Approximation of weighted automata with storage

Tobias Denkinger tobias.denkinger@tu-dresden.de

Institute of Theoretical Computer Science Faculty of Computer Science Technische Universität Dresden

GandALF, Rome, 2017-09-20

- regular grammars
- context-free grammars
- head grammars¹
- multiple context-free grammars²

¹or yields of tree adjoining grammars

²or linear context-free rewriting systems

parsing complexities:

regular grammars

 $\mathcal{O}(n)$

 $\mathcal{O}(n^3)$

context-free grammars (binarised)

 $\mathcal{O}(n^6)$

head grammars¹

- $\mathcal{O}(n^{3k})$
- multiple context-free grammars² (binarised, fan-out *k*)

¹or yields of tree adjoining grammars ²or linear context-free rewriting systems

parsing complexities:

regular grammars

 $\mathcal{O}(n)$

 $\mathcal{O}(n^3)$

• context-free grammars (binarised)

 $\mathcal{O}(n^6)$

- head grammars¹
- ullet multiple context-free grammars (binarised, fan-out ${\it k}$) ${\it O}(n^{3k})$

problems:

high parsing complexities

¹or yields of tree adjoining grammars

²or linear context-free rewriting systems

parsing complexities:

regular grammars

 $\mathcal{O}(n)$

• context-free grammars (binarised)

 $\mathcal{O}(n^3)$

head grammars¹

- $\mathcal{O}(n^6)$
- multiple context-free grammars (binarised, fan-out k) $\mathcal{O}(n^{3k})$

problems:

high parsing complexities

T. Denkinger: Approximation of weighted automata with storage

 \rightarrow use approximation

¹or yields of tree adjoining grammars

²or linear context-free rewriting systems

parsing complexities:

regular grammars

 $\mathcal{O}(n)$

 $\mathcal{O}(n^3)$

• context-free grammars (binarised)

 $\mathcal{O}(n^6)$

- head grammars¹
- $\bullet \ \ {\rm multiple\ context-free\ grammars^2\ (binarised,\ fan-out\ \it{k})} \quad \ \mathcal{O}(n^{3k})$

problems:

high parsing complexities

 \rightarrow use approximation

natural languages are ambiguous

¹or yields of tree adjoining grammars ²or linear context-free rewriting systems

T. Denkinger: Approximation of weighted automata with storage

parsing complexities:

- regular grammars
- context-free grammars (binarised)
- ullet head grammars $\mathcal{O}(n^6)$
- ullet multiple context-free grammars (binarised, fan-out k) $\mathcal{O}(n^{3k})$

problems:

high parsing complexities

- \rightarrow use approximation
- natural languages are ambiguous
- → use *weights* (semirings)

 $\mathcal{O}(n)$

 $\mathcal{O}(n^3)$

¹or yields of tree adjoining grammars

²or linear context-free rewriting systems

T. Denkinger: Approximation of weighted automata with storage

• multiple context-free grammars² (binarised, fan-out *k*)

parsing complexities:

- regular grammars
- context-free grammars (binarised)
- head grammars¹

- problems:
- high parsing complexities
- natural languages are ambiguous
- lots of different models

 \rightarrow use approximation

 $\mathcal{O}(n)$

 $\mathcal{O}(n^3)$

 $\mathcal{O}(n^6)$

 $\mathcal{O}(n^{3k})$

- \rightarrow use weights (semirings)

¹or yields of tree adjoining grammars

²or linear context-free rewriting systems T. Denkinger: Approximation of weighted automata with storage

parsing complexities:

- regular grammars

 = finite state automata
- mile state automata
- context-free grammars (binarised)pushdown automata [1, 2]
- head grammars¹
- omboddo
- ≡ embedded pushdown automata [3]
- multiple context-free grammars² (binarised, fan-out k)
 = k-restricted tree-stack automata [4]

problems:

- high parsing complexities
- natural languages are ambiguous
- lots of different models

- \rightarrow use approximation
- \rightarrow use *weights* (semirings)
- \rightarrow use automata with storage

 $\mathcal{O}(n)$

 $\mathcal{O}(n^3)$

 $\mathcal{O}(n^6)$

 $\mathcal{O}(n^{3k})$

¹or yields of tree adjoining grammars

²or linear context-free rewriting systems

Outline

- Weighted automata with storage
- 2 Approximation of storage
- 3 Approximation of weighted automata with storage
- lacktriangledown Coarse-to-fine n-best parsing

Outline

- Weighted automata with storage
- 2 Approximation of storage
- 3 Approximation of weighted automata with storage
- 4 Coarse-to-fine *n*-best parsing

$$S = (C, P, R, c_{\mathsf{i}})$$

$$S = (C, P, R, c_{\mathsf{i}})$$

 $C \ \mathsf{set} ... \ \mathit{configurations}$

$$C=\mathbb{N}$$

$$S = (C, P, R, c_{\rm i})$$

 $C \operatorname{set} \ldots \operatorname{configurations}$

$$P\subseteq \mathcal{P}(C)...\ \textit{predicates}$$

$$C = \mathbb{N}$$

$$P=\{\mathbb{N},\{0\},\mathbb{N}\smallsetminus\{0\}\}$$

$$S = (C, P, R, c_{\mathsf{i}})$$

 $C \operatorname{set} \ldots \operatorname{configurations}$

$$P \subseteq \mathcal{P}(C)...$$
 predicates

$$R \subseteq \mathcal{P}(C \times C)...$$
 instructions every $r \in R$ finitely non-det.

$$(\forall c \in C : r(c) \text{ is finite})$$

$$C=\mathbb{N}$$

$$P=\{\mathbb{N},\{0\},\mathbb{N}\smallsetminus\{0\}\}$$

$$R = \{ \text{inc}, \text{dec} \}$$
$$\text{inc} = \{ (n, n+1) \mid n \in \mathbb{N} \}$$

$$dec = inc^{-1}$$

$$S = (C, P, R, c_{\mathsf{i}})$$

C set... configurations

$$P \subseteq \mathcal{P}(C)...$$
 predicates

$$R \subseteq \mathcal{P}(C \times C)$$
... instructions every $r \in R$ finitely non-det.

$$(\forall c \in C : r(c) \text{ is finite})$$

$$c_i \in C...$$
 initial configuration

$$C=\mathbb{N}$$

$$P = \{\mathbb{N}, \{0\}, \mathbb{N} \setminus \{0\}\}$$

$$R = \{\text{inc}, \text{dec}\}$$

$$\mathrm{inc} = \{(n, n+1) \mid n \in \mathbb{N}\}\$$

$$dec = inc^{-1}$$

$$c_{\mathsf{i}} = 0$$

$$S = (C, P, R, c_{\mathsf{i}})$$

$$C \operatorname{set} \ldots \operatorname{configurations}$$

$$P \subseteq \mathcal{P}(C)...$$
 predicates

$$R \subseteq \mathcal{P}(C \times C)...$$
 instructions

every
$$r \in R$$
 finitely non-det.

$$(\forall c \in C : r(c) \text{ is finite})$$

$$c_i \in C...$$
 initial configuration

$$C=\mathbb{N}$$

$$P = \{ \mathbb{N}, \{0\}, \mathbb{N} \setminus \{0\} \}$$

$$R = \{inc, dec\}$$

$$\mathrm{inc} = \{(n,n+1) \mid n \in \mathbb{N}\}$$

$$dec = inc^{-1}$$

$$c_{\mathsf{i}} = 0$$

- **instances:** Goldstine's [5] data storage: $P = \{C\}$
 - Engelfriet's [6, 7] storage types: $R \subseteq C \dashrightarrow C$

\mathbb{N} -weighted automaton with Count-storage

automaton \mathcal{M} :

automaton \mathcal{M} :

automaton \mathcal{M} :

$$L(\mathcal{M}) = \{a^n b^n \mid n \ge 1\}$$

Outline

- Weighted automata with storage
- 2 Approximation of storage
- 3 Approximation of weighted automata with storage
- 4 Coarse-to-fine *n*-best parsing

given: $S = (C, P, R, c_i)$, approximation strategy $A: C \dashrightarrow C'$

 ${\bf target:} \quad \textit{approximation storage } A(S)$

 $\mathbf{given:} \quad S = (C, P, R, c_{\mathbf{i}}), \quad \textit{approximation strategy } A : C \dashrightarrow C'$

 ${\bf target:} \quad approximation \ storage \ A(S)$

ullet configurations: apply A

given: $S = (C, P, R, c_i)$, approximation strategy $A: C \dashrightarrow C'$ target: approximation storage A(S)

- ullet configurations: apply A
- \bullet predicates: apply A pointwise

given: $S = (C, P, R, c_i)$, approximation strategy $A: C \dashrightarrow C'$ target: approximation storage A(S)

- ullet configurations: apply A
- \bullet predicates: apply A pointwise
- instructions:

arrows denote binary relations

given: $S = (C, P, R, c_i)$, approximation strategy $A: C \dashrightarrow C'$ target: approximation storage A(S)

- ullet configurations: apply A
- ullet predicates: apply A pointwise
- instructions:

arrows denote binary relations

given: $S = (C, P, R, c_i)$, approximation strategy $A: C \longrightarrow C'$ **target:** approximation storage A(S)

- configurations: apply A
- predicates: apply A pointwise
- instructions:

 A^{-1} may introduce non-determinism

given: $S = (C, P, R, c_i)$, approximation strategy $A: C \dashrightarrow C'$ target: approximation storage A(S)

- ullet configurations: apply A
- ullet predicates: apply A pointwise
- instructions: A^{-1} may introduce non-determinism

A(S) is only defined if A^{-1} ; r; A is finitely non-det. for each r.

An approximation of Count

$$Count = (\mathbb{N}, \{\mathbb{N}, \{0\}, \mathbb{N} \setminus \{0\}\}, \{inc, dec\}, 0)$$

$$Count = \left(\mathbb{N}, \ \{\mathbb{N}, \{0\}, \mathbb{N} \smallsetminus \{0\}\}, \ \{inc, dec\}, \ 0\right)$$

$$A_{eo}(Count) = (\{e, o\},$$

 $Count = \left(\mathbb{N}, \ \{\mathbb{N}, \{0\}, \mathbb{N} \setminus \{0\}\}, \ \{inc, dec\}, \ 0\right)$

$$A_{eo}$$
: 0 2 3 4 5

 $\bullet \ A_{\operatorname{eo}}(\mathbb{N}) = \{\operatorname{e},\operatorname{o}\}$

$$A_{eo}(Count) = (\{e, o\},$$

 $Count = \left(\mathbb{N}, \ \{\mathbb{N}, \{0\}, \mathbb{N} \setminus \{0\}\}, \ \{inc, dec\}, \ 0\right)$

$$A_{\text{eo}}$$
: 0 2 3 4 5

$$\bullet \ A_{\operatorname{eo}}(\mathbb{N}) = \{\operatorname{e},\operatorname{o}\} = A_{\operatorname{eo}}(\mathbb{N} \smallsetminus \{0\})$$

$$A_{eo}(Count) = (\{e, o\},$$

 $Count = \left(\mathbb{N}, \ \{\mathbb{N}, \{0\}, \mathbb{N} \smallsetminus \{0\}\}, \ \{inc, dec\}, \ 0\right)$

$$\bullet \ A_{\operatorname{eo}}(\mathbb{N}) = \{\operatorname{e},\operatorname{o}\} = A_{\operatorname{eo}}(\mathbb{N} \smallsetminus \{0\}) \qquad A_{\operatorname{eo}}(\{0\}) = \{\operatorname{e}\}$$

$$A_{\mathrm{eo}}(\mathrm{Count}) = \big(\{\mathrm{e},\mathrm{o}\},\ \big\{\{\mathrm{e},\mathrm{o}\},\{\mathrm{e}\}\big\},$$

 $Count = \left(\mathbb{N}, \ \{\mathbb{N}, \{0\}, \mathbb{N} \setminus \{0\}\}, \ \{inc, dec\}, \ 0\right)$

$$A_{\text{eo}}$$
: 0 2 3 4 5

$$\bullet \ A_{\operatorname{eo}}(\mathbb{N}) = \{\operatorname{e},\operatorname{o}\} = A_{\operatorname{eo}}(\mathbb{N} \smallsetminus \{0\}) \qquad A_{\operatorname{eo}}(\{0\}) = \{\operatorname{e}\}$$

$$\bullet \ A_{\rm eo}({\rm inc}) = \{$$

$$A_{\mathrm{eo}}(\mathrm{Count}) = \big(\{\mathrm{e},\mathrm{o}\},\ \big\{\{\mathrm{e},\mathrm{o}\},\{\mathrm{e}\}\big\},$$

 $Count = \left(\mathbb{N}, \ \{\mathbb{N}, \{0\}, \mathbb{N} \setminus \{0\}\}, \ \{inc, dec\}, \ 0\right)$

$$A_{\text{eo}}$$
: 0 2 3 4 5 ...

$$\bullet \ A_{\operatorname{eo}}(\mathbb{N}) = \{\operatorname{e},\operatorname{o}\} = A_{\operatorname{eo}}(\mathbb{N} \smallsetminus \{0\}) \qquad A_{\operatorname{eo}}(\{0\}) = \{\operatorname{e}\}$$

$$\bullet \ A_{\rm eo}({\rm inc}) = \{ \qquad \}$$

$$\begin{cases} \mathbf{e} \\ \\ \\ \end{bmatrix} A_{\mathrm{eo}}(\mathrm{inc})$$

$$A_{\operatorname{eo}}(\operatorname{Count}) = \big(\{\operatorname{e},\operatorname{o}\},\ \big\{\{\operatorname{e},\operatorname{o}\},\{\operatorname{e}\}\big\}, \\ \hspace{1cm}, \hspace{1cm} \operatorname{e}\big)$$

 $Count = \left(\mathbb{N}, \ \{\mathbb{N}, \{0\}, \mathbb{N} \smallsetminus \{0\}\}, \ \{inc, dec\}, \ 0\right)$

$$A_{\text{eo}}$$
: 0 2 3 4 5 ...

- $\bullet \ A_{\operatorname{eo}}(\mathbb{N}) = \{\operatorname{e},\operatorname{o}\} = A_{\operatorname{eo}}(\mathbb{N} \smallsetminus \{0\}) \qquad A_{\operatorname{eo}}(\{0\}) = \{\operatorname{e}\}$
- $\bullet \ A_{\rm eo}({\rm inc}) = \{ \qquad \qquad \}$

$$A_{\operatorname{eo}}(\operatorname{Count}) = \big(\{\operatorname{e},\operatorname{o}\},\ \big\{\{\operatorname{e},\operatorname{o}\},\{\operatorname{e}\}\big\}, \\ \hspace{1cm}, \hspace{1cm} \operatorname{e}\big)$$

$$Count = \left(\mathbb{N}, \ \{\mathbb{N}, \{0\}, \mathbb{N} \smallsetminus \{0\}\}, \ \{inc, dec\}, \ 0\right)$$

- $\bullet \ A_{\operatorname{eo}}(\mathbb{N}) = \{\operatorname{e},\operatorname{o}\} = A_{\operatorname{eo}}(\mathbb{N} \smallsetminus \{0\}) \qquad A_{\operatorname{eo}}(\{0\}) = \{\operatorname{e}\}$
- $\bullet \ A_{\rm eo}({\rm inc}) = \{$

$$A_{\operatorname{eo}}(\operatorname{Count}) = \big(\{\operatorname{e},\operatorname{o}\},\ \big\{\{\operatorname{e},\operatorname{o}\},\{\operatorname{e}\}\big\}, \\ \hspace{1cm}, \hspace{1cm} \operatorname{e}\big)$$

$$Count = \left(\mathbb{N}, \ \{\mathbb{N}, \{0\}, \mathbb{N} \setminus \{0\}\}, \ \{inc, dec\}, \ 0\right)$$

$$A_{\text{eo}}$$
: 0 2 3 4 5 ...

- $\bullet \ A_{\operatorname{eo}}(\mathbb{N}) = \{\operatorname{e},\operatorname{o}\} = A_{\operatorname{eo}}(\mathbb{N} \smallsetminus \{0\}) \qquad A_{\operatorname{eo}}(\{0\}) = \{\operatorname{e}\}$
- $\bullet \ A_{\operatorname{eo}}(\operatorname{inc}) = \{(\operatorname{e},\operatorname{o}) \qquad \}$

$$\begin{cases} \{0,2,4,\ldots\} & \stackrel{A_{\operatorname{eo}}}{\longmapsto} \{\mathbf{e}\} \\ \operatorname{inc} \bigvee_{\left\{1,3,5,\ldots\right\}} & \stackrel{A_{\operatorname{eo}}}{\longmapsto} \{\mathbf{o}\} \end{cases}$$

$$A_{\operatorname{eo}}(\operatorname{Count}) = \big(\{\operatorname{e},\operatorname{o}\},\ \big\{\{\operatorname{e},\operatorname{o}\},\{\operatorname{e}\}\big\}, \\ \hspace{1cm}, \hspace{1cm} \operatorname{e}\big)$$

 $Count = \left(\mathbb{N}, \ \{\mathbb{N}, \{0\}, \mathbb{N} \smallsetminus \{0\}\}, \ \{inc, dec\}, \ 0\right)$

$$A_{\text{eo}}$$
: 0 2 3 4 5 ...

- $\bullet \ A_{\operatorname{eo}}(\mathbb{N}) = \{\operatorname{e},\operatorname{o}\} = A_{\operatorname{eo}}(\mathbb{N} \smallsetminus \{0\}) \qquad A_{\operatorname{eo}}(\{0\}) = \{\operatorname{e}\}$
- $\bullet \ A_{\mathrm{eo}}(\mathrm{inc}) = \{(\mathrm{e}, \mathrm{o}), (\mathrm{o}, \mathrm{e})\}$

$$A_{\rm eo}({\rm Count}) = \big(\{{\rm e,o}\},\ \big\{\{{\rm e,o}\},\{{\rm e}\}\big\}, \qquad \qquad ,\ \ {\rm e}\big)$$

 $Count = \left(\mathbb{N}, \ \{\mathbb{N}, \{0\}, \mathbb{N} \smallsetminus \{0\}\}, \ \{inc, dec\}, \ 0\right)$

$$A_{\text{eo}}$$
: 0 2 3 4 5 ...

- $\bullet \ A_{\operatorname{eo}}(\mathbb{N}) = \{\operatorname{e},\operatorname{o}\} = A_{\operatorname{eo}}(\mathbb{N} \smallsetminus \{0\}) \qquad A_{\operatorname{eo}}(\{0\}) = \{\operatorname{e}\}$
- $\bullet \ A_{\operatorname{eo}}(\operatorname{inc}) = \{(\operatorname{e},\operatorname{o}),(\operatorname{o},\operatorname{e})\} = A_{\operatorname{eo}}(\operatorname{dec})$

$$A_{\rm eo}({\rm Count}) = \big(\{{\rm e,o}\},\ \big\{\{{\rm e,o}\},\{{\rm e}\}\big\}, \qquad ,\ {\rm e}\big)$$

$$Count = \left(\mathbb{N}, \ \{\mathbb{N}, \{0\}, \mathbb{N} \setminus \{0\}\}, \ \{inc, dec\}, \ 0\right)$$

$$A_{\text{eo}}$$
: 0, 1, 2, 3, 4, 5 ...

$$\bullet \ A_{\operatorname{eo}}(\mathbb{N}) = \{\operatorname{e},\operatorname{o}\} = A_{\operatorname{eo}}(\mathbb{N} \smallsetminus \{0\}) \qquad A_{\operatorname{eo}}(\{0\}) = \{\operatorname{e}\}$$

•
$$A_{eo}(inc) = \underbrace{\{(e, o), (o, e)\}}_{toggle} = A_{eo}(dec)$$

$$A_{\operatorname{eo}}(\operatorname{Count}) = \big(\{\operatorname{e},\operatorname{o}\},\ \big\{\{\operatorname{e},\operatorname{o}\},\{\operatorname{e}\}\big\},\ \{\operatorname{toggle}\},\ \operatorname{e}\big)$$

Outline

- Weighted automata with storage
- 2 Approximation of storage
- 3 Approximation of weighted automata with storage
- 4 Coarse-to-fine *n*-best parsing

automaton \mathcal{M} :

$$\begin{array}{c} \operatorname{start} \\ \downarrow \\ q_a > a/\mathbb{N}/\operatorname{inc}/2 \\ \downarrow b/\mathbb{N}/\operatorname{dec}/1 \\ \hline \downarrow \varepsilon/\{0\}/\operatorname{inc}/1 \\ \hline q_{\mathrm{f}} \end{array}$$

$$L(\mathcal{M}) = \{a^n b^n \mid n \ge 1\}$$

$$[\![\mathcal{M}]\!](a^nb^n)=2^n$$

automaton \mathcal{M} :

start $\begin{array}{c} & & \\ & \downarrow \\ & \\ & \downarrow \\ & \downarrow \\ & \downarrow \\ & \downarrow \\ \\ & \downarrow \\ & \downarrow \\ \\ & \downarrow$

$$L(\mathcal{M}) = \{a^n b^n \mid n \ge 1\}$$

$$[\![\mathcal{M}]\!](a^nb^n)=2^n$$

 q_{f}

automaton $A_{eo}(\mathcal{M})$:

automaton \mathcal{M} :

automaton $A_{\operatorname{eo}}(\mathcal{M})$:

$$\begin{array}{c} \operatorname{start} \\ \hline q_a & a/\mathbb{N}/\mathrm{inc}/2 \\ \hline b/\mathbb{N}/\mathrm{dec}/1 \\ \hline q_b & b/\mathbb{N}/\mathrm{dec}/1 \\ \hline & \varepsilon/\{0\}/\mathrm{inc}/1 \\ \hline \hline q_{\mathrm{f}} & \end{array}$$

$$\begin{array}{c} \text{start} \\ \hline q_a & a/\{\text{e,o}\}/\text{toggle}/2 \\ \hline b/\{\text{e,o}\}/\text{toggle}/1 \\ \hline q_b & b/\{\text{e,o}\}/\text{toggle}/1 \\ \hline & \varepsilon/\{\text{e}\}/\text{toggle}/1 \\ \hline \hline q_{\text{f}} & \end{array}$$

$$L(\mathcal{M}) = \{a^n b^n \mid n \ge 1\}$$

$$\begin{split} L(A_{\operatorname{eo}}(\mathcal{M})) = \{a^m b^n \mid m \geq 0, n \geq 1, \\ m \equiv n \mod 2 \} \end{split}$$

$$[\![\mathcal{M}]\!](a^nb^n)=2^n$$

automaton \mathcal{M} :

automaton $A_{eq}(\mathcal{M})$:

start
$$q_a \Rightarrow a/\mathbb{N}/\text{inc}/2$$

$$b/\mathbb{N}/\text{dec}/1$$

$$q_b \Rightarrow b/\mathbb{N}/\text{dec}/1$$

$$\varepsilon/\{0\}/\text{inc}/1$$

$$q_f$$

$$L(\mathcal{M}) = \{a^nb^n \mid n > 1\}$$

start
$$\begin{array}{c}
 & \downarrow \\
 & b/\{e,o\}/toggle/2
\end{array}$$

$$\begin{array}{c}
 & \downarrow \\
 & \downarrow \\$$

$$\left(q_{\mathsf{f}}\right)$$

$$= \{a^n b^n \mid n \ge 1\}$$

$$L(A_{\operatorname{eo}}(\mathcal{M})) = \{a^mb^n \mid m \geq 0, n \geq 1, \\ m \equiv n \mod 2\}$$

$$\llbracket \mathcal{M} \rrbracket (a^n b^n) = 2^n$$

$$[\![A_{\operatorname{eq}}(\mathcal{M})]\!](a^mb^n) = 2^m$$

 $\varepsilon/\{e\}/toggle/1$

 $m \equiv n \mod 2$

automaton \mathcal{M} :

automaton $A_{eq}(\mathcal{M})$:

start
$$\begin{array}{c} & a/\mathbb{N} \setminus \{0\}/\mathrm{inc}/3 \\ \hline q_a & a/\mathbb{N}/\mathrm{inc}/2 \\ \hline & b/\mathbb{N}/\mathrm{dec}/1 \\ \hline & \varphi_b & b/\mathbb{N}/\mathrm{dec}/1 \\ \hline & \varphi_f & \\ & L(\mathcal{M}) = \{a^nb^n \mid n > 1\} \end{array}$$

$$\begin{array}{c} \text{start} \\ \hline q_a & a/\{\text{e,o}\}/\text{toggle}/2 + 3 \\ \hline b/\{\text{e,o}\}/\text{toggle}/1 \\ \hline q_b & b/\{\text{e,o}\}/\text{toggle}/1 \\ \hline \\ \hline \varepsilon/\{\text{e}\}/\text{toggle}/1 \\ \hline \end{array}$$

$$n \mid n \ge 1$$

$$L(A_{\operatorname{eo}}(\mathcal{M})) = \{a^m b^n \mid m \ge 0, n \ge 1, \\ m \equiv n \mod 2\}$$

$$[M](a^nb^n) = 2 \cdot (2+3)^{n-1}$$

$$[\![A_{\operatorname{eo}}(\mathcal{M})]\!](a^mb^n)=(2+3)^m$$

 $m \equiv n \mod 2$

Approximation of weighted automata with storage

Theorem (unweighted).

Let $\mathcal M$ be an (S, Σ) -automaton and A be an S-proper approximation strategy.

- $\bullet \ \ \text{If A is $total$, then $L(A(\mathcal{M}))\supseteq L(\mathcal{M})$.}$
- If A is *injective*, then $L(A(\mathcal{M})) \subseteq L(\mathcal{M})$.

Approximation of weighted automata with storage

Theorem (unweighted).

Let $\mathcal M$ be an (S, Σ) -automaton and A be an S-proper approximation strategy.

- If A is total, then $L(A(\mathcal{M})) \supseteq L(\mathcal{M})$.
- $\bullet \ \ \text{If A is $\it injective$, then $L(A(\mathcal{M}))\subseteq L(\mathcal{M})$.}$

Theorem (weighted).

Let $\mathcal M$ be an (S, Σ, K) -automaton, A be an S-proper approximation strategy, \leq be a partial order on K, and K be positively \leq -ordered.

- $\bullet \ \, \text{If A is $total$, then } [\![A(\mathcal{M})]\!](w) \geq [\![\mathcal{M}]\!](w) \text{ for every $w \in \varSigma^*$.}$
- $\bullet \ \ \text{If A is $\it injective$, then } [\![A(\mathcal{M})]\!](w) \leq [\![\mathcal{M}]\!](w) \text{ for every } w \in \varSigma^*.$

Approximation of weighted automata with storage

Theorem (unweighted).

Let $\mathcal M$ be an $(S, \varSigma)\text{-automaton}$ and A be an S-proper approximation strategy.

- $\bullet \ \ \text{If A is $total$, then $L(A(\mathcal{M}))\supseteq L(\mathcal{M})$.}$
- $\bullet \ \ \text{If A is injective, then } L(A(\mathcal{M}))\subseteq L(\mathcal{M}).$

Theorem (weighted).

Let $\mathcal M$ be an (S, Σ, K) -automaton, A be an S-proper approximation strategy, \leq be a partial order on K, and K be positively \leq -ordered.

- $\bullet \ \, \text{If A is $total$, then } [\![A(\mathcal{M})]\!](w) \geq [\![\mathcal{M}]\!](w) \text{ for every $w \in \varSigma^*$.}$
- $\bullet \ \, \text{If A is injective, then } [\![A(\mathcal{M})]\!](w) \leq [\![\mathcal{M}]\!](w) \text{ for every } w \in \varSigma^*.$

Theorem (unweighted) is a corollary of Theorem (weighted) $[\text{by setting } K = \mathbb{B}]$

Outline

- Weighted automata with storage
- 2 Approximation of storage
- 3 Approximation of weighted automata with storage
- lacktriangledown Coarse-to-fine n-best parsing

n-best parsing (for automata)

parsing

Input: an automaton \mathcal{M} , a word w

Output: the set of all runs of $\mathcal M$ on w

n-best parsing (for automata)

parsing

Input: an automaton \mathcal{M} , a word w

Output: the set of all runs of $\mathcal M$ on w

n-best parsing

Input: a K-weighted automaton \mathcal{M} , a word w, a number n

Output: a sequence of n best (w.r.t. weight) runs of $\mathcal M$ on w

- Idea: 1. recognise word with a *superset* approximation $A(\mathcal{M})$
 - 2. use runs of $A(\mathcal{M})$ to **reduce search space** for runs of \mathcal{M}

- Idea: 1. recognise word with a *superset* approximation $A(\mathcal{M})$
 - 2. use runs of $A(\mathcal{M})$ to reduce search space for runs of \mathcal{M}

coarse-to-fine n-best parsing

Input: a K-weighted automaton \mathcal{M} , a word w, a number n,

proper total approximation strategy A

Idea: 1. recognise word with a *superset* approximation $A(\mathcal{M})$

2. use runs of $A(\mathcal{M})$ to reduce search space for runs of \mathcal{M}

coarse-to-fine n-best parsing

Input: a K-weighted automaton \mathcal{M} , a word w, a number n,

proper total approximation strategy A

$$(\mathcal{M}, w)$$
 2-best parse \longrightarrow

- Idea: 1. recognise word with a *superset* approximation $A(\mathcal{M})$
 - 2. use runs of $A(\mathcal{M})$ to reduce search space for runs of \mathcal{M}

coarse-to-fine n-best parsing

Input: a K-weighted automaton \mathcal{M} , a word w, a number n,

proper total approximation strategy A

- Idea: 1. recognise word with a *superset* approximation $A(\mathcal{M})$
 - 2. use runs of $A(\mathcal{M})$ to **reduce search space** for runs of \mathcal{M}

coarse-to-fine n-best parsing

Input: a K-weighted automaton \mathcal{M} , a word w, a number n,

proper total approximation strategy A

- Idea: 1. recognise word with a *superset* approximation $A(\mathcal{M})$
 - 2. use runs of $A(\mathcal{M})$ to **reduce search space** for runs of \mathcal{M}

coarse-to-fine n-best parsing

Input: a K-weighted automaton \mathcal{M} , a word w, a number n,

proper total approximation strategy A

- Idea: 1. recognise word with a *superset* approximation $A(\mathcal{M})$
 - 2. use runs of $A(\mathcal{M})$ to reduce search space for runs of \mathcal{M}

coarse-to-fine n-best parsing

Input: a K-weighted automaton \mathcal{M} , a word w, a number n,

proper total approximation strategy A

- Idea: 1. recognise word with a *superset* approximation $A(\mathcal{M})$
 - 2. use runs of $A(\mathcal{M})$ to **reduce search space** for runs of \mathcal{M}

coarse-to-fine n-best parsing

Input: a K-weighted automaton \mathcal{M} , a word w, a number n,

proper total approximation strategy A

- Idea: 1. recognise word with a *superset* approximation $A(\mathcal{M})$
 - 2. use runs of $A(\mathcal{M})$ to **reduce search space** for runs of \mathcal{M}

coarse-to-fine n-best parsing

Input: a K-weighted automaton \mathcal{M} , a word w, a number n,

proper total approximation strategy A

• Approximation strategies are modelled as partial functions.

- Approximation strategies are modelled as partial functions.
- Properties of the approximation strategy imply properties of the approximation process.

- Approximation strategies are modelled as partial functions.
- Properties of the approximation strategy imply properties of the approximation process.
- We presented a generic coarse-to-fine *n*-best parser.

- Approximation strategies are modelled as partial functions.
- Properties of the approximation strategy imply properties of the approximation process.
- We presented a generic coarse-to-fine *n*-best parser.

Thank you for your attention.

References

- [1] N. Chomsky. "Formal properties of grammars". 1962.
- [2] M. P. Schützenberger. "On context-free languages and push-down automata". 1963.
- [3] K. Vijay-Shanker. "A study of tree adjoining grammars". PhD thesis. University of Pennsylvania, 1988.
- [4] T. Denkinger. "An Automata Characterisation for Multiple Context-Free Languages". 2016.
- [5] J. Goldstine. "A rational theory of AFLs". 1979.
- [6] J. Engelfriet. *Context-free grammars with storage.* Tech. rep. Leiden University, 1986.
- [7] L. Herrmann and H. Vogler. "A Chomsky-Schützenberger Theorem for Weighted Automata with Storage". 2015.