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Abstract. Reliability of low-level operating-system (OS) code is an in-
dispensable requirement. This includes functional properties from the
safety-liveness spectrum, but also quantitative properties stating, e.g.,
that the average waiting time on locks is sufficiently small or that the
energy requirement of a certain system call is below a given threshold
with a high probability. This paper reports on our experiences made in a
running project where the goal is to apply probabilistic model checking
techniques and to align the results of the model checker with measure-
ments to predict quantitative properties of low-level OS code.

1 Introduction

For safety-critical systems such as space, flight, and automotive control systems
one wants correctness guarantees for the software not only for the functional
behaviour of components but also, e.g., for their timing behaviour. Worst-case
execution-time analyses (see e.g. [3, 11, 22]) are able to provide these guarantees,
but only in the form of upper bounds on the execution times of all involved
components, which hold even in the most extreme situations. Many computer
systems are however either not safety critical or they include fail-safe mechanisms
that prevent damage in highly exceptional situations. Quantitative analyses can
provide detailed information on the probabilities of certain events or on the av-
erage behaviour. First, the requirement that certain requirements hold for all
possible execution sequences is a very strong condition. E.g., for uncontended
locks the property that a process will find a lock free without waiting might
not hold universally, but with some high probability. Second, probabilistic fea-
tures are crucial for the evaluation of complex architectures such as x86 that
are optimised according to their average-performance, for systems that rely on
imprecise real-time computing techniques to deal with transient overload [18, 6],
or for systems that may fail in extreme cases. Third, the probabilistic analysis
may guide OS level optimisation justifying, for instance, the use of a simple
test-and-test-and-set (TTS) lock implementation over more complex ticket [1]
or queue-based locks [15].

⋆ This work was in part funded by the German Research Council (DFG) through the
QuaOS project and the collaborative research center 912 Highly-Adaptive Energy-
Efficient Computing (HAEC).



In this paper, we report on a running project of the operating-system and
the formal-methods group at TU Dresden whose aim it is to establish quantita-
tive properties of low-level operating-system (OS) code using probabilistic model
checking techniques. By low-level OS code, we mean drivers, the kernel of mono-
lithic operating systems, microkernels or microhypervisors and similar code that
directly interacts with hardware devices and that is therefore often optimised to
fully exploit the intrinsic behaviour of modern processor architectures. Although
the applicability of probabilistic model checking techniques is expected to work
in principle, several non-trivial problems have to be addressed.

Modelling. The first challenge is to find a reasonable abstraction level for the
formal model based on the probabilistic analysis that will be carried out. E.g.,
there are several details on the realisation of hardware primitives (such as caches,
busses and controllers of the memory subsystem) that have impact on the tim-
ing behaviour of low-level OS code. The model must cover all features that
dominate the quantitative behaviour, while still being compact enough for the
algorithmic analysis. The latter requires to abstract away from details that have
negligible impact on the quantitative behaviour or that would render the model
unmanageable. The abstraction of many of these details is indispensable because
only little information on the hardware realisation is available, and even if these
details are known, too fine-grained hardware models make the state-explosion
problem unscalable and lead to quantitative results that are too hardware spe-
cific. Instead, we incorporate hardware timing effects in the distributions for
the execution times and use measurement-based simulation techniques to obtain
empirical evidence for the models and the model checking results.

Measurement-based simulation. Generating this evidence frommeasurement data
is the second major challenge because the quantities of interest for many rele-
vant OS-level properties are in a range where measurements significantly disturb
the normal system behaviour and where instrumentation-induced noise blurs the
results. For instance, the update rate and resolution of CPU-internal energy sen-
sors necessitate a statistical analysis over a multitude of measurements to extract
an energy profile for a single system call [5]. To counteract these effects and to
obtain empirical evidence for the models and model checking results, we con-
struct microbenchmarks that place the to-be-measured code into a manageable
environment and that mimic the formalisation as close as possible.

Quantitative properties. A third major step is the identification of the types
of quantitative properties that are relevant for low-level OS code. At a first
glance, it seems that constrained reachability conditions such as “what is the
probability for threads to find the requested resource locked for longer than 1
microsecond?” can be expressed as probabilistic queries of the form P=?(ϕ) using
comparably simple patterns of path formulas ϕ in standard temporal logics, such
as PCTL. (The notation P=?(ϕ) refers to the probability for the event specified
by ϕ.) However, the main interest is in deducing probabilities of this kind for
the long run rather than for fixed initial distributions. Typically, the long-run
behaviour of programs (e.g., the time programs hold a certain resource) shows
fundamentally different characteristics when compared to the initialisation-phase
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behaviour (when resources are requested for the first time). These differences
are caused by the fact that the system had time to learn and adjust to the
program characteristics, e.g., by warming up the disk or processor caches or by
adjusting the scheduling parameters of the program to meet its responsiveness
and interactivity demands. Queries for questions of the above type must therefore
be able to ask for long-run probabilities of path formulas under the condition

that the system is in a certain set of states. The above question translates into
a condition about the states in the long run (e.g., the probability of finding a
resource held in the long run) and a temporal formula on the paths starting in
these states (e.g., “what is the likelihood that such a held resource will be released
and granted to the requesting thread within 1 microsecond?”). We refer to these
type of queries as conditional steady-state queries. A second class of important
queries for low-level OS code asks for the value of a quantity that is not exceeded
in the majority of all cases: the quantile. Two examples of important quantile-
based queries are “how long does a thread wait for a resource in 99.9% of all
cases?” and “what is the energy that must remain in the battery to guarantee the
complete playback of a certain video with a probability greater than 95%?”. To
our surprise, neither conditional steady-state queries nor quantile-based queries
are supported by state-of-the-art probabilistic model checkers.

Outline. In this paper, we report on our experiences with a simple TTS spinlock
as a starting point and initial experiment for a more elaborate investigation of the
general feasibility of probabilistic model checking techniques and the limitations
of existing tool support. Sec. 2 presents the TTS spinlock and a set of relevant
quantitative properties. Sec. 3 explains our discrete-time Markov chain model.
Sec. 4 presents the results of the quantitative analysis that we have carried out
with the model checker PRISM [13]. We explain how we dealt with conditional
long-run probabilities and quantile-based properties and report on the results
of the measurement-based simulation and the lessons learned. Sec. 5 concludes
this paper. Due to space limitations, we present the detailed model checking
statistics in an extended version1 and provide here only a brief summary.

2 A Test-And-Test-And-Set Lock

Fig. 1 shows the C/C++ code of 1 volatile bool occupied = false;

2 void lock(){
3 while(atomic swap(occupied,true)){
4 while(occupied){}
5 } }

6 void unlock(){
7 occupied = false
8 }

Fig. 1. Simple TTS spinlock

a simple TTS lock. To acquire the
lock, the requesting process executes
the atomic swap operation in Line 3
to atomically read the value of the
shared variable occupied and to
then set it to true. The loop exits if
the process was first to perform this
swap after another process has re-
leased the lock by setting occupied

to false. For as long as in Line 4
occupied is true, the process only reads this variable to avoid unnecessary
contention on the core-to-core interconnect.
1 http://wwwtcs.inf.tu-dresden.de/ALGI/spinlock-FMICS2012.pdf
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Properties. For our case study, we investigate four questions as representatives
for complex conditional long-run and quantile-based properties:

(A1) probability that a process finds a free lock when it seeks to acquire this lock;

(A2) probability of re-acquiring a previously held lock (without spinning)
without other processes having acquired the lock in the meantime;

(A3) expected amount of time a process waits for a lock;

(A4) the 95% quantile of the time processes wait for a lock.

Properties such as (A1)–(A4), which characterise the quantitative behaviour
of locks, are highly relevant to guide design decisions and optimisation of low-
level OS code. For instance, high probabilities in (A1) and (A2) justify the
use of less complex lock implementations, respectively of simpler execution-time
analyses. An analysis which assumes low fixed costs for acquiring and releasing
a lock is justified by a high probability of (A2) because cache eviction of the
occupied variable is unlikely. The expected waiting time (A3) is important to
judge whether a lock implementation is suitable for the common cases of a given
scenario. And the quantile in (A4) replaces the worst-case lock acquisition time
in imprecise real-time systems [18, 6] and in systems with a fail safe override in
case of late results. It returns an upper bound t for the lock-acquisition time
that will be met with the specified probability (here 95%).

We investigate these measures in a scenario where a fixed number of processes
repeatedly acquire a single shared lock, execute a critical section while holding
the lock, and then wait for some time after they have released the lock before
they attempt to re-acquire it. We call the time between release and the attempt
to re-acquire the interim time and refer to the code that is executed during
this time as the interim section. We assume here, that the length of the critical
section is more or less constant, while the interim time varies. Further, critical
sections are typically very short in comparison with the times when no lock is
held. For the distribution of the length of the interim section we draw inspiration
from a video decoding example. For video decoding, the different frame types (I
and P-frames) lead to clusters of the interim time in certain small intervals. Our
approach used for both model checking and the measure-based techniques relies
on discretisation of these distributions using finitely many sampling points.

The modelled lock-acquisition pattern allows for the derivation of results
about the common-case behaviour of applications when they use a certain opera-
ting-system functionality, but gives also rise to extreme-case analyses where one
assumes malicious or erroneous applications to attack the operating system. For
example, by setting the interim time to the execution time of a system call
minus its critical sections it is possible to deduce the contention of locks that
protect these sections under the assumption that malicious applications invoke
this system call as fast as they can.

3 Markov chain model for the spinlock protocol

To model the spinlock protocol, we have chosen a discrete-time Markov chain

(DTMC) model for the following reasons. The clear demand for probabilis-
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tic guarantees about the long-run behaviour requires a model where steady-
state probabilities are mathematically well defined and supported by model
checking tools. This, for instance, rules out probabilistic timed automata and
other stochastic models with nondeterminism (e.g., Markov decision processes).
Continuous-time Markov chains are not adequate given that the distribution
specifying the duration of the critical and interim sections are not exponential.
Approximations with phase-type distributions lead to large and unmanageable
state spaces. From a mathematical point of view, we could use semi-Markovian
models with continuous-time uniform distributions, but we are not aware of tools
that provide engines for all queries (A1)–(A4).

Preliminaries: discrete-time Markov chains. We briefly explain our no-
tations used for DTMCs and refer to standard textbooks for further details,
see e.g. [12, 7]. A (probabilistic) distribution on a countable set X is a function
µ : X → [0, 1] such that

∑

x∈X µ(x) = 1. The support supp(µ) of µ consists of
all elements x ∈ X with µ(x) > 0. µ is called a Dirac distribution if its support
is a singleton. If C ⊆ X then µ(C) =

∑

x∈C µ(x).

In our approach, a DTMC is a tuple M = (S,P, sinit, rew) where S is a finite
state space, sinit ∈ S the initial state, P : S×S → [0, 1] the transition probability
matrix and rew : S → N the reward function. We require

∑

u∈S P(s, u) = 1 for
all s ∈ S and refer to P(s, u) as the probability to move from s to u within
one (time) step. A path in M is a finite or infinite sequence π = s0 s1 s2 . . .
of states with P(si, si+1) > 0 for all i. Let π(k) = sk be the (k+1)-st state
and π ↓ k = s0 s1 . . . sk the prefix consisting of the first k+1 states. Paths(s)
denotes the set of infinite paths starting in state s. The accumulated reward for
a finite path π = s0 s1 . . . sk is Rew(π) = rew(s0)+ . . .+ rew(sk−1). If π is a finite
path then the cylinder set Cyl (π) spanned by π consists of all infinite paths π′

where π is a prefix of π′. Using well-known concepts of measure theory, given
some probabilistic distribution µ : S → [0, 1], there exists a unique probability

measure PrMµ on the σ-algebra generated by the cylinder sets of finite paths

such that PrMµ
(

Cyl (s0 s1 . . . sk)
)

= µ(s0) ·
∏

06i<k P(si, si+1). If µ is a Dirac

distribution with supp(µ) = {s} we simply write Prs or PrMs for PrMµ .

For specifying measurable path events (i.e., sets of paths that belong to the
σ-algebra generated by the cylinder sets of finite paths), we use the standard
LTL-like notations with the symbols © (next), U (until) and ♦ (eventually) and
time-bounded variants thereof. For X,Y ⊆ S, ©X stands for the set of infinite
paths π with π(1) ∈ X . X U=k Y denotes the set of infinite paths π such that
π(n) ∈ X \ Y for 0 6 n < k and π(k) ∈ Y . We write X U6K Y for the union of
the sets X U=k Y where k ranges over the elements in {0, 1, . . . ,K} and X U Y
for the union of the sets X U=k Y where k ∈ N. ♦ Y , ♦=k Y and ♦

6K Y are short
forms of S U Y , S U=k Y and S U6K Y , respectively. To deal with query (A2),
we will also use LTL-like formulas with cascades of until-operators and suppose
here the standard LTL-semantics for paths. For further details see [20, 4, 21].

Form ∈ N, θm : S → [0, 1] denotes the state distribution forM afterm steps.
Formally, θ0 is the Dirac distribution with supp(θ0) =

{

sinit
}

and θm+1 = P ·θm
for m > 0. The function θ : S → [0, 1],
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θ(s) = lim
k→∞

1

k+1
·

k
∑

m=0

θm(s),

is called the steady-state distribution for M. Then, θ(s) > 0 iff s belongs to a
bottom strongly connected component (BSCC) that is accessible from sinit. If
C is a set of states with θ(C) > 0 and Π a measurable set of paths then the
conditional long-run probability for Π (under condition C) is defined by:

P
M
(

Π
∣

∣C
)

def

=
∑

s∈C

θ(s)/θ(C) · PrMs (Π)

Here, θ(s)/θ(C) is the conditional steady-state probability for state s, again
under condition C. The intuitive meaning of θ(s)/θ(C) is the portion of time
spent in state s on long runs relative to the total time spent in states of C. With
the factor PrMs (Π), the above weighted sum represents the long-run probability
for the event specified by Π under condition C. Analogously, conditional steady-
state average values of random variables can be defined as weighted sums. (A3)
will be formalised as an instance of conditional long-run accumulated reward for
reaching a goal set Y defined by:

R
M
(

♦Y
∣

∣C
)

def

=
∑

s∈C

θ(s)/θ(C) · ExpAccRewM

s (♦Y )

where ExpAccRewM

s (♦Y ) denotes the expected accumulated reward for reaching
Y from state s. It is defined by:

∞
∑

r=0

r · PrMs
{

π ∈ Paths : ∃k ∈ N s.t. π ∈ ♦
=k Y ∧ Rew(π↓k) = r

}

Markov chain model for the spinlock protocol. To analyse the quantitative
behaviour of the spinlock protocol for n processes P1, . . . , Pn, we use a DTMC
that results as the synchronous parallel composition of one module representing
the spinlock in Fig. 1 (see Fig. 3) and one module for each of the processes
(see Fig. 2). The ti’s are integer variables that serve as timers for the critical
and noncritical section. Distribution ν models the interim time, i.e., the time
required for the (noncritical) activities of the processes between two critical
sections, including the request to acquire the lock, but without the spinning
time. Distributions γ0 and γ1 serve to model the total length of the critical

start i ncrit i

wait icrit i

initialize:
ti := random(ν)

if ti=0 then tick

if lock i ∧ ti=1 then tick : ti := random(γ0)
if lock i ∧ ti=2 then tick : ti := random(γ1)

if ti=0 then tick :
ti := random(ν)

if ti > 0 then tick :
ti := ti−1

if ¬lock i then tick :
ti := min{ti+1, 2}

if ti > 0 then tick :
ti := ti−1

Fig. 2. Control flow graph of process Pi
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unlock

lock i. . . . . .lockk

if waiti
then tick

if criti ∧ ti=0 and
¬wait1 ∧ . . . ∧ ¬waitn

then tick

if ¬(crit i ∧ ti=0)
then tick

if waitk
then tick

if critk ∧ tk=0 and
¬wait1 ∧ . . . ∧ ¬waitn

then tick

if ¬(critk ∧ tk=0)
then tick

if crit i ∧ ti=0 ∧ waitk then tick

if critk ∧ tk=0 ∧ waiti then tick

if ¬wait1 ∧ . . . ∧ ¬waitn
then tick

Fig. 3. Control flow graph of the spinlock

section (including lock acquisition and release). In order to account for cache
effects that lead to different time behaviour for the lock acquisition, depending
on whether the lock is taken with and without spinning, we use two distributions
for the critical section length. Distribution γ0 is used when the lock was obtained
without spinning, while distribution γ1 is used if some spinning was necessary.
To obtain a DTMC model, ν and γ0, γ1 are discrete distributions with finitely
many sampling points in the relevant time intervals. E.g., the distribution ν(8) =
ν(10) = ν(12) = 1

3
indicates that with equal probability the duration of the

interim time is 8, 10 or 12 time units. The assignment ti := random(ν) means
that a sample is drawn according to distribution ν and assigned to ti.

For each process Pi, we distinguish four locations. Location starti serves to
set the timers for the first noncritical phase. The other three locations have the
obvious meaning. Location waiti signals that Pi is trying to acquire the lock.
If the lock is granted to Pi, the lock process switches to location locki, which
in turn enables the transition from waiti to criti. In location wait i, process Pi

waits until the lock has been made accessible for it. In location waiti, variable
ti does not serve as a timer. Instead, ti indicates whether process Pi has just
entered the waiting location (ti ∈ {0, 1}) or Pi is spinning as some other process
is holding the lock (ti=2). The control flow graph of the lock process contains
for each Pi one location lock i (indicating that Pi may take or holds the lock) and
one location unlock (the lock is free). For the synchronisation, we followed the
approach of PRISM’s input language with synchronisation over shared actions.
Action initialize has to be synchronised by all processes, while tick indicates one
time step and must be executed synchronously by all processes and the lock.

The states of the DTMC M for the composite model have the form s =
〈ℓ1, . . . , ℓn,m, t1=b1, . . . , tn=bn〉 where ℓi is the current location of process Pi,
m the current location of the lock and bi the current value of variable ti. Then,
Pi is spinning in state s iff s.m 6=locki, s.ℓi=waiti and s.bi=2, where we use the
dot notation to refer to parts of a state s. If process Pi performs its last critical
action and moves from location criti to ncriti then either the lock returns to
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its initial location unlock (if no process Pk is spinning) or there is a uniform
probabilistic choice for the lock to move to one of the locations lockk where
process Pk is spinning. To compute the long-run average spinning time (query
(A3)), we deal with the reward function rew spini(s) = 1 for each state s where
process Pi is spinning. For all other states s, we have rew spini(s) = 0.

Formalisation of queries (A1)–(A4). In the sequel, we use propositional for-
mulas over the locations and conditions on the values of t1, . . . , tn to characterise
sets of states. For instance, criti is identified with the set {s ∈ S : s.ℓi = criti},
where S denotes the state space of the DTMC M for the composite system.
Condition requesti = waiti ∧ ti=0 characterises the set of states s in M where
process Pi has just requested the lock. The set of states where process Pi spins
is specified by spini = waiti ∧ ti=2 ∧ ¬lock i. Finally, releasei = criti ∧ ti=0
characterises the states s where process Pi is just performing its last critical
actions and the lock is to be released next. The relevant quantitative measures
(A1)–(A4) of Section 2 now correspond to the following values.

(A1) P
M
(

ϕ1

∣

∣ requesti
)

where ϕ1 = © locki

(A2) P
M
(

ϕ2

∣

∣ releasei
)

where ϕ2 = © ( unlock U locki )

(A3) R
M
(

♦ locki
∣

∣ requesti
)

(A4) min
{

t ∈ N : PM
(

♦6t+1locki
∣

∣ requesti
)

> 0.95
}

(A1), (A3) and (A4) refer to the conditional steady-state distribution for the
condition that process Pi has just performed its first request operation. (A1)
corresponds to the long-run probability under the condition requesti for the path
event ϕ1 = © locki stating that in the next time step process Pi will win the
race between the waiting processes, i.e., it will enter its critical section without
spinning. (A3) stands for the long-run average spinning time from states where
Pi has just requested its critical section. Replacing the condition requesti in (A3)
with waiti ∧ t1=1 ∧ ¬locki, we obtain the long-run average spinning time, pro-
vided that the first attempt to acquire the lock was not successful. The quantile
in (A4) corresponds to the minimal number t of time steps minus one such that
the long-run probability from the requesti-states for the path event ♦6t+1locki
stating that the lock will be granted for process Pi in t+1 or fewer steps is at least
0.95. For the long-run probability of acquiring the lock, again without interfer-
ence by other processes (see (A2)), there are several reasonable formalisations.
For the constraint that no process other than Pi requested the lock in the mean
time, we can deal with the path event ϕ2 = ©( unlock U locki) under the condi-
tion that process Pi will release the lock in the next step (condition releasei). The
variant of (A2) where other processes may have acquired and released the lock in
between the critical sections of Pi and where Pi has not to spin and hence expe-
riences a low overhead lock can be formalised as PM

(

ϕ′
2

∣

∣ requesti
)

for the event

specified by the LTL-formula ϕ′
2 = ©

(

locki U (ncriti ∧ (¬spini U criti))
)

. The
treatment of (A2) using ϕ2 or ϕ′

2 is rather complex since the standard treatment
of LTL-queries relies on a probabilistic reachability analysis of a product con-
struction of a deterministic ω-automaton and the DTMC (see e.g. [2]). To avoid
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this automaton-based approach, one can replace ϕ2 and ϕ′
2 with a simpler reach-

ability condition when refining the control flow graph of Pi by duplicating the
control loop ncriti waiti criti. This can be realised by introducing a Boolean vari-
able b that flips its value after leaving the critical section, see the extended version
of this paper, and justified using an appropriate notion of bisimulation. The con-
trol flow graphs for the lock and the other processes remain unchanged. Then,
instead of ϕ2 and ϕ′

2 we can then deal with ψ2 = (locki ∨ unlock) U (criti ∧ b)
and ψ′

2 = ¬spini U (criti∧b) under the condition releasei∧¬b and requesti∧¬b,
respecively. Indeed, our experiments show that the analysis of M′ with the mod-
ified queries is more efficient than the analysis of M.

4 Quantitative analysis of the TTS spinlock

Our general approach to the quantitative analysis of low-level operating-system
code proceeds in four steps: (1) The targeted operating-system code is formalised
at a suitable level of abstraction in the input language of a probabilistic model
checker. For our TTS lock case study, we used the prominent model checker
PRISM [13]. (2) The parameters of the model are determined with the help
of measurements in the targeted setting. If this is not possible due to unduly
high interference with the instrumentation code, we extract the relevant code
and measure it in the form of a microbenchmark in a controlled environment.
(3) The queries of interest are evaluated both by the model checker and with
a microbenchmark that again executes the code in a manageable environment.
This step is necessary to determine how well the model corresponds to the tar-
geted setting. (4) The queries are evaluated on the parameters obtained for the
real workload and if possible cross-checked against measurements in this setting.
There are two situations in which such a comparison is infeasible, namely when
the interference between the instrumentation code and the targeted operating-
system code fundamentally changes the behaviour of the latter or when the
analysis is performed with parameters of a system that does not yet exist.

The measurements done in the microbenchmarks do as well interfere with
the to-be-analysed code. However, these measurements only extract the required
model parameters (possibly only one at a time). The challenge is to construct a
setting where this interference is limited only to those parameters that are not
currently extracted. We now report on our experiences in adjusting the model
with the help of a microbenchmark and measurement-based simulation.
Measurement-based simulation. For the extraction of the two distributions
γ0 and γ1 for the critical section and for the distribution ν for the interim
section, we can resort to random sampling and similar techniques [14] to deduce
the characteristics of the workload we seek to investigate. Very short critical
sections and the acquire and release costs of the lock must however be measured
in an environment where it is possible to control side effects on the quantity
of interest. For the TTS lock, we construct such an environment by mimicking
the behaviour of the formal model in the critical and interim section. When a
process enters a critical section, it selects pseudorandomly a sampling point of
the distribution γ0 if the lock was free and of γ1 if it had to spin. A counter in the
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spinning loop (in Line 4 in Fig. 1) reveals whether or not the process was able
to obtain the lock without spinning. We pass this counter in a processor register
not to disturb the timing of the TTS code. The actual instrumentation consists
of three reads of the per core time stamp counter, before and after acquiring
the invocation of the lock() function in Line 2 and after the unlock() function
returns. Both the critical and interim section consist of a loop of an integer
instruction: rep; dec %eax. We have confirmed that the execution time of this
loop is very regular. The loop executes for a time that is proportional to the
sampling point selected for the respective critical or interim section.

Quantitative analysis using PRISM. For the quantitative analysis of the
DTMC of the TTS spinlock we used the probabilistic model checker PRISM [13].
We mainly concentrated on (A1)–(A4), but also considered functional and a few
more quantitative queries. To obtain empirical evidence in the model and in the
model checking results we compare the model checking results with measure-
ments of the model mimicking a microbenchmark. Unfortunately, PRISM has no
direct support for computing conditional long-run probabilities or quantile-based
queries. We extended the PRISM code by operators that compute conditional
long-run probability P

M
(

ϕ
∣

∣C
)

and conditional long-run accumulated rewards

R
M
(

♦Y
∣

∣C
)

where ϕ is a PCTL path formula and Y , C sets of states. Although
there is also no direct support for (A4) in PRISM, quantiles that refer to the
amount of time until some event occurs can be calculated with the same itera-
tive bottom-up computation scheme as for bounded reachability properties. In
(A4), we are interested in the minimal t ∈ N such that the conditional long-run
probability is greater than some fixed probability value. For finding the minimal
value t ∈ N with the above property efficiently, we modified the implementation
of the bounded until operator in PRISM to store the intermediate probabilities
for all 0 6 j 6 t. Instead of a more direct evaluation at the MTBDD level of
PRISM, this storing of intermediate results allows for an external script to check
the gradually increasing values of the bounded until formula without restarting
the model checking for each such check.

Lessons learned. During the analysis of the queries (A1)–(A4) and in the
course of performing and evaluating the measurements for the simulation, we
encountered several difficulties that we would like to share.

Cascade effects. We first evaluated (A1)–(A4) using a model where the length
of the critical section and the interim time are deterministic, i.e., where γ0 = γ1
and ν are Dirac distributions with values Tcrit and Tint and where Tcrit << Tint .
A simulation run of the model revealed a probabilistic choice of the order in
which processes acquire the lock for the first time. For all subsequent turns,
the processes received the lock in this same order and without having to spin.
Small variations in the lock acquisition times and in the points in time when
the processes start prevented the measurement-based simulation from entering
a similar cascade. These cascade effects, however, do not appear for more realistic
models where at least ν is a distribution with |supp(ν)| > 2. Assuming that the
values for ν are much larger than those for γ0 and γ1, such DTMC models only
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have one bottom strongly component, which justifies to apply the measurements
for just a few simulation runs.

Short critical sections. One of the first workloads we evaluated, was a system
call of the Nova microhypervisor [19] in which very short TTS-lock protected
critical sections alternate with relatively long sequences of interim activities.
The measure-based approach encountered situations where the lock-acquisition
times exceeded the critical section length. To avoid a too fine granular (discrete)
time domain for the DTMC model that would rule out the feasibility of model
checking techniques, we used time domains of different granularity for the mea-
surements and the DTMC model and relate them via a scaling factor sf . E.g.,
for the scaling factor sf = 1000, one time unit in the DTMC model corresponds
to 1000 cycles (approx. 362 ns) on the target system.

Varying acquisition times. In an early version of the microbenchmark, we ad-
justed the rep; dec %eax loops, which together with the pseudo random choice
of a sampling point mimic the distributions of the critical and interim sections,
to the same constant value for all processes. More precisely, for γ(x) = 1, we ad-
justed the loop in critical to consume as close as possible to 1000 cycles minus the
time required to execute the instrumentation code. However, the average costs
for acquiring and releasing a lock increase with the number of processes that
require this lock. One explanation for this behaviour could be that the costs for
invalidating a cache line when acquiring or releasing the lock vary with varying
number of cores. This is because the on-chip networks in modern multicore pro-
cessors connect cores in a point-to-point fashion while maintaining information
about the locations of copies of cache lines.

Controlled measurement environment. We realised early variants of our mi-
crobenchmark as a Linux user-level application, disabled all obvious sources of
interference and raised the priority of this application into the otherwise empty
real-time priority band. From the results, we classified spikes as interference and
ignored these points in our comparison with the formal model. Still, we expe-
rienced high fluctuations of the measurement results, which could not easily be
explained. In a repeated measurement on top of a small kernel binary, which
we just used to bootstrap our microbenchmark and to communicate the results
after the measurement part completed, these variations did not reappear. We
therefore take this effect as an indicator and as a warning that the interference
of large operating-system kernels on short executing microbenchmarks should
not be underestimated and best be avoided whenever this is possible.

Need for two critical distributions. After having performed the above adjust-
ments, we observed a discrepancy between the model checking results and the
measurements of approx. 20% (see the model I results in Fig. 4(a)–4(c)). Fol-
lowing an in-depth search for possible causes both in the model and in the
microbenchmark, we identified small variations between the costs of acquiring a
lock with and without spinning. In the course of this search, we encountered sev-
eral other possible causes such as the quantisation due to scaling, which showed
similar small variations in the measurements. To confirm these factors, we ad-
justed a copy of the measurement data to mimic the effect we suspected to

11
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(a) Probability to grab the lock (A1)
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(b) Average waiting time (A3)
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(c) 95% quantile (A4)
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Fig. 4. (a)-(c) results for model I and II and (d) the histogram for acquire time

determine the magnitude of the impact this effect could have. If this impact was
in a range where it could have explained a significant part of this discrepancy,
we adjusted the formal model accordingly. For the small variations between lock
acquisition times, we changed the model from a single Dirac distribution for the
critical section length to the two Dirac distributions γ0 and γ1 in Fig. 2.
Unfortunately, the value of the singleton sampling point of γ1 could not be
directly measured because it would require the inclusion of rdtsc in the spinning
loop (Line 4 in Fig. 1) to read the core cycle counter, which would significantly
change the timing behaviour of the lock. We therefore calculate the average
costs for acquiring a lock under the condition that a process had to spin by
comparing the time stamps of the releasing cores with the time stamps of the
lock acquiring cores. However, although the time stamp counter for cores on
the same die are derived from the same clock, there is an offset caused by the
barrier on which these cores synchronise to start the measurement at approx.
the same point in time. The two dashed lines in Fig. 4(d) show the acquire spin
costs per core. The figure also shows the acquire spin costs after normalising the
offset between the two clocks. We choose the spike as the sampling point for γ1.
The scaling factor sf = 1000 that we used to deal with the single-distribution
model (where γ(1) = 1) was no longer adequate for integrating the resulting

12



distributions (γ0(5)=γ1(6)=1) into the DTMC model. We therefore decreased
the scaling factor to sf=200.
Evaluation of the results. Fig. 4(a)–4(c) show the results of our quantitative
analysis of the queries (A1)–(A4). We omit the plot for (A2) because, for selected
distributions, the chance to re-acquire the lock without interference by other pro-
cesses is close to zero. The plots compare our measurements with the results from
two models. Model I is our earlier, simpler model which uses only one distribution
for the critical section (γ0=γ1). Model II is more precise because it uses different
distributions γ0 and γ1 as explained before. The x-axis displays the number of
processes and the distributions used for model II and, with scaling factor sf=200,
for the measurement. The label 3[5][6][40, 50, 60] stands for n=3 processes and
the distributions γ0(5)=γ1(6)=1 and ν(40)=ν(50)=ν(60)=1

3
. The distribution

for model I, which uses scaling factor sf=1000, is obtained by dividing all values
by 5 and using the value of γ0 for γ1 too. Thus, for model I, the same label stands
for the model with 3 processes, γ0(1)=γ1(1)=1 and ν(8)=ν(10)=ν(12)=1

3
. We

performed the measurements on an Intel i7 920 quadcore machine at 2.67 GHz.
The benchmark and the sampling area for storing the measurement results fit-
ted completely in the on-die caches. Fig. 4(a) shows that the introduction of
γ1 reduced the error between the measured and analysed results from 20% for
model I to below 1% for model II. The discrepancy between model II and the
measurements in Fig. 4(c) is due to the quantisation of the model. That is,
the model considers changes of the waiting time only in steps of sf=200 cycles,
which corresponds to one fifth (0.2) of the critical section length. The differences
between the results obtained for the models with parameters n[5][6][40, 50, 60]
and n[5][6][40, 60] (where n ∈ {2, 3, 4}) illustrate that not only the mean value,
but also the variance of distribution ν for the interim time has non-negligible
impact on (A1)-(A4).

For model I (sf=1000 and γ0=γ1), we used PRISM to compute (A1)–(A4)
for the DTMC with up to six processes. For model II (sf=200, γ0 6= γ1) the
analysis has been carried out with up to four processes. Because of the reduced
scaling factor, model II is far more complex. E.g., for n=4 processes and the
distribution ν(8) = ν(14) = 1

2
the DTMC for model I has about 104 states,

while for model II with the corresponding distribution ν(40) = ν(70) = 1

2
the

DTMC has about 2.5 · 106 states. In a nutshell, for the DTMC with n=6 and
sf=1000 PRISM needs a few minutes for all queries, while for n=4 and sf=200
the computation can take a few hours. In most cases, the computation of the
steady-state probabilities is the most time consuming part. For more information
on the PRISM statistics (MTBDD sizes, time for the model construction and
the quantitative analysis) we refer to the extended version.

5 Conclusions

The paper presents a first step towards the application of probabilistic model
checking techniques for the quantitative analysis of low-level operating-system
code. We reported on the difficulties we encountered when analysing a simple
test-and-test-and-set (TTS) spinlock with the model checker PRISM and on our
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solutions to address them. A major challenge was to find an appropriate level
of abstraction that allows to capture all relevant behaviour and allows to ab-
stract from the precise timing behaviour of the cache and other CPU parts. We
performed extensive measurement-based simulations of real spinlocks to demon-
strate that our abstract model does indeed reproduce important aspects of the
timing behaviour. We considered a representative list of properties that are of
high interest to the system designer when he has to choose the right lock imple-
mentation. These properties involve conditional steady-state probabilities and
quantiles. To overcome the lack of direct tool support for both types of queries,
we added the relevant features in the PRISM code.

Related work. Many researchers performed case studies with probabilistic model
checkers for mutual exclusion protocols and other coordination algorithms for
distributed systems (see e.g. [8, 16, 17] or the PRISM web pages [13]). While some
of these case studies address the analysis of randomised protocols, we deal with
non-randomised operating-system primitives (the TTS spinlock). Our models
rely on stochastic assumptions on the execution times of the critical section and
interim sections of competing processes). Unlike the wide range of case studies
with continuous-time models, where rates of exponential distributions specify,
e.g., the frequency of the arrival of requests or the average duration of events
(see e.g. [7]), we deal with a DTMC model and discretisations of non-exponential
distributions. Of course, there have been plenty of case studies with the DTMC
engine of PRISM, but we are not aware of experiments that have been carried out
where the modelling and evaluation process was accompanied by measure-based
techniques. To the best of our knowledge, none of these case studies considers
conditional steady-state probabilities or quantile-based queries. The majority of
work on model checking low-level operating-system code concentrates on proper-
ties in the safety-liveness domain. E.g., [23] used model checking to find serious
file system bugs. Formal quantitative analyses often consider only worst-case
execution times as measure. For the special case of probabilistic worst-case ex-
ecution times (i.e. queries similar to Query (A3)), [3] presents a timing-schema
based on independent or only pairwise dependent (i.e., joint) execution profiles.

Future work. It would be very interesting to scale the analysis of basic and more
advanced spinlocks for CPUs with more than 100 cores. Such results could jus-
tify the use of more simple locks with less overhead for certain tasks. Given the
exponential growth of the system model with the number of cores, this is an
extremely challenging task and requires clever encoding, abstraction and reduc-
tion techniques such as symmetry reduction. Other promising candidates are
bisimulation quotienting techniques as supported by the model checker MRMC
[9, 10] and the use of sophisticated (MT)BDD-based techniques to increase the
efficiency of PRISM’s symbolic engine.
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A Appendix

A.1 Simplifications of model I for scaling factor 1000

In Section 4, we described model I to use only one distribution γ
def

= γ0 = γ1
for the length of the critical section. In addition to the larger scaling factor for
model I (i.e., sf=1000 in contrast to sf=200 for model II), there are several
possibilities for simplifying the control flow graph.

The following simplifications have been used for the evaluation of model I. In
the following, we consider i = 1 and analyze the quantitative behavior of process
P1 against queries (A1)–(A4).

start j ncritj

waitjcritj

initialize:
tj := random(ν)

if tj=0 then tick

if lock j then tick : tj := random(γ)

if tj=0 then tick :
tj := random(ν)

if tj > 0 then tick :
tj := tj−1

if ¬lock j then tick
if tj > 0 then tick :

tj := tj−1

Fig. 5. Simplified control flow graph of Pj , 2 6 j 6 n, for Model I

For all considered queries (A1), (A2), (A2’), (A3), (A3’) and (A4), the con-
trol flow of all other processes Pj (2 6 j 6 n) can be simplified by dropping
the assignments for tj in location waitj . The simplified control flow graphs for
P2, . . . , Pn are shown in Fig. 5.

start1 ncrit1

wait1crit1

initialize:
t1 := random(ν)

if t1=0 then tick

if lock1 then tick : t1 := random(γ)

if t1=0 then tick :
t1 := random(ν)

if t1 > 0 then tick :
t1 := t1−1

if ¬lock1 then tick :
t1 := 1

if t1 > 0 then tick :
t1 := t1−1

Fig. 6. Simplified control flow graph of process P1 for model I and (A1), (A3), (A4)
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Let us now turn to the simplifications of the control graph for process P1

in Model I. Queries (A1), (A3) and (A4) reason about the waiting times for
the chosen process P1. Thus, we cannot use the same simplified control flow
graphs as for P2, . . . , Pn. Nevertheless, in (A1), (A3) and (A4) there is no need
to distinguish between states in which wait1 ∧ t1=1 (i.e., P1 just requested the
lock) and wait1 ∧ t1=2 (i.e., P1 is spinning). This leads to the simplified control
flow graph for process P1 as shown in Fig. 6.

In Section 3, we presented a variant of the conditional average waiting time
that differs from (A3) in the condition.

(A3’) R
M
(

♦ lock1
∣

∣wait1 ∧ t1=1 ∧ ¬lock1
)

For (A3’), it is crucial to distinguish those states where wait1 ∧ t1=1 holds and
those states where wait1 ∧ t1=2 holds. Thus, the simplification of Fig. 6 is not
adequate for dealing with (A3’). To evaluate (A3’) in model I, we used the control
flow graph of P1 as shown in Fig. 7.

start1 ncrit1

wait1crit1

initialize:
t1 := random(ν)

if t1=0 then tick

if lock1 then tick : t1 := random(γ)

if t1=0 then tick :
t1 := random(ν)

if t1 > 0 then tick :
t1 := t1−1

if ¬lock1 then tick :
t1 := min{t1+1, 2}

if t1 > 0 then tick :
t1 := t1−1

Fig. 7. Simplified control flow graph of process P1 for model I and (A3’)

A.2 Variant of model I and II for the treatment of (A2)

For the treatment of (A2), we mentioned in Section 3 the possibility to deal
with an until-property (ψ2) instead of the LTL-formula ϕ2, when duplicating
the control loop ncrit1 wait1 crit1 for process P1 (where we again assume i = 1).

Let M be the DTMC obtained by the control graphs shown in Section 3 (see
Fig. 2) for the two distribution variant of model II (i.e., γ0 6= γ1 and scaling
factor sf = 200). For model I (i.e.,γ = γ0 6= γ1 and sf = 1000) the DTMC M is
obtained by using

– the control flow graphs shown in Fig. 5 for processes P2, . . . , Pn, and
– the control flow graph shown in Section 3 for process P1 (see Fig. 2).

In both cases, the control graph for the spinlock is as described in Section 3 (see
Fig. 3).
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To avoid the costly LTL-queries for the variants (A2) and (A2’), the control
flow graph for the process P1 can be extended with a Boolean variable b, which
unrolls the control loop ncrit1 wait1 crit1. Let M′ denote the DTMC for this
extended control graph and for process P1 as shown in Fig. 8 (for model I) and
in Fig. 9 (for model II). For all other processes and for the lock, the control
graphs remain unchanged.

start1 ncrit1

wait1crit1

initialize:
t1 := random(ν)

b := false

if t1 = 0 then tick

if lock1 ∧ t1=1 then tick : t1 := random(γ)

if t1 = 0 then tick :
t1 := random(ν)

b := ¬b

if t1 > 0 then tick :
t1 := t1−1

if ¬lock1 then tick :
t1 := 1

if t1 > 0 then tick :
t1 := t1−1

Fig. 8. Extended control flow graph of process P1 for model I and (A2), (A2’)

start1 ncrit1

wait1crit1

initialize:
t1 := random(ν)

b := false

if t1 = 0 then tick

if lock1 ∧ t1=1 then tick : t1 := random(γ0)
if lock1 ∧ t1=2 then tick : t1 := random(γ1)

if t1 = 0 then tick :
t1 := random(ν)

b := ¬b

if t1 > 0 then tick :
t1 := t1−1

if ¬lock1 then tick :
t1 := min{t1+1, 2}

if t1 > 0 then tick :
t1 := t1−1

Fig. 9. Extended control flow graph of process P1 for model II and (A2), (A2’)

The variants (A2) and (A2’) refer in M to the steady-state probabilities un-
der the condition releasei = criti ∧ ti=0 and requesti = waiti ∧ ti=0, respec-
tively. In M′ these conditions correspond to release′i = criti ∧ ti=0 ∧ ¬b and
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request′i = waiti ∧ ti=0 ∧ ¬b, respectively. In the original DTMC M, we deal
with the LTL-formulas ϕ2 and ϕ′

2. The switch to M′ however permits us to use
the PCTL-formulas ψ2 and ψ′

2:

(A2) P
M
(

ϕ2

∣

∣ releasei
)

= P
M

′
(

ψ2

∣

∣ release′i
)

(A2’) P
M
(

ϕ′
2

∣

∣ requesti
)

= P
M

′
(

ψ′
2

∣

∣ request′i
)

where

ϕ2 = ©( unlock U locki)

ψ2 = (locki ∨ unlock) U (criti ∧ b)

ϕ′
2 = ©

(

locki U (ncriti ∧ (¬spini U criti)
)

ψ′
2 = ¬spini U (criti ∧ b)

A.3 Results and Statistics of the PRISM calculations

In this section, we present results and statistics of the calculations carried out
for queries (A1), (A2) and its variant (A2’), (A3) and its variant (A3’) and (A4)
using our extended version of PRISM. All the queries where evaluated for model I
with the simplifications as described in Section A.1 and scaling factor sf = 1000
and for model II with scaling factor sf = 200 as described in Section 3, with
the appropriate modifications for (A2) and (A2’) as described in Section A.2.
For model I, we present results for two to six processes, for model II, we present
results for two to four processes.

We used the sparse engine of PRISM, applying the backward Gauß-Seidel it-
eration method. The steady-state distribution which is calculated to determine
the conditional long-run probabilities and rewards is cached to allow re-use for
subsequent queries carried out in the same run. The symmetry reduction imple-
mented in PRISM was not applicable to our models. We performed all calcula-
tions on a dual-socket Intel Xeon L5630 (Quad-Core) system at 2.13 GHz with
32 GB total amount of RAM.

We will now provide tables listing the results and statistics of the various
PRISM calculations. All times are in seconds. The first columns list the number
of processes and the distributions considered in each run of PRISM using the
notation introduced on page 13. The next two columns provide statistics about
the system size, given by the number of states and the number of MTBDD
nodes used for the transition matrix. The next column lists the time spent by
PRISM for constructing the internal representation of the model and determining
reachability. The column “time steady” then shows the time spent calculating
the steady-state distribution θ(s) used for the calculation of conditional queries.
The remaining columns then provide the results and time spent for the evaluation
of the queries.
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Queries (A1), (A3) and (A3’)

For model I and scaling factor sf = 1000, the statistics for the computation of
queries (A1) and (A3) are shown in Table 1 and in Table 2 for query (A3’). For
model II and scaling factor sf = 200, Table 3 shows the statistics for all three
queries (A1), (A3) and (A3’).

The calculated value for (A1) corresponds to the probability to acquire the
lock at the first attempt. The values calculated for (A3) are the expected time a
process waits to grab the lock and the values calculated for (A3’) correspond to
the expected time a process is spinning after not acquiring the lock at the first
attempt. The graphs in Fig. 4(b) show the results normalized against the base
critical section length, i.e. 5 for model II, sf = 200 and 1000 for the measure-
ments.

number distributions system size time time (A1) (A3)
procs. γ0 ν states MTBDD build steady value time value time

2 [1] [8,10] 243 244 0.02 s 0.02 s 0.990 0.00 s 0.010 0.00 s
2 [1] [8,12] 339 239 0.03 s 0.03 s 0.988 0.00 s 0.012 0.01 s
2 [1] [10,12] 339 235 0.03 s 0.04 s 0.993 0.00 s 0.007 0.01 s
2 [1] [8,10,12] 339 247 0.02 s 0.02 s 0.982 0.00 s 0.018 0.00 s
2 [1] [8,10,12,14] 451 254 0.02 s 0.02 s 0.977 0.00 s 0.023 0.01 s

3 [1] [8,10] 2,575 1,052 0.08 s 0.08 s 0.960 0.00 s 0.045 0.02 s
3 [1] [8,12] 4,155 1,693 0.09 s 0.14 s 0.973 0.01 s 0.029 0.02 s
3 [1] [10,12] 4,287 1,039 0.13 s 0.12 s 0.970 0.01 s 0.033 0.02 s
3 [1] [8,10,12] 4,299 1,091 0.06 s 0.07 s 0.945 0.00 s 0.060 0.02 s
3 [1] [8,10,12,14] 6,647 1,132 0.06 s 0.08 s 0.940 0.01 s 0.064 0.03 s

4 [1] [8,10] 26,070 7,207 0.30 s 0.49 s 0.922 0.02 s 0.093 0.13 s
4 [1] [8,12] 48,600 11,210 0.40 s 1.12 s 0.950 0.03 s 0.055 0.26 s
4 [1] [10,12] 52,554 8,572 0.54 s 0.96 s 0.941 0.02 s 0.069 0.21 s
4 [1] [8,10,12] 53,466 4,358 0.22 s 0.53 s 0.902 0.02 s 0.115 0.13 s
4 [1] [8,10,12,14] 96,550 4,536 0.19 s 0.74 s 0.900 0.03 s 0.115 0.21 s

5 [1] [8,10] 249,966 33,500 1.21 s 2.99 s 0.880 0.08 s 0.152 0.88 s
5 [1] [8,12] 543,366 52,890 2.40 s 7.67 s 0.913 0.17 s 0.104 1.80 s
5 [1] [10,12] 621,302 45,617 2.77 s 7.47 s 0.909 0.15 s 0.112 1.89 s
5 [1] [8,10,12] 650,782 19,685 1.10 s 4.23 s 0.857 0.12 s 0.180 1.31 s
5 [1] [8,10,12,14] 1,383,077 16,255 0.93 s 7.21 s 0.857 0.23 s 0.177 2.50 s

6 [1] [8,10] 2,259,830 131,803 7.37 s 21.49 s 0.833 0.51 s 0.223 6.19 s
6 [1] [8,12] 5,737,572 218,922 17.14 s 51.77 s 0.865 1.17 s 0.178 14.92 s
6 [1] [10,12] 7,055,432 205,199 19.92 s 69.37 s 0.873 1.34 s 0.163 16.78 s
6 [1] [8,10,12] 7,704,497 89,681 5.94 s 39.53 s 0.810 1.20 s 0.257 14.54 s
6 [1] [8,10,12,14] 19,478,654 61,027 5.94 s 85.94 s 0.813 2.70 s 0.250 34.88 s

Table 1. (A1) and (A3) for sf = 1000
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number distributions system size time time (A3’)
procs. γ0 ν states MTBDD build steady value time

2 [1] [8,10] 245 269 0.02 s 0.02 s 1.000 0.01 s
2 [1] [8,12] 341 264 0.03 s 0.03 s 1.000 0.01 s
2 [1] [10,12] 341 260 0.03 s 0.04 s 1.000 0.01 s
2 [1] [8,10,12] 342 275 0.02 s 0.03 s 1.000 0.01 s
2 [1] [8,10,12,14] 455 283 0.03 s 0.02 s 1.000 0.01 s

3 [1] [8,10] 2,618 1,156 0.08 s 0.08 s 1.114 0.02 s
3 [1] [8,12] 4,206 1,824 0.09 s 0.14 s 1.043 0.04 s
3 [1] [10,12] 4,338 1,141 0.13 s 0.13 s 1.106 0.02 s
3 [1] [8,10,12] 4,373 1,198 0.06 s 0.08 s 1.089 0.02 s
3 [1] [8,10,12,14] 6,758 1,248 0.06 s 0.09 s 1.076 0.03 s

4 [1] [8,10] 26,748 7,538 0.31 s 0.50 s 1.186 0.16 s
4 [1] [8,12] 49,548 11,746 0.42 s 1.12 s 1.105 0.28 s
4 [1] [10,12] 53,514 8,965 0.56 s 0.99 s 1.166 0.22 s
4 [1] [8,10,12] 54,817 4,734 0.24 s 0.55 s 1.171 0.16 s
4 [1] [8,10,12,14] 98,844 4,930 0.20 s 0.76 s 1.154 0.25 s

5 [1] [8,10] 258,990 34,675 1.24 s 3.00 s 1.260 1.04 s
5 [1] [8,12] 558,258 54,803 2.50 s 7.86 s 1.203 2.11 s
5 [1] [10,12] 636,782 47,135 2.80 s 7.56 s 1.225 2.04 s
5 [1] [8,10,12] 672,378 20,604 1.13 s 4.42 s 1.259 1.44 s
5 [1] [8,10,12,14] 1,424,878 17,286 0.98 s 7.41 s 1.240 2.64 s

6 [1] [8,10] 2,366,890 134,861 7.42 s 21.08 s 1.334 7.59 s
6 [1] [8,12] 5,946,062 223,652 17.81 s 52.39 s 1.318 16.34 s
6 [1] [10,12] 7,281,652 209,554 19.36 s 70.54 s 1.283 17.42 s
6 [1] [8,10,12] 8,022,062 92,093 6.37 s 40.72 s 1.354 15.93 s
6 [1] [8,10,12,14] 20,185,714 63,320 6.25 s 89.70 s 1.336 36.10 s

Table 2. (A3’) for sf = 1000
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number distributions system size time time (A1) (A3) (A3’)
procs. γ0 γ1 ν states MTBDD build steady value time value time value time

2 [5] [6] [40,50] 1,342 1,445 0.12 s 0.29 s 0.944 0.00 s 0.086 0.02 s 1.545 0.01 s
2 [5] [6] [40,60] 2,202 1,687 0.20 s 0.51 s 0.983 0.00 s 0.052 0.03 s 3.118 0.02 s
2 [5] [6] [50,60] 1,852 1,628 0.18 s 0.43 s 0.955 0.00 s 0.066 0.02 s 1.462 0.02 s
2 [5] [6] [40,50,60] 2,506 1,029 0.12 s 0.25 s 0.926 0.00 s 0.129 0.02 s 1.745 0.02 s
2 [5] [6] [40,50,60,70] 3,350 1,227 0.15 s 0.31 s 0.925 0.00 s 0.145 0.03 s 1.926 0.02 s

3 [5] [6] [40,50] 67,001 32,772 4.05 s 3.45 s 0.872 0.03 s 0.277 0.57 s 2.166 0.45 s
3 [5] [6] [40,60] 142,575 40,645 11.57 s 9.24 s 0.955 0.05 s 0.147 0.99 s 3.229 0.72 s
3 [5] [6] [50,60] 110,013 42,545 7.77 s 5.94 s 0.898 0.05 s 0.209 0.98 s 2.047 0.87 s
3 [5] [6] [40,50,60] 195,849 10,892 3.56 s 6.38 s 0.850 0.04 s 0.362 0.67 s 2.410 0.54 s
3 [5] [6] [40,50,60,70] 306,697 12,344 4.06 s 8.77 s 0.854 0.06 s 0.371 1.06 s 2.547 0.85 s

4 [5] [6] [40,50] 4,082,808 569,046 316.31 s 149.10 s 0.797 1.12 s 0.531 25.34 s 2.612 22.13 s
4 [5] [6] [40,60] 8,776,938 822,186 819.24 s 385.80 s 0.889 2.11 s 0.376 48.96 s 3.395 41.39 s
4 [5] [6] [50,60] 8,325,516 878,109 759.38 s 313.11 s 0.838 2.06 s 0.397 48.57 s 2.446 38.44 s
4 [5] [6] [40,50,60] 13,580,130 117,898 127.21 s 150.41 s 0.767 2.06 s 0.669 35.78 s 2.865 33.06 s
4 [5] [6] [40,50,60,70] 25,406,006 113,008 144.22 s 299.64 s 0.775 3.71 s 0.668 70.44 s 2.967 65.21 s

Table 3. (A1), (A3) and (A3’) for sf = 200
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Queries (A2) and (A2’)

For queries (A2) and (A2’) the model variants and PCTL queries as described
in Sec. A.2 where used. For model I and scaling factor sf = 1000, the results
and statistics are shown in Table 4, while the results and statistics for model II
and scaling factor sf = 200 are shown in Table 5. The calculated value for (A2)
corresponds to the probability to re-acquire a previously held lock without other
processes having acquired the lock in the meantime. The values for (A2’) are the
probability to acquire the lock without spinning twice in a row.

number distributions system size time time (A2) (A2’)
procs. γ0 ν states MTBDD build steady value time value time

2 [1] [8,10] 482 350 0.03 s 0.04 s 0.051 0.01 s 0.980 0.01 s
2 [1] [8,12] 670 416 0.04 s 0.05 s 0.094 0.02 s 0.976 0.02 s
2 [1] [10,12] 674 339 0.04 s 0.06 s 0.042 0.01 s 0.986 0.02 s
2 [1] [8,10,12] 674 354 0.03 s 0.04 s 0.081 0.01 s 0.963 0.02 s
2 [1] [8,10,12,14] 898 364 0.03 s 0.03 s 0.105 0.02 s 0.953 0.02 s

3 [1] [8,10] 5,103 1,547 0.12 s 0.13 s 0.003 0.04 s 0.923 0.12 s
3 [1] [8,12] 8,235 2,190 0.14 s 0.21 s 0.017 0.06 s 0.946 0.16 s
3 [1] [10,12] 8,523 1,650 0.20 s 0.21 s 0.002 0.04 s 0.943 0.15 s
3 [1] [8,10,12] 8,554 1,356 0.09 s 0.12 s 0.011 0.05 s 0.893 0.15 s
3 [1] [8,10,12,14] 13,238 1,406 0.11 s 0.14 s 0.019 0.06 s 0.884 0.19 s

4 [1] [8,10] 51,817 8,154 0.51 s 0.81 s 0.000 0.18 s 0.854 0.81 s
4 [1] [8,12] 96,841 12,150 0.71 s 1.77 s 0.003 0.30 s 0.903 1.47 s
4 [1] [10,12] 104,725 9,695 0.93 s 1.56 s 0.000 0.27 s 0.889 1.42 s
4 [1] [8,10,12] 106,576 5,160 0.48 s 0.96 s 0.001 0.20 s 0.817 1.13 s
4 [1] [8,10,12,14] 192,560 5,214 0.44 s 1.32 s 0.004 0.29 s 0.811 1.61 s

5 [1] [8,10] 499,170 34,427 2.21 s 5.20 s 0.000 0.74 s 0.781 5.26 s
5 [1] [8,12] 1,085,326 54,670 4.35 s 13.09 s 0.000 1.66 s 0.835 10.59 s
5 [1] [10,12] 1,241,718 46,530 5.20 s 13.72 s 0.000 1.69 s 0.831 10.83 s
5 [1] [8,10,12] 1,299,121 22,551 2.49 s 7.68 s 0.000 1.24 s 0.739 7.96 s
5 [1] [8,10,12,14] 2,761,581 17,411 2.41 s 13.41 s 0.001 2.32 s 0.737 13.15 s

6 [1] [8,10] 4,516,160 133,779 11.53 s 39.53 s 0.000 3.92 s 0.703 25.45 s
6 [1] [8,12] 11,465,152 223,238 25.80 s 89.18 s 0.000 10.17 s 0.751 59.16 s
6 [1] [10,12] 14,107,112 207,169 30.52 s 130.06 s 0.000 11.51 s 0.770 65.64 s
6 [1] [8,10,12] 15,390,508 97,733 13.10 s 70.81 s 0.000 10.70 s 0.662 55.19 s
6 [1] [8,10,12,14] 38,925,105 67,238 14.68 s 158.19 s 0.000 25.76 s 0.664 113.91 s

Table 4. (A2) and (A2’) for sf = 1000
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number distributions system size time time (A2) (A2’)
procs. γ0 γ1 ν states MTBDD build steady value time value time

2 [5] [6] [40,50] 2,674 1,554 0.17 s 0.38 s 0.056 0.06 s 0.889 0.14 s
2 [5] [6] [40,60] 4,384 1,799 0.28 s 0.77 s 0.100 0.09 s 0.967 0.20 s
2 [5] [6] [50,60] 3,694 1,739 0.26 s 0.59 s 0.045 0.08 s 0.909 0.20 s
2 [5] [6] [40,50,60] 5,002 1,036 0.19 s 0.38 s 0.085 0.08 s 0.852 0.23 s
2 [5] [6] [40,50,60,70] 6,690 1,220 0.21 s 0.46 s 0.107 0.11 s 0.849 0.31 s

3 [5] [6] [40,50] 133,604 33,875 5.80 s 5.11 s 0.000 1.05 s 0.760 6.59 s
3 [5] [6] [40,60] 284,682 42,058 15.53 s 14.11 s 0.020 2.12 s 0.910 12.11 s
3 [5] [6] [50,60] 219,558 45,011 11.32 s 9.05 s 0.000 1.85 s 0.806 10.88 s
3 [5] [6] [40,50,60] 391,588 10,523 6.50 s 10.84 s 0.008 1.25 s 0.720 12.66 s
3 [5] [6] [40,50,60,70] 613,254 11,610 7.84 s 14.96 s 0.017 1.99 s 0.726 21.21 s

4 [5] [6] [40,50] 8,164,362 652,002 394.71 s 254.47 s 0.000 33.16 s 0.639 247.55 s
4 [5] [6] [40,60] 17,552,628 939,739 1,063.92 s 669.62 s 0.003 68.19 s 0.785 513.10 s
4 [5] [6] [50,60] 16,649,628 1,037,676 1,134.80 s 529.04 s 0.000 68.11 s 0.706 487.28 s
4 [5] [6] [40,50,60] 27,155,404 126,006 218.60 s 263.96 s 0.001 36.76 s 0.590 453.80 s
4 [5] [6] [40,50,60,70] 50,810,662 115,527 278.36 s 528.41 s 0.003 74.33 s 0.600 878.63 s

Table 5. (A2) and (A2’) for sf = 200
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Query (A4)

The statistics for the computation of the quantile in (A4) are shown in Table 6
for model I and scaling factor sf = 1000 and in Table 7 for model II and scaling
factor sf = 200. The threshold is 0.95. Column “steps” provides the resulting
bound t necessary for surpassing the threshold probability, with column “prob.”
providing the probability for the calculated bound t. The last column reports
the time needed by the external script for the evaluation of the calculated values
in each iteration of the bounded until calculation to determine at which step
the threshold is surpassed, with PRISM calculating the necessary data for all
bounds t 6 5. To facilitate a comparison, we normalized the values t obtained
from model II, sf = 200 and the measurements for Fig. 4(c), against the base
critical section length, i.e. 5 and 1000, respectively.

number distributions system size time time (A4) time
procs. γ0 ν states MTBDD build steady steps prob. time script

2 [1] [8,10] 243 244 0.02 s 0.03 s 0 0.990 0.01 s 0.03 s
2 [1] [8,12] 339 239 0.03 s 0.03 s 0 0.988 0.01 s 0.03 s
2 [1] [10,12] 339 235 0.03 s 0.04 s 0 0.993 0.01 s 0.03 s
2 [1] [8,10,12] 339 247 0.02 s 0.02 s 0 0.982 0.01 s 0.03 s
2 [1] [8,10,12,14] 451 254 0.02 s 0.03 s 0 0.977 0.01 s 0.04 s

3 [1] [8,10] 2,575 1,052 0.08 s 0.08 s 0 0.960 0.03 s 0.25 s
3 [1] [8,12] 4,155 1,693 0.09 s 0.15 s 0 0.973 0.04 s 0.37 s
3 [1] [10,12] 4,287 1,039 0.13 s 0.13 s 0 0.970 0.04 s 0.37 s
3 [1] [8,10,12] 4,299 1,091 0.06 s 0.08 s 1 0.995 0.04 s 0.38 s
3 [1] [8,10,12,14] 6,647 1,132 0.06 s 0.09 s 1 0.995 0.05 s 0.51 s

4 [1] [8,10] 26,070 7,207 0.30 s 0.49 s 1 0.986 0.39 s 2.65 s
4 [1] [8,12] 48,600 11,210 0.41 s 1.12 s 0 0.950 0.47 s 4.18 s
4 [1] [10,12] 52,554 8,572 0.54 s 0.96 s 1 0.991 0.50 s 4.50 s
4 [1] [8,10,12] 53,466 4,358 0.22 s 0.53 s 1 0.984 0.38 s 4.58 s
4 [1] [8,10,12,14] 96,550 4,536 0.19 s 0.74 s 1 0.986 0.57 s 7.21 s

5 [1] [8,10] 249,966 33,500 1.21 s 2.98 s 1 0.973 3.50 s 25.03 s
5 [1] [8,12] 543,366 52,890 2.40 s 7.52 s 1 0.985 7.02 s 48.43 s
5 [1] [10,12] 621,302 45,617 2.78 s 7.51 s 1 0.981 8.96 s 53.40 s
5 [1] [8,10,12] 650,782 19,685 1.10 s 4.25 s 1 0.968 7.46 s 55.68 s
5 [1] [8,10,12,14] 1,383,077 16,255 0.93 s 7.21 s 1 0.971 16.81 s 104.21 s

6 [1] [8,10] 2,259,830 131,803 7.35 s 21.56 s 1 0.954 33.74 s 235.32 s
6 [1] [8,12] 5,737,572 218,922 17.22 s 51.95 s 1 0.967 101.20 s 525.70 s
6 [1] [10,12] 7,055,432 205,199 20.03 s 69.37 s 1 0.969 120.14 s 632.48 s
6 [1] [8,10,12] 7,704,497 89,681 5.91 s 39.32 s 2 0.988 126.60 s 683.72 s
6 [1] [8,10,12,14] 19,478,654 61,027 5.96 s 86.34 s 1 0.951 291.18 s 1,576.28 s

Table 6. (A4) for sf = 1000 and threshold 0.95
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number distributions system size time time (A4) time
procs. γ0 γ1 ν states MTBDD build steady steps prob. time script

2 [5] [6] [40,50] 1,342 1,445 0.12 s 0.29 s 1 0.990 0.02 s 0.04 s
2 [5] [6] [40,60] 2,202 1,687 0.21 s 0.52 s 0 0.983 0.03 s 0.06 s
2 [5] [6] [50,60] 1,852 1,628 0.18 s 0.45 s 0 0.955 0.02 s 0.05 s
2 [5] [6] [40,50,60] 2,506 1,029 0.12 s 0.25 s 1 0.982 0.02 s 0.07 s
2 [5] [6] [40,50,60,70] 3,350 1,227 0.15 s 0.32 s 1 0.977 0.03 s 0.09 s

3 [5] [6] [40,50] 67,001 32,772 4.06 s 3.45 s 2 0.955 0.59 s 2.40 s
3 [5] [6] [40,60] 142,575 40,645 15.25 s 9.73 s 0 0.955 1.02 s 4.63 s
3 [5] [6] [50,60] 110,013 42,545 7.72 s 5.85 s 1 0.961 0.95 s 3.54 s
3 [5] [6] [40,50,60] 195,849 10,892 3.59 s 6.38 s 3 0.960 0.72 s 6.08 s
3 [5] [6] [40,50,60,70] 306,697 12,344 4.04 s 8.72 s 3 0.955 1.05 s 8.72 s

4 [5] [6] [40,50] 4,082,808 569,046 305.10 s 145.49 s 4 0.954 35.48 s 141.65 s
4 [5] [6] [40,60] 8,776,938 822,186 825.78 s 394.35 s 3 0.950 60.60 s 290.65 s
4 [5] [6] [50,60] 8,325,516 878,109 754.58 s 309.86 s 3 0.957 65.04 s 259.34 s
4 [5] [6] [40,50,60] 13,580,130 117,898 131.74 s 158.47 s 5 0.986 69.82 s 422.28 s
4 [5] [6] [40,50,60,70] 25,406,006 113,008 149.04 s 313.46 s 4 0.953 111.51 s 729.37 s

Table 7. (A4) for sf = 200 and threshold 0.95
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