µ(e) ·
∏

i∈[|w |]

inner(wi )
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Fixed-point iteration

◮ Recursive system

inner(v) =
∑

e∈E
e=(w ,σ,v)

µ(e) ·
∏

i∈[|w |]

inner(wi )

outerv
′

(v) = s(v) +
∑

e∈E
e=(w ,σ,v̂)
i∈N : wi=v

outerv
′

(v̂) · µ(e) ·
∏

j∈[|w |]
j 6=i

inner(wj)

s(v) =

{

1 if v = v ′

0 otherwise
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Newton’s method

◮ inside and outside weights as root

0 = −iv +
∑

e∈E
e=(w ,σ,v)

µ(e) ·
∏

i∈[|w |]

iwi

◮ uses multivariate Newton’s method
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Newton’s method

◮ inside and outside weights as root

0 = −iv +
∑

e∈E
e=(w ,σ,v)

µ(e) ·
∏

i∈[|w |]

iwi

0 = −ov + s(v) +
∑

e∈E
e=(w ,σ,v̂)
i∈N : wi=v

ov̂ · µ(e) ·
∏

j∈[|w |]
j 6=i

inner(wj)

◮ uses multivariate Newton’s method
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Univariate Newton’s method (1 unknown)

Input a function f : R → R, a starting value x0 ∈ R
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Univariate Newton’s method (1 unknown)

Input a function f : R → R, a starting value x0 ∈ R

Output a root of f

For every n ∈ {0, 1, ...}

1. Construct a tangent t at xn to f .
2. Calculate the root of t.

xn+1 = xn −
f (xn)

f ′(xn)

3. If xn+1 = xn, output xn.
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Multivariate Newton’s method (m unknowns) [1]

Input a function f : Rm → R
m, a starting value x0 ∈ R

m

10 / 19



Multivariate Newton’s method (m unknowns) [1]

Input a function f : Rm → R
m, a starting value x0 ∈ R

m

Output a root of f

10 / 19



Multivariate Newton’s method (m unknowns) [1]

Input a function f : Rm → R
m, a starting value x0 ∈ R

m

Output a root of f

◮ Jacobian matrix corresponds to the derivative

10 / 19



Multivariate Newton’s method (m unknowns) [1]

Input a function f : Rm → R
m, a starting value x0 ∈ R

m

Output a root of f

◮ Jacobian matrix corresponds to the derivative

◮ multiplication with inverse Jacobian matrix replaces division

10 / 19



Multivariate Newton’s method (m unknowns) [1]

Input a function f : Rm → R
m, a starting value x0 ∈ R

m

Output a root of f

◮ Jacobian matrix corresponds to the derivative

◮ multiplication with inverse Jacobian matrix replaces division

xn+1 = xn − (Jf (xn))
−1 · f (xn)
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Inside weights as root of a function

e1 α B A α e0

e4 σ

σ e5

e2 β C D β e3
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Inside weights as root of a function

e1 α B A α e0

e4 σ

σ e5

e2 β C D β e3

in′(i)v = −iv +
∑

e∈E
e=(w ,σ,v)

µ(e) ·
∏

i∈[|w |]

iwi



Inside weights as root of a function

e1 α B A α e0

e4 σ

σ e5

e2 β C D β e3

in′(i)v = −iv +
∑

e∈E
e=(w ,σ,v)

µ(e) ·
∏

i∈[|w |]

iwi

in′(i) =









−iA + µ(e0) + µ(e4) · iC · iB
−iB + µ(e1)

−iC + µ(e2) + µ(e5) · iD · iA
−iD + µ(e3)








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Decomposed Newton’s method

Idea Decompose hypergraph into strongly connected

components, then apply Newton’s method to each
component, memorize and reuse already computed
inside weights.
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Idea Decompose hypergraph into strongly connected

components, then apply Newton’s method to each
component, memorize and reuse already computed
inside weights.

Steps

1. Find SCCs of the hypergraph.
2. Sort them topologically.
3. Intersect the hypergraph with the SCCs.
4. (Compute polynomials.)
5. Substitute known inside weights in the

polynomials with values.
6. (Apply Newton’s method.)
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Decomposed Newton’s method

1. Find SCCs of the hypergraph H.
◮ Construct a graph G s.t. SCCs(G ) = SCCs(H)

B A

C D

◮ Collapse the SCCs [3]

{B} {A,C} {D}
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Decomposed Newton’s method

2. Sort the SCCs topologically.
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Decomposed Newton’s method
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Decomposed Newton’s method

2. Sort the SCCs topologically.
SCCs = 〈{B}, {D}, {A,C}〉

3. Intersect H with SCCs.

H{B} : e1 α B

H{D} : D β e3

H{A,C} :

B A α e0

e4 σ

σ e5

e2 β C D
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Decomposed Newton’s method

4. (Compute polynomials.)

5. Substitute known inside weights in the polynomials with
values.

6. (Apply Newton’s method.)

For the hypergraph H{B} we get

in′{B} =
(

−iB + µ(e1)
)

=
(

1− iB
)

(Jin′{B})
−1 =

(

−1
)

.

Then by Newton’s method in:

iB = 1.
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Decomposed Newton’s method

4. (Compute polynomials.)

5. Substitute known inside weights in the polynomials with
values.

6. (Apply Newton’s method.)

For the hypergraph H{D} we get

in′{D} =
(

−iD + µ(e3)
)

=
(

1− iD
)

(Jin′{D})
−1 =

(

−1
)

.

Then by Newton’s method:
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Decomposed Newton’s method
4. (Compute polynomials.)
5. Substitute known inside weights in the polynomials with

values.
6. (Apply Newton’s method.)

For the hypergraph H{A,C} we get

in′{A,C} =

(

−iA + µ(e0) + µ(e4) · iC · iB
−iC + µ(e2) + µ(e5) · iD · iA

)

=

(

−iA + 0.25 + 0.25 · iC
−iC + 0.25 + 0.25 · iA

)

(Jin′{B})
−1 = −

4

15

(

4 1
1 4

)

.

Then by Newton’s method:

iA =
1

3
, iC =

1

3
.
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Decomposed fixed-point method
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The End

Thank you for your attention!
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