
Calculation of Inside and Outside Weights of
Weighted Hypergraphs by Newton’s Method

Tobias Denkinger
tobias.denkinger@mailbox.tu-dresden.de

1 / 19

Motivation

◮ Calculation of the corpus likelihood.

◮ Inside weight is needed in the E-step of the EM-algorithm

◮ Normalization, transformation of pCFGs [2]

2 / 19

Motivation

Task

Preliminaries
Hypergraphs
Inside and outside weights

Approximation
Fixed-point iteration
Newton’s method
Decomposed Newton’s method

Performance

3 / 19

Task

◮ Calculation of Inside and Outside weights in weighted
hypergraphs

4 / 19

Task

◮ Calculation of Inside and Outside weights in weighted
hypergraphs

◮ by Newton’s method

4 / 19

Task

◮ Calculation of Inside and Outside weights in weighted
hypergraphs

◮ by Newton’s method

◮ embedded in Vanda

4 / 19

Hypergraphs

e1 α B A α e0

e4 σ

σ e5

e2 β C D β e3

◮ weighted Σ-hypergraph H = (V ,E , µ)

◮ vertices V

◮ edges E ⊆ V ∗ × Σ× V

◮ weights µ : E → R≥0

5 / 19

Hypergraphs

e1 α B A α e0

e4 σ

σ e5

e2 β C D β e3

hyperpath tree of edges, connected according to the
hypergraph, leaves have a rank of 0

5 / 19

Hypergraphs

e1 α B A α e0

e4 σ

σ e5

e2 β C D β e3

hyperpath tree of edges, connected according to the
hypergraph, leaves have a rank of 0

e4

e1 e2

, e4

e1 e5

e3 e0

, e4

e1 e5

e3 e4

e1 e2

∈ HP(H,A).

5 / 19

Hypergraphs

e1 α B A α e0

e4 σ

σ e5

e2 β C D β e3

context tree of edges and one vertex, connected according
to the hypergraph, leaves have a rank of 0, exactly
one leave is a vertex

5 / 19

Hypergraphs

e1 α B A α e0

e4 σ

σ e5

e2 β C D β e3

context tree of edges and one vertex, connected according
to the hypergraph, leaves have a rank of 0, exactly
one leave is a vertex

e4

e1 C

∈ CA(H,C), e4

e1 e5

e3 A

∈ CA(H,A), e4

e1 e5

D e0

∈ CA(H,D).

5 / 19

Inside and outside weights

inside weight for a vertex v : sum of the weights of all hyperpaths
in H leading to v

inside(v) =
∑

t∈HP(H,v)

wt(t)

6 / 19

Inside and outside weights

inside weight for a vertex v : sum of the weights of all hyperpaths
in H leading to v

inside(v) =
∑

t∈HP(H,v)

wt(t)

outside weight for a vertex v ′ and a target vertex v : sum of the
weights of all v -rooted v ′-contexts in H

outsidev (v ′) =
∑

c∈Cv (H,v ′)

wt(c)

6 / 19

Fixed-point iteration

◮ Recursive system

inner(v) =
∑

e∈E
e=(w ,σ,v)

µ(e) ·
∏

i∈[|w |]

inner(wi)

7 / 19

Fixed-point iteration

◮ Recursive system

inner(v) =
∑

e∈E
e=(w ,σ,v)

µ(e) ·
∏

i∈[|w |]

inner(wi)

outerv
′

(v) = s(v) +
∑

e∈E
e=(w ,σ,v̂)
i∈N : wi=v

outerv
′

(v̂) · µ(e) ·
∏

j∈[|w |]
j 6=i

inner(wj)

s(v) =

{

1 if v = v ′

0 otherwise

7 / 19

Newton’s method

◮ inside and outside weights as root

0 = −iv +
∑

e∈E
e=(w ,σ,v)

µ(e) ·
∏

i∈[|w |]

iwi

◮ uses multivariate Newton’s method

8 / 19

Newton’s method

◮ inside and outside weights as root

0 = −iv +
∑

e∈E
e=(w ,σ,v)

µ(e) ·
∏

i∈[|w |]

iwi

0 = −ov + s(v) +
∑

e∈E
e=(w ,σ,v̂)
i∈N : wi=v

ov̂ · µ(e) ·
∏

j∈[|w |]
j 6=i

inner(wj)

◮ uses multivariate Newton’s method

8 / 19

Univariate Newton’s method (1 unknown)

Input a function f : R → R, a starting value x0 ∈ R

9 / 19

Univariate Newton’s method (1 unknown)

Input a function f : R → R, a starting value x0 ∈ R

Output a root of f

9 / 19

Univariate Newton’s method (1 unknown)

Input a function f : R → R, a starting value x0 ∈ R

Output a root of f

For every n ∈ {0, 1, ...}

9 / 19

Univariate Newton’s method (1 unknown)

Input a function f : R → R, a starting value x0 ∈ R

Output a root of f

For every n ∈ {0, 1, ...}

1. Construct a tangent t at xn to f .

9 / 19

Univariate Newton’s method (1 unknown)

Input a function f : R → R, a starting value x0 ∈ R

Output a root of f

For every n ∈ {0, 1, ...}

1. Construct a tangent t at xn to f .
2. Calculate the root of t.

9 / 19

Univariate Newton’s method (1 unknown)

Input a function f : R → R, a starting value x0 ∈ R

Output a root of f

For every n ∈ {0, 1, ...}

1. Construct a tangent t at xn to f .
2. Calculate the root of t.

xn+1 = xn −
f (xn)

f ′(xn)

9 / 19

Univariate Newton’s method (1 unknown)

Input a function f : R → R, a starting value x0 ∈ R

Output a root of f

For every n ∈ {0, 1, ...}

1. Construct a tangent t at xn to f .
2. Calculate the root of t.

xn+1 = xn −
f (xn)

f ′(xn)

3. If xn+1 = xn, output xn.

9 / 19

Multivariate Newton’s method (m unknowns) [1]

Input a function f : Rm → R
m, a starting value x0 ∈ R

m

10 / 19

Multivariate Newton’s method (m unknowns) [1]

Input a function f : Rm → R
m, a starting value x0 ∈ R

m

Output a root of f

10 / 19

Multivariate Newton’s method (m unknowns) [1]

Input a function f : Rm → R
m, a starting value x0 ∈ R

m

Output a root of f

◮ Jacobian matrix corresponds to the derivative

10 / 19

Multivariate Newton’s method (m unknowns) [1]

Input a function f : Rm → R
m, a starting value x0 ∈ R

m

Output a root of f

◮ Jacobian matrix corresponds to the derivative

◮ multiplication with inverse Jacobian matrix replaces division

10 / 19

Multivariate Newton’s method (m unknowns) [1]

Input a function f : Rm → R
m, a starting value x0 ∈ R

m

Output a root of f

◮ Jacobian matrix corresponds to the derivative

◮ multiplication with inverse Jacobian matrix replaces division

xn+1 = xn − (Jf (xn))
−1 · f (xn)

10 / 19

Inside weights as root of a function

e1 α B A α e0

e4 σ

σ e5

e2 β C D β e3

11 / 19

Inside weights as root of a function

e1 α B A α e0

e4 σ

σ e5

e2 β C D β e3

in′(i)v = −iv +
∑

e∈E
e=(w ,σ,v)

µ(e) ·
∏

i∈[|w |]

iwi

Inside weights as root of a function

e1 α B A α e0

e4 σ

σ e5

e2 β C D β e3

in′(i)v = −iv +
∑

e∈E
e=(w ,σ,v)

µ(e) ·
∏

i∈[|w |]

iwi

in′(i) =









−iA + µ(e0) + µ(e4) · iC · iB
−iB + µ(e1)

−iC + µ(e2) + µ(e5) · iD · iA
−iD + µ(e3)









11 / 19

Decomposed Newton’s method

Idea Decompose hypergraph into strongly connected

components, then apply Newton’s method to each
component, memorize and reuse already computed
inside weights.

12 / 19

Decomposed Newton’s method

Idea Decompose hypergraph into strongly connected

components, then apply Newton’s method to each
component, memorize and reuse already computed
inside weights.

Steps

12 / 19

Decomposed Newton’s method

Idea Decompose hypergraph into strongly connected

components, then apply Newton’s method to each
component, memorize and reuse already computed
inside weights.

Steps

1. Find SCCs of the hypergraph.

12 / 19

Decomposed Newton’s method

Idea Decompose hypergraph into strongly connected

components, then apply Newton’s method to each
component, memorize and reuse already computed
inside weights.

Steps

1. Find SCCs of the hypergraph.
2. Sort them topologically.

12 / 19

Decomposed Newton’s method

Idea Decompose hypergraph into strongly connected

components, then apply Newton’s method to each
component, memorize and reuse already computed
inside weights.

Steps

1. Find SCCs of the hypergraph.
2. Sort them topologically.
3. Intersect the hypergraph with the SCCs.

12 / 19

Decomposed Newton’s method

Idea Decompose hypergraph into strongly connected

components, then apply Newton’s method to each
component, memorize and reuse already computed
inside weights.

Steps

1. Find SCCs of the hypergraph.
2. Sort them topologically.
3. Intersect the hypergraph with the SCCs.
4. (Compute polynomials.)

12 / 19

Decomposed Newton’s method

Idea Decompose hypergraph into strongly connected

components, then apply Newton’s method to each
component, memorize and reuse already computed
inside weights.

Steps

1. Find SCCs of the hypergraph.
2. Sort them topologically.
3. Intersect the hypergraph with the SCCs.
4. (Compute polynomials.)
5. Substitute known inside weights in the

polynomials with values.

12 / 19

Decomposed Newton’s method

Idea Decompose hypergraph into strongly connected

components, then apply Newton’s method to each
component, memorize and reuse already computed
inside weights.

Steps

1. Find SCCs of the hypergraph.
2. Sort them topologically.
3. Intersect the hypergraph with the SCCs.
4. (Compute polynomials.)
5. Substitute known inside weights in the

polynomials with values.
6. (Apply Newton’s method.)

12 / 19

Decomposed Newton’s method

1. Find SCCs of the hypergraph H.

13 / 19

Decomposed Newton’s method

1. Find SCCs of the hypergraph H.
◮ Construct a graph G s.t. SCCs(G) = SCCs(H)

13 / 19

Decomposed Newton’s method

1. Find SCCs of the hypergraph H.
◮ Construct a graph G s.t. SCCs(G) = SCCs(H)

B A

C D

13 / 19

Decomposed Newton’s method

1. Find SCCs of the hypergraph H.
◮ Construct a graph G s.t. SCCs(G) = SCCs(H)

B A

C D

◮ Collapse the SCCs [3]

13 / 19

Decomposed Newton’s method

1. Find SCCs of the hypergraph H.
◮ Construct a graph G s.t. SCCs(G) = SCCs(H)

B A

C D

◮ Collapse the SCCs [3]

{B} {A,C} {D}

13 / 19

Decomposed Newton’s method

2. Sort the SCCs topologically.

14 / 19

Decomposed Newton’s method

2. Sort the SCCs topologically.

{B} {A,C} {D}

14 / 19

Decomposed Newton’s method

2. Sort the SCCs topologically.
SCCs = 〈{B}, {D}, {A,C}〉

{B} {A,C} {D}

14 / 19

Decomposed Newton’s method

2. Sort the SCCs topologically.
SCCs = 〈{B}, {D}, {A,C}〉

3. Intersect H with SCCs.

14 / 19

Decomposed Newton’s method

2. Sort the SCCs topologically.
SCCs = 〈{B}, {D}, {A,C}〉

3. Intersect H with SCCs.

H{B} : e1 α B

14 / 19

Decomposed Newton’s method

2. Sort the SCCs topologically.
SCCs = 〈{B}, {D}, {A,C}〉

3. Intersect H with SCCs.

H{B} : e1 α B

H{D} : D β e3

14 / 19

Decomposed Newton’s method

2. Sort the SCCs topologically.
SCCs = 〈{B}, {D}, {A,C}〉

3. Intersect H with SCCs.

H{B} : e1 α B

H{D} : D β e3

H{A,C} :

B A α e0

e4 σ

σ e5

e2 β C D

14 / 19

Decomposed Newton’s method

4. (Compute polynomials.)

5. Substitute known inside weights in the polynomials with
values.

6. (Apply Newton’s method.)

For the hypergraph H{B} we get

in′{B} =
(

−iB + µ(e1)
)

=
(

1− iB
)

(Jin′{B})
−1 =

(

−1
)

.

Then by Newton’s method in:

iB = 1.

15 / 19

Decomposed Newton’s method

4. (Compute polynomials.)

5. Substitute known inside weights in the polynomials with
values.

6. (Apply Newton’s method.)

For the hypergraph H{D} we get

in′{D} =
(

−iD + µ(e3)
)

=
(

1− iD
)

(Jin′{D})
−1 =

(

−1
)

.

Then by Newton’s method:

iD = 1.

15 / 19

Decomposed Newton’s method
4. (Compute polynomials.)
5. Substitute known inside weights in the polynomials with

values.
6. (Apply Newton’s method.)

For the hypergraph H{A,C} we get

in′{A,C} =

(

−iA + µ(e0) + µ(e4) · iC · iB
−iC + µ(e2) + µ(e5) · iD · iA

)

=

(

−iA + 0.25 + 0.25 · iC
−iC + 0.25 + 0.25 · iA

)

(Jin′{B})
−1 = −

4

15

(

4 1
1 4

)

.

Then by Newton’s method:

iA =
1

3
, iC =

1

3
.

15 / 19

Performance

 1

 10

 100

 1000

 10000

 100000

 0 500 1000 1500 2000 2500 3000 3500 4000

ite
ra

tio
ns

vertices

fp
nm

dnm

16 / 19

Performance

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0 500 1000 1500 2000 2500 3000 3500 4000

tim
e/

s

vertices

fp
nm

dnm

16 / 19

Decomposed fixed-point method

 0

 0.5

 1

 1.5

 2

 0 100 200 300 400 500 600 700 800

tim
e/

s

vertices

fp
dfp

17 / 19

The End

Thank you for your attention!

18 / 19

References

Javier Esparza, Stefan Kiefer, and Michael Luttenberger,
Convergence thresholds of Newton’s method for monotone

polynomial equations, Proceedings of the 25th International
Symposium on Theoretical Aspects of Computer Science
(STACS) (Bordeaux, France) (Pascal Weil and Susanne
Albers, eds.), 2008, http://arxiv.org/abs/0802.2856,
pp. 289–300.

Mark-Jan Nederhof and Giorgio Satta, Computing partition

functions of pcfgs, Research on Language and Computation 6

(2008), 139–162, 10.1007/s11168-008-9052-8,
http://dx.doi.org/10.1007/s11168-008-9052-8.

Robert Tarjan, Depth-first search and linear graph algorithms,
SIAM Journal on Computing 1 (1972), no. 2, 146–160,
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4569669

19 / 19

http://arxiv.org/abs/0802.2856
http://dx.doi.org/10.1007/s11168-008-9052-8
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4569669

	Motivation
	Task
	Preliminaries
	Hypergraphs
	Inside and outside weights

	Approximation
	Fixed-point iteration
	Newton's method
	Decomposed Newton's method

	Performance

