An Overview on Description Logics, and Axiom Pinpointing in \mathcal{EL}

Barış Sertkaya

Theoretical Computer Science
TU Dresden, Germany

June 15, 2009
Outline

1. Knowledge Representation
2. Description Logics
3. The DL \mathcal{ALC}
4. DL Ontology
5. Reasoning and its Complexity
6. Web Ontology Language OWL
7. Axiom Pinpointing in \mathcal{EL}
Description Logics:
- logics for representing conceptual knowledge.
- describe the world with a logical language, classify the descriptions

Formal Concept Analysis:
- field of lattice theory for conceptual data analysis
- derive a classification from the given samples

combining them, using methods from one field in the other
Develop formalisms that have
- a well-defined syntax,
- formal, unambiguous semantics,
- practical methods for reasoning, and efficient implementations

Conceptual knowledge
- **Classes**: country, coastal country, ...
- **Relations**: has border to, has neighbour, ...
- **Individuals**: Portugal, Mediterranean, Atlantic, ...
Early days

Semantic networks [Quillian(1967)]
- nodes represent classes
- links represent relations
- hasBorderTo: has a border to sth., or only has border to sth.?
- ambiguous semantics!

KL-ONE [Brachman & Levesque(1985)]
- logic-based semantics
Description Logics (DLs)

- family of logic-based knowledge representation formalisms
- describe an application domain in terms of
 - concepts (classes) like Country, Ocean, ...
 - individuals like Portugal, Atlantic, ...
 - roles (relations) like hasBorderTo, hasNeighbour, ...
- well-defined, formal semantics
- decidable fragments of First Order Logic

Sea ⋈ Ocean,
Country ⋈ ∃hasBorderTo.Ocean,
Ocean(Atlantic),
OceanCountry(Portugal)
The DL \(\mathcal{ALC} \)

\(\mathcal{ALC} \): The smallest propositionally closed DL

- **Atomic concepts:** \(A, B, \ldots \)
 (unary predicates)

- **Atomic roles:** \(r, s, \ldots \)
 (binary predicates)

- **Constructors:**
 - \(\neg C \)
 (negation)
 - \(C \sqcap D \)
 (conjunction)
 - \(C \sqcup D \)
 (disjunction)
 - \(\exists r.C \)
 (existential restriction)
 - \(\forall r.C \)
 (value restriction)

Examples:

- Country \(\sqcap \neg \text{Island} \)
- Country \(\sqcap \forall \text{hasBorderTo}.\text{LandMass} \)
- Country \(\sqcap \exists \text{hasNeighbour}.(\exists \text{hasBorderTo}.\text{Ocean}) \)
Semantics of \mathcal{ALC}

based on interpretations $\mathcal{I} = (\Delta^\mathcal{I}, \cdot^\mathcal{I})$ consisting of a domain $\Delta^\mathcal{I}$, and an interpretation function $\cdot^\mathcal{I}$

Concept and role names:
- $A^\mathcal{I} \subseteq \Delta^\mathcal{I}$ (concepts interpreted as sets)
- $r^\mathcal{I} \subseteq \Delta^\mathcal{I} \times \Delta^\mathcal{I}$ (roles interpreted as binary relations)

Complex concept descriptions:
- $(\neg C)^\mathcal{I} = \Delta^\mathcal{I} \setminus C^\mathcal{I}$, $(C \cap D)^\mathcal{I} = C^\mathcal{I} \cap D^\mathcal{I}$, $(C \cup D)^\mathcal{I} = C^\mathcal{I} \cup D^\mathcal{I}$
- $(\exists r.C)^\mathcal{I} = \{ d \in \Delta^\mathcal{I} \mid \text{there is } e \in \Delta^\mathcal{I} : (d, e) \in r^\mathcal{I} \text{ and } e \in C^\mathcal{I} \}$
- $(\forall r.C)^\mathcal{I} = \{ d \in \Delta^\mathcal{I} \mid \text{for all } e \in \Delta^\mathcal{I} : (d, e) \in r^\mathcal{I} \text{ implies } e \in C^\mathcal{I} \}$

\mathcal{I} is a model of C if $C^\mathcal{I} \neq \emptyset$
Example of an interpretation

\[(\text{Country} \sqcap \exists \text{hasNeighbour}. (\exists \text{hasBorderTo}. \text{Ocean}))^T = \{ \text{Spain} \}\]
\(\mathcal{ALC} \) is a fragment of FOL

- Concept names are unary predicates, role names are binary predicates
- Concept descriptions yield formulae with one free variable
- \(\mathcal{ALC} \) concept descriptions can be written in the two-variable fragment (\(\mathcal{L}^2 \)) of FOL

\[
\forall r. (\exists r. A) \Rightarrow \forall y. (r(x, y) \rightarrow (\exists z. (r(y, z) \land A(z))))
\]
\[
\Rightarrow \forall y. (r(x, y) \rightarrow (\exists z. (r(y, x) \land A(x))))
\]

- \(\mathcal{L}^2 \) is decidable [Mortimer(1975)]
Reasoning tasks

Two main reasoning tasks:
- **concept satisfiability**: Is there a model of C?
- **concept subsumption**: Does $C^\mathcal{I} \subseteq D^\mathcal{I}$ hold for all \mathcal{I}? (written $C \sqsubseteq D$?)

Concept subsumption for computing the subsumption hierarchy:

For \mathcal{ALC}, satisfiability and subsumption are mutually reducible: $C \sqsubseteq D$ iff $C \cap \neg D$ is unsatisfiable
DL Knowledge Base (Ontology) = TBox + ABox

- **TBox** (\mathcal{T}) defines the terminology of the application domain
- **ABox** (\mathcal{A}) states facts about a specific “world”

TBox: set of concept definitions

- LockedCountry \equiv Country \sqcap \forall hasBorderTo. LandMass
- OceanCountry \equiv Country \sqcap \exists hasBorderTo. Ocean

ABox: set of concept and role assertions

- Ocean(Atlantic), Sea(Mediterranean), hasBorderTo(Portugal, Atlantic),

General TBox: set of GCIs (general concept inclusion axiom)

- Ocean \sqsubseteq BodyOfWater
- \exists hasBorderTo. BodyOfWater \sqsubseteq CoastalCountry
An interpretation \(\mathcal{I} \) is a model of
- a TBox \(\mathcal{T} \) if it satisfies all its concept definitions: \(A^\mathcal{I} = C^\mathcal{I} \) for all \(A \equiv C \in \mathcal{T} \)
- a general TBox \(\mathcal{T} \) if it satisfies all its concept inclusions: \(C^\mathcal{I} \subseteq D^\mathcal{I} \) for all \(C \subseteq D \in \mathcal{T} \)
- an ABox \(\mathcal{A} \) if it satisfies all its assertions:
 - \(a^\mathcal{I} \in C^\mathcal{I} \) for all \(C(a) \in \mathcal{A} \)
 - \((a^\mathcal{I}, b^\mathcal{I}) \in r^\mathcal{I} \) for all \(r(a, b) \in \mathcal{A} \)
- a knowledge base \((\mathcal{T}, \mathcal{A})\) if it is a common model of \(\mathcal{T} \) and \(\mathcal{A} \).
Reasoning with TBox and ABox

\mathcal{T} a TBox, \mathcal{A} an ABox, C and D concept descriptions, a an individual name.

TBox Reasoning

- **Satisfiability**: Is there a common model of C and \mathcal{T}?
- **Subsumption**: Does $C^\mathcal{I} \subseteq D^\mathcal{I}$ hold in all models \mathcal{I} of \mathcal{T}? (written $C \sqsubseteq^\mathcal{T} D$)

ABox Reasoning

- **Consistency**: Is there a common model of \mathcal{A} and \mathcal{T}?
- **Instance**: Does $a^\mathcal{I} \in C^\mathcal{I}$ hold in all models \mathcal{I} of \mathcal{A} and \mathcal{T}? (written $\mathcal{T}, \mathcal{A} \models C(a)$)
Tableau Algorithm:

- decision procedure for checking ABox consistency
- tries to generate a finite model for the input ABox
- extends the ABox by applying tableau rules
- checks for contradictions
- if no rule applies and no contradiction is found, the ABox is consistent
Complexity of Reasoning in \mathcal{ALC}

- with empty TBox \textbf{PSPACE}-complete \cite{Schmidt-Schauss & Smolka(1991)}
 - in \textbf{PSPACE}: the tableau algorithm
 - \textbf{PSPACE}-hard: reduction from satisfiability in QBF (quantified boolean formulae)

- with general TBoxes: \textbf{EXPTIME}-complete
 - in \textbf{EXPTIME}: tableau algorithm in \cite{Donini & Massacci(2000)}
 - \textbf{EXPTIME}-hard: \cite{Schild(1991)}

\textbf{PSPACE}: solvable by a deterministic machine with polynomial space

$\textbf{EXPTIME}$: solvable by a deterministic machine in exponential time

$P \subseteq NP \subseteq \textbf{PSPACE} \subseteq \textbf{EXPTIME}$

Horn Boolean \mathcal{ALC} (empty TBox) \mathcal{ALC} (general TBox)

tradeoff between \underline{expressivity} and \underline{computational complexity}!
More expressive DLs \textit{ALCN} and \textit{ALCQ}

\textit{ALC} cannot express countries that have at most 3 neighbours

Unqualified number restrictions: $\text{Country } \sqcap (\leq 3 \text{ hasNeighbour})$

- at most: $(\leq n \text{ r})^I = \{d \in \Delta^I \mid \text{card} (\{e \mid (d, e) \in r^I\}) \leq n\}$
- at least: $(\geq n \text{ r})^I = \ldots$

\textit{ALCN} cannot express countries that have at least 1 neighbour that is an ocean country

Qualified nr. restrns: $\text{Country } \sqcap (\geq 1 \text{ hasNeighbour.OceanCountry})$

- at least:
 $(\geq n \text{ r.C})^I = \{d \in \Delta^I \mid \text{card}(\{e \mid (d, e) \in r^I \land e \in C^I\}) \geq n\}$
- at most: $(\leq n \text{ r.C})^I = \ldots$
More expressive DLs $\textit{ALCQI}, \textit{ALCQO}$

\textit{ALCQI}: $\textit{ALCQ} +$ inverse roles

Inverse roles: $(r^-)^I = \{(e, d) \mid (d, e) \in r^I\}$

countries recognized by an EU member

Country $\sqcap \exists \text{recognizes}^-.\text{EUmember}$

\textit{ALCQO}: $\textit{ALCQ} +$ nominals

Nominals: $\{a_1, \ldots, a_n\}^I = \{a_1^I, \ldots, a_n^I\}$

countries that have territories in Europe or Asia

Country $\sqcap \exists \text{hasTerritoryIn}\{\text{Asia, Europe}\}$
Very expressive DLs $SHIF, SHOIN$

- **transitive roles** ($R_+)$: hasGoodRelationsWith$_+$
- **role hierarchy** (\mathcal{H}): hasNeighbour \subseteq hasBorderTo
- **functional restriction** (\mathcal{F}): hasCapitalCity
- **Concrete domains** (D): natural numbers, reals, time, ...
- S: ALC with transitive roles

OWL: the standard ontology language for The Semantic Web!

- OWL Lite $= SHIF$ (D)
 (reasoning ExpTime)
- OWL DL $= SHOIN$ (D)
 (reasoning NExpTime)
- OWL Full $= \text{beyond DLs}$
 (reasoning undecidable!)

($\text{ExpTime} \subseteq \text{NExpTime}$: solvable in exp. time by a nond. mach.)
very high worst-case complexity: $\text{ExpTime}, \text{NExpTime}$

almost 20 years of research

highly optimized tableau algorithms

efficient implementations

Reasoners: FaCT++, RACERPro, Pellet, KAON2, Hermit ...

can classify large real world ontologies written in very expressive DLs!
Leightweigt DLs: The \mathcal{EL} family

- DLs with polynomial time reasoning!
- still expressive enough for widely used bio-medical ontologies
 - SNOMED (Systematized Nomenclature of Medicine): medical terminology for diseases, treatments, ...
 - Gene Ontology: controlled vocabulary to describe gene and gene product attributes
- \mathcal{EL}^+ constructors:
 - \top (top)
 - $C \sqcap D$ (conjunction)
 - $\exists r.C$ (existensial restriction)
 - $C \sqsubseteq D$ (GCI)
 - $r_1 \circ \cdots \circ r_n \sqsubseteq s$ (role inclusion)
SNOMED contains more than 350,000 axioms
ontology development is an error prone task
in SNOMED Amputation-of-Finger is classified as a subconcept of Amputation-of-Arm
obviously a modelling error
what is the reason, which axioms out of 350,000 are responsible?

Axiom pinpointing: finding small subsets of the knowledge base that have given consequence

Minimal explanation of $C \sqsubseteq D$ in \mathcal{T} is a $\mathcal{T}' \subseteq \mathcal{T}$ s.t. $\mathcal{T}' \models C \sqsubseteq D$ and \mathcal{T}' minimal
finding a minimum cardinality explanation is NP-complete
[Baader et al. (2007)]

finding one minimal explanation is polynomial: remove axioms one by one and test

what about finding all minimal explanations?

there can be exponentially many of them!

clearly not computable in polynomial time

Enumeration complexity

polynomial delay: polynomial time between each consecutive solution

output-polynomial: polynomial in the size of the input and the total number of solutions
finding a minimum cardinality explanation is \text{NP-complete}

[Baader et al. (2007) Baader, Peñaloza, & Suntisrivaraporn]

finding one minimal explanation is polynomial: remove axioms one by one and test

what about finding all minimal explanations?

there can be \text{exponentially many} of them!

clearly not computable in polynomial time

\textbf{Enumeration complexity}

\begin{itemize}
 \item \textit{polynomial delay}: polynomial time between each consequetive solution
 \item \textit{output-polynomial}: polynomial in the size of the input \textit{and} the total number of solutions
\end{itemize}
Complexity of Axiom pinpointing in \mathcal{EL}^+

We have considered the following:

Can we enumerate min. exps. in a given order with poly. delay?

- **NO!** cannot be done with polynomial delay unless $P = NP$
- checking whether a given minimal explanation is the first one is $coNP$-complete

Can we compute all min. exps. in output-polynomial time?

- We do **not** know :(
- the corresponding decision problem is in $coNP$
- it is $TRANS$-HYP-hard (*hypergraph problem open for 20 years*)
We have considered the following:

Can we enumerate min. exps. in a given order with poly. delay?

- **NO!** cannot be done with polynomial delay unless \(P = NP \)
- checking whether a given minimal explanation is is the first one is coNP-complete

Can we compute all min. exps. in output-polynomial time?

- We do not know :(
- the corresponding decision problem is in coNP
- it is TRANS-HYP-hard (hypergraph problem open for 20 years)
We have considered the following:

Can we enumerate min. exps. in a given order with poly. delay?

- **NO!** cannot be done with polynomial delay unless $P = NP$
- checking whether a given minimal explanation is is the first one is coNP-complete

Can we compute all min. exps. in output-polynomial time?

- We do not know :(
- the corresponding decision problem is in coNP
- it is TRANS-HYP-hard (*hypergraph problem open for 20 years*)
We have considered the following:

Can we enumerate min. exps. in a given order with poly. delay?

- **NO!** cannot be done with polynomial delay unless $P = NP$
- checking whether a given minimal explanation is is the first one is coNP-complete

Can we compute all min. exps. in output-polynomial time?

- We do not know :(
- the corresponding decision problem is in coNP
- it is **TRANS-HYP-hard** (*hypergraph problem open for 20 years*)
Complexity of Axiom pinpointing in \mathcal{EL}^+

We have considered the following:

- Is there a minimal explanation that contains a given axiom?
 - NP-complete

- Is there a min. exp. that does not contain any of the given subsets of the original KB?
 - NP-complete

- Determine the number of minimal explanations
 - $\#P$-complete
DLs are logic-based KR formalisms
- decidable fragments of FOL
- theoretical background of OWL: the W3C standard ontology language for The Semantic Web
- Lightweight DLs, polynomial time reasoning
- Axiom pinpointing: finding explanations
Pinpointing in the description logic \(\mathcal{EL}^+ \).

Readings in Knowledge Representation.
Los Altos (CA), USA: Morgan-Kaufmann.

EXPTIME tableaux for \(\mathcal{ALC} \).
Artificial Intelligence, 124(1), 87–138.

On languages with two variables.
Zeitschrift für mathematische Logik und Grundlagen der Mathematik, 21, 135–140.

Word concepts: A theory and simulation of some basic capabilities.
Behavioral Science, 12, 410–430.
Republished in [Brachman & Levesque(1985)].

A correspondence theory for terminological logics: preliminary report.
In J. Mylopoulos & R. Reiter (Eds.), Proceedings of the 12th International Joint Conference on Artificial Intelligence (IJCAI’91). Morgan Kaufmann, 466–471.

Attributive concept descriptions with complements.