
Reduction Methods for Probabilistic
Model Checking

Dissertation

zur Erlangung des akademischen Grades
Doktor rerum naturalium (Dr. rer. nat.)

vorgelegt an der
Technischen Universität Dresden

Fakultät Informatik

eingereicht von

M.Sc. Marcus Thomas Größer
geboren am 21. März 1975 in Bernkastel-Kues

Gutachter:
Prof. Dr. rer. nat. habil. Christel Baier
Technische Universität Dresden

Prof. Dr. Pedro R. D’Argenio
Universidad Nacional de Córdoba

Prof. Dr. Ir. Joost-Pieter Katoen
Rheinisch-Westfälische Technische Hochschule Aachen

Tag der Verteidigung: 28.08.2008

Dresden, im September 2008

Abstract

Model Checking is a fully automatic verification method that has undergone a vast devel-
opment for almost 30 years now. In contrast to simulation and testing, model checking is a
verification technique that explores all possible system states exhaustively and can therefore
reveal errors that have not been discovered by testing or simulation. It thus is a prominent
verification technique for safety-critical systems. However, exploring the entire state space
makes model checking very sensitive to the size of the system to be verified.

In this thesis, we address the issue of reduction techniques for probabilistic model check-
ing. Taking probabilities into account in addition to nondeterministic behavior expands the
possibilities of modeling certain aspects of the system under consideration. While nondeter-
ministic systems are considered in connection to underspecification, interleaving of several
processes and interaction with the specified system from the outside, the probabilities can be
exploited to model a certain probability of error or other stochastic behavior both occurring
in various real world applications, e.g. randomized algorithms or communication protocols
over faulty media. In this thesis we restrict our investigations to models that are specified
by Markov decision processes.

On the one hand we study the applicability of partial order reduction methods on Markov
decision processes. These allow to construct a submodel of the model to be verified and to
model check the (smaller) submodel, yielding a valid answer also for the original model.
We investigate Doron Peled’s ample set method in a probabilistic setting and point out
that the classical conditions on the ample sets are not sufficient when dealing with Markov
decision processes. We show a conservative extension of the classical conditions which
makes the ample set method work for Markov decision processes with respect to linear-
time properties. Here conservative means that the new stronger conditions are equivalent to
the classical ones, if they are applied to non-probabilistic (classical) systems. We also show
how to extend the classical conditions for branching time properties such that the ample set
method works for Markov decision processes with respect to probabilistic branching time
properties.

In the context of automata-theoretic model checking another chance to enhance the per-
formance is to generate a “small” automaton for the given specification that one wants to
verify for a system. We introduce and investigate the concept of probabilistic ω-automata.
It turned out that they do not apply to the model checking of MDPs as their emptiness prob-
lem is undecidable. Nevertheless they form an interesting field of research. We introduce
probabilistic Büchi automata (PBA) as acceptors for languages of infinite words, where
a word is accepted by a PBA if and only if the set of accepting runs for this word has a
positive measure. We show that PBA strictly subsume the ω-regular languages and also
study the efficiency (with respect to the size) of PBA. We show that PBA are closed under
union, intersection and complementation. Moreover we prove that the emptiness problem
is undecidable for PBA. This result implies the undecidability of some qualitative ω-regular
properties for partially observable Markov decision processes. Furthermore we investigate

i

PBA under the so-called almost-sure semantics, for which a word is accepted by the PBA
if and only if the set of accepting runs for this word has measure one. We show a weaker
expressiveness of PBA under the almost-sure semantics and prove that the emptiness prob-
lem becomes decidable. In this context we show a more general result, namely that the
almost-sure Büchi objective and the positive co-Büchi objective are decidable for partially
observable Markov decision processes.

ii

Acknowledgements

First and foremost I want to express my gratitude to my supervisor Christel Baier. I am
deeply indebted to her because she has taught me almost everything that I know about
computer science. I want to thank her for her excellent guidance, her friendly character,
many many discussions and her patience.

I would also like to thank all the people that I worked with during my PhD studies. Special
thanks go to Pedro D’Argenio for being a such a nice person and the members of the VOSS-
projects.

Another person that I want to mention is my long-time office-mate Frank Ciesinski who is
not always as funny as he thinks he is, but who is quite a delight. Thanks go also to Nathalie
Bertrand for her very pleasant nature and for playing squash with me.

Greetings to my friends in Bonn, especially to Marcus H., Martin O., Yvonne D. and Stefan
S. with whom I spent many amusing and entertaining evenings, nights and holidays. Greet-
ings also to all the people that I went on a climbing trip with, especially Artur G., Christoph
W. and my girlfriend Monika.

At last I thank my parents, my brother, my sister and my girlfriend for their support and
encouragement.

to

Irmchen
∗ 24.07.1943 † 22.01.2008

0Special thanks go to Emil, Gustav, Manfred, Mathilde, Helmut B. and Tim E.

iii

iv

0 Contents

List of Figures . vii

CHAPTER 1 Introduction 1

1.1. Aims and outline of the thesis . 4

CHAPTER 2 Preliminaries 7

2.1. Basic mathematical preliminaries . 7

2.2. Preliminaries on various models . 8

2.2.1. Markovian models . 8

2.2.2. ω-automata . 13

2.3. Preliminaries on Temporal Logics . 14

2.3.1. Linear-time properties and Linear Temporal Logic (LTL) 15

2.3.2. Probabilistic Computation Tree Logic (PCTL) 16

CHAPTER 3 Probabilistic Partial Order Reduction 19

3.1. Preliminaries for the ample set method . 20

3.2. The ample set method for Kripke structures and linear-time properties . . . 23

3.3. The ample set method for MDPs and linear-time properties 26

3.3.1. The old conditions are not sufficient 27

3.3.2. A sufficient extension of the old ample set conditions 29

3.3.2.1. Constructing the schedulers Ui 31

3.3.2.2. Proof of Lemma 3.3.6 40

3.3.2.3. Proof of Lemma 3.3.7 45

3.4. The ample set method for MDPs and branching time properties 48

3.4.1. The old conditions are not sufficient 49

3.4.2. Sufficient conditions for preserving branching time properties . . . 50

3.5. Partial order reduction versus process equivalences 59

v

3.6. Conclusion . 60

CHAPTER 4 Probabilistic ω-Automata 63

4.1. Introduction to probabilistic ω-automata 64

4.1.1. Definition of probabilistic ω-automata 64

4.1.2. Examples of probabilistic Büchi automata 66

4.2. A closer look . 67

4.2.1. Expressiveness of PBA . 67

4.2.2. The precise probabilities matter 71

4.2.3. Efficiency of PBA . 71

4.3. Composition operators for PBA . 75

4.3.1. Union and Intersection . 75

4.3.2. Complementation of PBA . 76

4.3.2.1. Example for the transformation from PBA to 0/1 PRA . . 86

4.4. Decidability Questions . 87

4.4.1. Undecidability results . 88

4.4.1.1. Emptiness problem for PBA 88

4.4.1.2. Consequences of 4.4.1.1 91

4.4.1.3. Skipped proofs . 94

4.4.1.4. The threshold semantics 96

4.4.2. Decidability results for an almost-sure semantics 98

4.4.2.1. Expressiveness of PBA under the almost-sure semantics . 98

4.4.2.2. Decidability results in the general framework of POMDPs 103

4.5. Conclusion . 109

Bibliography . 113

vi

List of Figures

1.1. Basic scheme of the automata-theoretic model checking procedure 2

2.1. LTL semantics for infinite words over 2AP 15

2.2. PCTL semantics with respect to a given MDP M and a scheduler class Sched 17

3.1. The idea of partial order reduction . 19

3.2. Examples of independent actions . 23

3.3. Conditions for the ample-sets . 24

3.4. Conditions (A0)-(A3) do not establish stutter equivalence for MDPs 28

3.5. Conditions for the ample-sets of MDPs . 29

3.6. Definition of the scheduler U1, if |ample(s)| = 1 33

3.7. Definition of the scheduler U1, if 1 < |ample(s)| < |Act(s)| 35

3.8. Conditions (A0)-(A3) are not sufficient for CTL\X 49

3.9. Conditions (A0)-(A3) and (A4.1) are not sufficient for PCTL\X 50

3.10. Illustration of Proposition 3.4.12, part (a) 54

3.11. Illustration of Proposition 3.4.12, part (b) 55

4.1. PBA for the language (a + b)∗aω . 66

4.2. PBA for (ab + ac)∗(ab)ω and for ∅ . 67

4.3. PBA Pλ (0 < λ < 1) that accepts a non-ω-regular language 68

4.4. PBA P̃λ (0 < λ < 1) that accepts a non-ω-regular language 69

4.5. PBA for Ln as in the proof of Lemma 4.2.8 72

4.6. PBA with O(n2) states, while any equivalent NBA has Ω(2n) states 74

4.7. Transition probabilities of the PBA constructed in the proof of Theorem 4.3.4 84

4.8. Example for the transformation from PBA to 0/1 PRA 86

4.9. The resulting 0/1 PRA PR . 87

4.10. PBA P1 . 89

4.11. PBA P2 . 90

4.12. From T to MT . 93

4.13. Transformation from M to M′ . 104

vii

LIST OF FIGURES LIST OF FIGURES

4.14. Overview of expressiveness of variants of probabilistic ω-automata 109

viii

1 Introduction

Model Checking is a fully automatic verification method for both hard- and software sys-
tems that has undergone a very promising development for almost 30 years now. In con-
trast to simulation and testing, model checking is a verification technique that explores all
possible system states exhaustively and checks whether the system truly satisfies a given
specification. It thus has the potential to reveal errors that have not been discovered by test-
ing or simulation. Exploring the entire state space makes model checking very sensitive to
the size of the system to be verified. Unfortunately, the systems under consideration suffer
from the so-called state space explosion. Consider for example a piece of software code
that uses 10 boolean variables and 20 control locations (it may consist of 20 lines). Then
the system that evolves from executing this code has 20 · 210 possible different states. The
same problem arises when modeling hardware circuits, as every register bit adds a factor
2 to the size of the state space. Thus, industrial model checking problems can easily yield
systems that exceed the amount of available computer memory.

In this thesis, we focus on techniques that apply to probabilistic model checking and its
state space explosion problem. Taking probabilities into account in addition to nondeter-
ministic behavior expands the possibilities of modeling certain aspects of the system under
consideration. While nondeterministic systems are considered in connection to underspeci-
fication, interleaving of several processes and interaction with the specified system from the
outside, the probabilities can be exploited to model a certain probability of error or other
stochastic behavior both occurring in various real world applications, e.g. randomized al-
gorithms or communication protocols over faulty media. To model probabilistic systems,
Markov chains and Markov decision processes (MDPs) are commonly used. In contrast to
Markov chains, nondeterminism and probabilism coexist in MDPs. In the past, many of the
specification formalisms and verification techniques that have been established in the non-
probabilistic setting have been adapted to reason about quantitative aspects of probabilistic
systems, e.g. with the help of process equivalences and model checking against temporal
logical specifications. In the context of specifiying probabilistic systems against formulae
of Linear Temporal Logic (LTL) [Pnu77] a specification consists of an LTL-formula ϕ that
expresses a certain path property and a probability bound, e.g. “= 1”, “≥ p” or “< p” for
some p ∈ [0, 1]. Hence, LTL can serve to formulate qualitative properties such as “with
probability 1 any request will eventually be answered” or quantitative properties such as
“there is a 98 % chance to reach a goal state” or “the probability that a waiting process is
never allowed to enter its critical section is less than 0.005”. In the context of specifying
branching behavior, the “for all path” and “there exists a path” quantifier of Computation
Tree Logic (CTL) [CE81] have been substituted by a probabilistic operator that requires a
given probability on a certain set of paths, yielding the logic PCTL (Probabilistic Computa-
tion Tree Logic) [Han94, HJ94, BdA95]. Verification algorithms for qualitative or quanti-

1

Chapter 1. Introduction

tative probabilistic model checking rely on modifications of the model checking techniques
for non-probabilistic systems (such as graph algorithms to explore the state space and al-
gorithms that construct an automaton for the given specification/formula) and their com-
bination with numerical methods to solve linear equation systems or linear programming
problems [Var85, VW86, CY90, PZ93, HJ94, ASBB95, BdA95, CY95, dA97a, dA97b,
dA97a, BS98, BK98, CSS03, BRV04]. Thus, the state space explosion problem is at least
as relevant (or even more) than in the non-probabilistic setting. In Figure 1.1 we show a
schematic view on the automata-theoretic verification procedure.

system model temporal logical
specification

automaton

cross-product

quantitative analysis:
• graph algorithms
• numerical algorithms

M ϕ

AϕM̂

M̂×Aϕ

reduced model

reduction techniques

probability
thatM satisfies
the specification

automata construction

Figure 1.1: Basic scheme of the automata-theoretic model checking procedure

To reason about non-probabilistic systems, a variety of methods have been developed to
tackle the state space explosion problem. This includes symbolic model checking as well as
various reduction techniques, see e.g. [CGP99] for an overview. The symbolic methods are
mainly based on multi-terminal binary decision diagrams and focus on a compact internal
representation of the (full) system [BCM+92, HMPS94]. So the goal is not to avoid the
state space explosion, but to use a very compact representation of the given model. Many
symbolic techniques have been modified and extended such that they apply to probabilistic
systems [HMPS94, BCHG+97, BM99, Par02, HKN+03, MP03, KNP04]. For instance, the
PCTL-model checkers PRISM [KNP02], ProbVERUS [HGCC99] and RAPTURE [JDL02]
are based on a symbolic representation of the system to be analyzed. Also hybrid ap-
proaches which combine the compact model representation of symbolic techniques with
the good performance of numerical computations of explicit techniques have been devel-
oped [KNP04].

Somewhat orthogonal to this approach are the many reduction techniques. Here the goal
is to generate a reduced subsystem which is “equivalent” (with respect to the properties
to be verified) to the original system. Then model checking is applied to the reduced sys-
tem, yielding the desired answer not only for the reduced system, but also for the original
system. A large class of reduction techniques are bisimulation-minimization techniques

2

Chapter 1. Introduction

[HT92, BEMC00, PLS00, CS02, KKLW07] that aim to aggregate bisimilar states and to
construct an “equivalent” quotient of the original model. The basic concepts of these tech-
niques are also used in (property-driven) abstraction-refinement methods [DJJL01, Hut02,
Hut05]. Recently, symmetry reduction techniques have been developed for probabilistic
model checking [KNP06b]. These techniques aim at models with non-trivial but inter-
changeable components and use the inherent internal symmetries to reduce the state space.
Also a novel abstraction method for Markov decision processes based on stochastic two-
player games has been proposed in [KNP06a]. Another class of reduction techniques are
partial order reduction methods which have been thouroughly studied for non-probabilistic
models [Pel93, HP94, Val94, God96, GPS96, PPH97, Pel97].

In the context of automata-theoretic model checking, another chance to enhance the per-
formance is to generate a “small” automaton for the given specification. It is well-known
that the smallest equivalent nondeterministic Büchi automaton (NBA) for a given LTL for-
mula might be of exponential size (in the size of the formula) and that the determinization
of NBA into deterministic Rabin automata (DRA) might also cause an exponential blow-
up [Mic88, Tho90]. Moreover, [KV98] gives a class of LTL formulae such that the size
of the smallest equivalent deterministic Rabin (Streett or Büchi) automaton is double ex-
ponential in the square root of the length of the LTL formula. Various algorithms have
been developed to construct a “small” NBA for a given LTL formula using the standard
tableau-based approach [GPVW96] or a detour involving an intermediate translation step
using alternating co-Büchi automata [GO01]. These NBA can then be transformed into a
deterministic ω-automata using an improved transformation [Pit06]. Some of the algorithms
have been successfully implemented [KB05] and improved for stutter insensitive properties
[KB07]. Also a transformation from LTL to deterministic ω-automata was developed that
circumvents the usual tableau construction [Sch97]. A novel approach [MS08] transforms
LTL formulae into symbolically represented deterministic automata, avoiding the concept
of Safra trees which showed to be not amenable to a symbolic implementation.

In this thesis, we address the issue of reduction techniques for probabilistic model check-
ing to increase the efficiency of the qualitative/quantitative analysis of probabilistic systems
against temporal logics. Especially we focus on methods to reduce the size of the system to
be analyzed in LTL model checking for MDPs. Figure 1.1 shows the common basic scheme
of LTL model checking for MDPs. We focus on two aspects, namely a certain reduction
technique to construct a smaller but “equivalent” submodel of the given model and on an
efficient automata construction introducing a new class of ω-automata.

• One particular reduction method that was used very successfully in LTL model check-
ing for classical (non-probabilistic) systems is the partial order reduction [Val92,
Pel93, Val94, HP94, God96, GPS96, Pel97, Val97, PPH97]. We investigated a special
instance of partial order reduction, the so-called ample set method, and extended this
method to probabilistic systems. We established results that allow to use the ample set
method for LTL model checking for MDPs [BGC04] and also extended these result to
the model checking of PCTL [BDG06] for MDPs. This will be presented in chapter
3 of this thesis. The probabilistic partial order reduction has been implemented in the
quantitative LTL model checker LiQuor [BCG05, BC06a] which has been developed
in our workgroup by Frank Ciesinski. Similarly to the non-probabilistic scenario (e.g.

3

1.1. Aims and outline of the thesis Chapter 1. Introduction

the model checker SPIN [Hol03]), it shows good reductions in practice.

• The automata-theoretic approach of LTL model checking starts with a specification
given as an LTL formula and transforms the formula into an equivalent ω-automaton.
Dealing with MDPs, the known methods use a deterministic-in-limit ω-automaton for
the verification of qualitative LTL specifications and a deterministic ω-automaton for
the verification of quantitative LTL specifications [CY95]. In both cases this yields
a double exponential blow-up (in the size of the formula) which cannot be avoided
in general as it meets the lower bounds of LTL model checking for MDPs shown in
[CY95]. We introduced and studied a new class of ω-automata, namely probabilis-
tic ω-automata, especially probabilistic Büchi automata (PBA) [BG05] hoping that
they could be used for qualitative LTL model checking for MDPs (and yield “small”
automata). It showed that they have a variety of interesting (and surprising) proper-
ties. On the one hand they can indeed be exponentially smaller than nondeterministic
Streett automata and nondeterministic Büchi automata. On the other hand, the empti-
ness problem for PBA is undecidable and so is the model checking problem for MDPs
against a PBA [BBG08]. Nevertheless, probabilistic ω-automata (as language accep-
tors) turned out to be a very challenging and interesting field of research and chapter
4 is dedicated to that topic. As PBA are a special case of POMDPs, the established
undecidability results have a relevance for partial information games with ω-regular
winning objectives [CDHR06] as well as POMDPs [Son71, Mon82, PT87, Lov91],
which are used to model a wide range of applications, such as mobile robot naviga-
tion, probabilistic planning task, elevator control, etc. PBA also find an application
in randomized monitoring [CSV08].

1.1. Aims and outline of the thesis

The goals of this thesis are twofold. On the one hand we study the concept of partial order
reduction in a probabilistic setting and on the other hand we investigate probabilistic Büchi
automata as acceptors for languages of infinite words. As both of these topics were new
research topics, this thesis presents several original contributions. It also gives a survey of
known results. This thesis consists of four chapters, starting with an introduction in chapter
1. Chapter 2 contains preliminaries on Markovian models, ω-automata and temporal logics.

In chapter 3 we examine the concept of partial order reduction in a probabilistic setting.
In particular we study how the ample set method can be extended for Markov decision
processes.

a) We prove a conservative extension of the ample set method with respect to Markov
decision processes and linear-time properties. (Section 3.3)

b) We prove a conservative extension of the ample set method with respect to Markov
decision processes and branching time properties. (Section 3.4)

c) We give a short overview of the known connections between different partial order re-
duction criteria and probabilistic process equivalences on Markov decision processes.
(Section 3.5)

4

Chapter 1. Introduction 1.1. Aims and outline of the thesis

In chapter 4 we introduce probabilistic ω-automata as acceptors for languages of infinite
words.

a) We study the expressiveness and efficiency of probabilistic Büchi automata (PBA).
We show that PBA strictly subsume the ω-regular languages and that the accepted
language of a PBA does not only depend on the topological structure of the automa-
ton, but also on the precise transition probabilities. (Section 4.2)

b) We investigate composition operators for PBA and prove that PBA are closed under
complementation using an advanced powerset construction. (Section 4.3)

c) We show that the emptiness problem is undecidable for PBA and conclude divers
undecidability results for related questions. As PBA are a special case of partially
observable Markov decision processes (POMDPs), we conclude the undecidability
of qualitative ω-regular properties for POMDPs, which to our knowlegde is a new
result. (Subsection 4.4.1)

d) We also consider PBA under a threshold semantics and show that the class of rec-
ognizable languages might be (depending on the threshold) a proper superset of the
class of languages that are recognizable by PBA with the standard semantics (i.e. the
threshold equals zero). (Subsection 4.4.1.4)

e) We examine a different semantics for PBA, the almost-sure semantics and show a
weaker expressiveness under this semantics. In particular, with the almost-sure se-
mantics PBA are not closed under complementation, but still dependent on the ex-
act transition probabilities. We prove that the emptiness problem is decidable for
PBA with the almost-sure semantics. We do so by showing a more general result,
namely that the almost-sure repeated reachability problem for POMDs is decidable.
Moreover we prove that the positive co-Büchi objective is decidable for POMDPs.
We also deduct that a nonempty almost-sure PBA recognizable language contains a
finite-memory word. (Subsection 4.4.2)

5

6

2 Preliminaries

2.1. Basic mathematical preliminaries

N≥0, resp. N≥1 denotes the set of natural numbers greater or equal than 0, resp. 1.
∞
∃ i denotes “there exist infinitely many i ∈ N≥0 ”.

By
.
∪ we denote a disjoint union.

Definition 2.1.1. [Words]
Given a finite set Σ,

Σ+ = {s1 . . . sn | n ∈ N≥1, si ∈ Σ, 1 ≤ i ≤ n}

denotes the set of finite nonempty words over Σ. Σ∗ = Σ+ ∪ {ε}, where ε indicates the
empty word, denotes the set of finite words.

Σω = {s1s2 . . . |si ∈ Σ, i ∈ N≥1}

denotes the set of infinite words over Σ. Given a finite nonempty word ρ = s1s2 . . . sn, we
denote the last letter sn by last(ρ). The length |ρ| of ρ equals n. For an infinite word ω, the
length is equal to∞. Given a word ω = s1s2 . . . and i ≤ |ω|, we denote the first letter s1 of
ω by first(ω), the ith letter of ω by ωi (i.e. ωi = si) and the i-th prefix by ω↑i = s1s2 . . . si.
Given an infinite word ω = s1s2 . . . the ith suffix sisi+1 . . . is denoted by ω↑i.

We often identify any ω-regular language L ⊆ Σω with the ω-regular expressions that
describe L. E.g., (a + b)∗aω is identified with the set of infinite words over Σ = {a, b} that
contain only finitely many b’s.

Definition 2.1.2. [Probability distribution]
Given an at most countable set S, a probability distribution on S is a function

µ : S → [0, 1] such that
∑
s∈S

µ(s) = 1.

Given a probability distribution on S, supp(µ) denotes the support, i.e. the states s of S
with µ(s) > 0. For s ∈ S, µ1

s denotes the unique Dirac distribution on S that satisfies
µ1

s(s) = 1. By Distr(S) we denote the set of all probability distributions on S.

7

2.2. Preliminaries on various models Chapter 2. Preliminaries

2.2. Preliminaries on various models

In this section we introduce the main models that we will work with throughout this thesis.
This are Markovian models like Markov chains and Markov decision processes which will
be used as description models for abstract systems and ω-automata which serve as language
acceptors for ω-regular languages.

2.2.1. Markovian models

We first introduce discrete Markov chains which are basically directed graphs where the
edges are labeled with a probability in [0, 1], such that in each state the probabilities of its
outgoing edges sum up to one.

Definition 2.2.1. [Discrete Markov chain]
A discrete Markov chain is a tuple

M = (S, p, µ),

where

• S is an at most countable nonempty set of states,

• p : S×S → [0, 1] is a transition probability function such that p(s, .) is a probability
distribution on S for all s ∈ S,

• µ is a probability distribution on S (called the initial distribution).

Throughout this thesis we will also use the notation pst instead of p(s, t) for s, t ∈ S.

Let T = {(s, t) | pst > 0, s, t ∈ S} be the set of transitions with positive probability. We
refer to the directed graph (S, T) as the underlying graph of M. Note that T is total, so
(S, T) has no terminal nodes.

A Markov chain induces a stochastic process on the set S of its states in a natural way. The
probability that the process starts in a certain state with step 0 is determined by the starting
distribution. Moreover, being in state s in the (n−1)th step, the probability that the process
is in state t in the nth step is equal to pst. The fact that those probabilities do not depend on
the previous steps (history-independent or memoryless) is called the Markov property. For
a detailed discussion on Markov chains see e.g. [KSK66].

Definition 2.2.2. [Path and corresponding notation]
An (in)finite path of a Markov chain M is an (in)finite state sequence π = s0, s1,

Given a finite path π = s0, s1, . . . , sn, we denote the first state s0 of π by first(π) and the
last state sn by last(π). The length |π| of π equals n. For an infinite path π, the length
is equal to ∞. Given a path π = s0, s1, . . . , and i ≤ |π|, we denote the ith state of π by
πi (i.e. πi = si) and the i-th prefix by π↑i = s0, s1, . . . , si. Given a finite or infinite path
π = s0, s1, . . ., an index i ≤ |π|, then the ith suffix si, si+1, . . . is denoted by π↑i. We
denote by Pathfin (resp. Pathinf) the set of finite (resp. infinite) paths of a given Markov

8

Chapter 2. Preliminaries 2.2. Preliminaries on various models

chain and by Pathfin(s) (resp. Pathinf(s)) the set of finite (resp. infinite) paths starting in
the state s. ε denotes the empty path.

Remark 2.2.3. If necessary we will index Path by the corresponding system, e.g. PathM1
inf .

We will do so also for other objects than Path. Nevertheless we try to omit the indexing, if
the reference is clear from the context.

We will often deal with state-labeled systems that are equipped with a labeling function as
follows.

Definition 2.2.4. [State-labeled system]
Given some kind of transition system (e.g. a Markov chain) with state space S and a set of
atomic propositions AP, a labeling function of the given system with respect to the set AP
is a function L : S → 2AP that labels a state s with those atomic propositions in AP that are
supposed to hold in s.

For such systems we define the so called trace of a path which is the projection to the state
labels.

Definition 2.2.5. [Trace of a path]
Given a state-labeled system and an infinite path π = s0, s1, . . . of the system, we define

the infinite word
trace(π) = L(s0)L(s1) . . . ∈ (2AP)ω

to be the trace of π. Note that as trace(π) is a word, we start counting by 1, that means
trace(π)i = L(πi−1).

We now define the probability space that formalizes the stochastic process induced by a
Markov chain.

Definition 2.2.6. [Basic cylinder]
Given any kind of transition system M, we define for π ∈ PathMfin the basic cylinder of π

as
∆(π) = {ρ ∈ PathMinf : ρ↑|π| = π}.

Definition 2.2.7. [Probability space of a Markov chain]
Given a discrete Markov chain M = (S, p, µ) we define a probability space

Ψ = (∆,Pr),

such that

• ∆ is the σ-algebra generated by the empty set and the set of basic cylinders over M.

• Pr is the uniquely induced probability measure which satisfies the following:
Pr(∆(ε)) = 1 and for all basic cylinders ∆(s0, s1, . . . , sn) over S :

Pr(∆(s0, s1, . . . , sn)) = µ(s0) · ps0s1 · . . . · psn−1sn

9

2.2. Preliminaries on various models Chapter 2. Preliminaries

Given a state s ∈ S, we denote by Prs the probability measure that is obtained if M is
equipped with the starting distribution µ1

s , thus Prs(∆(s)) = 1.

In contrast to Markov chains, nondeterminism and probabilism coexist in Markov deci-
sion processes (MDPs). In an MDP, any state s might have several outgoing action-labeled
transitions, each of them is associated with a probability distribution which yields the prob-
abilities for the successor states. As in [Put94, LS91, dA97a] we assume here that for any
state s, the outgoing transitions of s have different action labels. This corresponds to the
so-called reactive model in the classification of [vGSST90].

Definition 2.2.8. [Markov decision process (MDP)]
A Markov decision process is a tuple

M = (S, Act, δ, µ),

where

• S is a finite nonempty set of states,

• Act is a finite nonempty set of actions,

• δ : S × Act × S → [0, 1] is a transition probability function such that for all s ∈ S
and α ∈ Act, either δ(s, α, .) is a probability distribution on S or δ(s, α, .) is the
null-function (i.e. δ(s, α, t) = 0 for all t ∈ S),

• µ is a probability distribution on S (called the initial distribution).

Act(s) = {α ∈ Act | ∃t ∈ S : δ(s, α, t) > 0} denotes the set of actions that are enabled in
state s. We require for each state s ∈ S, that Act(s) in nonempty. If Act(s) = Act for all
states s ∈ S, we call the MDP total.

The intuitive operational behavior of an MDP is as follows. If s is the current state then
first one of the actions α ∈ Act(s) is chosen nondeterministically. Afterwards action α is
executed leading to state t with probability δ(s, α, t). By δ(s, α) = {t | δ(s, α, t) > 0} we
denote the set of α-successors of s. Given a state set S′ ⊆ S, then δ(S′, α) = ∪s∈S′δ(s, α)
denotes the set of α-successors of S′. Moreover, given an action sequence α1 . . . αi+1, we
define δ(s, α1 . . . αiαi+1) = δ(δ(s, α1 . . . αi), αi+1).

Action α is called a probabilistic action if it has a random effect, i.e. if there is at least one
state s where α is enabled and that has two or more α-successors. Otherwise α is called
non-probabilistic.

Definition 2.2.9. [Path and corresponding notation]
An infinite path of an MDP is an infinite sequence π = s0, α1, s1, α2, . . . ∈ (S × Act)ω

such that αi ∈ Act(si−1) for i ∈ N≥1. We write paths in the form

π = s0
α1−→ s1

α2−→ s2
α3−→ . . .

10

Chapter 2. Preliminaries 2.2. Preliminaries on various models

first(π) = s0 denotes the starting state of π and π↑i = s0
α1−→ . . .

αi−→ si its i-th prefix.
Finite paths are finite prefixes of infinite paths that end in a state. We use the notations
first(π), resp. last(π) for the first, resp. last state of of a finite path π and |π| for the length
(number of actions). πi = si denotes the (i + 1)st state of π and Acti(π) denotes the ith
action on π. Pathfin(s) (resp. Pathinf(s)) denotes the set of all finite (resp. infinite) paths of
M with starting state s. Pathfin (resp. Pathinf) stands for the set of all finite (resp. infinite)
paths in M.

Given a path π = s0
α1−→ s1

α2−→ s2 . . . (finite or infinite), we denote by Act(π) = {α |
∃i ≤ |π| : α = αi} the set of actions that occur along the path π and by −−→πAct = α1α2 . . . ∈
Act∗ ∪ Actω the action sequence of π.

If π = s0
α1−→ s1

α2−→ s2
α3−→ . . . is an infinite path, then Lim(π) denotes the pair (T,A)

where T = inf(π) is the set of states in π that are visited infinitely often and A : T → 2Act

is the function that assigns to any state t ∈ T the set A(t) of actions α ∈ Act such that
(si = t) ∧ (αi+1 = α) for infinitely many indices i.

A scheduler denotes an instance that resolves the nondeterminism in the states, and thus,
yields a Markov chain and a probability measure on the paths. Intuitively, a scheduler takes
as input the “history” of a computation (formalized by a finite path π) and chooses the next
action (resp. a distribution on actions).

Definition 2.2.10. [Scheduler]
Given a Markov decision process M = (S, Act, δ, µ), a history dependent randomized

scheduler is a function
U : Pathfin → Distr(Act),

such that supp(U(π)) ⊆ Act(last(π)) for all π ∈ Pathfin.

A scheduler U is called deterministic, if U(π) is a Dirac distribution for all π ∈ Pathfin. U
is called memoryless, if U(π) = U(last(π)) for all π ∈ Pathfin. SchedHR (resp. SchedHD)
denotes the set of history dependent, randomized (resp. deterministic) schedulers and
SchedMR (resp. SchedMD) denotes the set of memoryless randomized (resp. determinis-
tic) schedulers.

We call a (finite or infinite) path s0
α1−→ s1

α2−→ s2 . . . a U-path, if U(s0
α1−→ . . .

αi−→
si)(αi+1) > 0 for all 0 ≤ i < |π|.

Remark 2.2.11. If all actions in Act are non-probabilistic and the initial distribution is a
Dirac distribution, then considering only deterministic schedulers, our notion of an MDP
reduces to an ordinary transition system with at most one outgoing α-transition per state
and action α and exactly one initial state.

Given an MDP M = (S, Act, δ, µ) and a scheduler U for M, the behavior of M under U
can be formalized by an infinite-state Markov chain MU = (PathMfin , p, µ), where

p(π, π′) = U(π)(α) · δ(last(π), α, last(π′)),

for π, π′ ∈ PathMfin with |π′| = |π| + 1, π′↑|π| = π and α is the last action on the path π′,
i.e.

π
α−→ last(π′) = π′.

11

2.2. Preliminaries on various models Chapter 2. Preliminaries

As the states of MU are finite paths of M, this notation is somewhat inconvenient. Let
Ω = (PathMU

inf ,∆MU) and Ω′ = (PathMinf ,∆
M), where ∆MU is the σ-algebra generated

by the empty set and the set of basic cylinders overMU and ∆M is the σ-algebra generated
by the empty set and the set of basic cylinders over M. We define

f : PathMU
inf → PathMinf ,

as f(π0
α1−→ π1

α2−→ . . .) = last(π0)
α1−→ last(π1)

α2−→ . . . (note that the πi’s are finite paths
ofM). Then f is a measurable function and we define the the following probability measure
on ∆M.

PrM,U (A′) = PrMU (f−1(A′)), for A′ ∈ ∆M.

Then given a scheduler U for M, the probability measure PrM,U formalizes the behavior
of M under U , where we have the convenience to talk about measures of sets of infinite
paths of M. As for Markov chains, given a state s ∈ S, we denote by PrM,U

s the proba-
bility measure that is obtained if M is equipped with the starting distribution µ1

s . For more
information on measure theory see e.g. [Bau78].

We will also fix the following notation for convenience. Given an MDP M, a scheduler U
and a path property E, we will write

PrM,U (E) := PrM,U ({π ∈ PathMinf | π satisfies E})

for the probability that the property E holds in M under the scheduler U .

Throughout this thesis, we shall use the concepts of de Alfaro’s end components [dA97a,
dA98], which can be seen as the MDP counterpart to terminal strongly connected compo-
nents in Markov chains. Intuitively, an end component of an MDP is a nonempty strongly
connected subMDP, that means an end component consists of a nonempty state set T ⊆ S
and a nonempty action set A(t) for each state t ∈ T such that, once T is entered and only
actions in A(t) are chosen, the set T will not be left and any state of T can be reached from
any other state in T .

Definition 2.2.12. [End components, cf. [dA97a, dA98]]
Let M = (S, Act, δ, µ) be an MDP. An end component of M is a pair (T,A) where
∅ 6= T ⊆ S and A : T → 2Act is a function such that

• ∅ 6= A(s) ⊆ Act(s) for all states s ∈ T ,

•
∑

t∈T δ(s, α, t) = 1 for all states s ∈ T and actions α ∈ A(s),

• the underlying digraph (T,→A) of (T,A) is strongly connected.

Here, →A denotes the edge-relation induced by A, that is s →A t if and only if δ(s, α, t) >
0 for some action α ∈ A(s).

Given an MDP M and a scheduler U it holds that in the process induced by U , almost all
path ofM (following U) “end” in an end component, that is their limit Lim(.) forms an end
component. For the following lemma see [dA97a, dA98].

12

Chapter 2. Preliminaries 2.2. Preliminaries on various models

Lemma 2.2.13 (Almost-sure end component). For any MDP M and scheduler U ,

PrM,U ({π ∈ PathMinf | Lim(π) is an end component }) = 1.

We shall establish some results on partially observable Markov decision processes [Son71,
Mon82, PT87, Lov91] in chapter 4. Therefore we give the definition here.

Definition 2.2.14. [Partially observable Markov decision process (POMDP)]
A finite partially observable Markov decision process is a pair

(M,∼),

where

• M = (S, Act, δ, µ) is a Markov decision process,

• ∼⊆ S × S is an equivalence relation such that for all s ∼ t ∈ S, Act(s) = Act(t).

Given a POMDP (M,∼), an observation-based scheduler U is a scheduler for M that is
consistent with ∼, i.e. U(s0

α1−→ . . .
αn−→ sn) = U(t0

α1−→ . . .
αn−→ tn) if si ∼ ti for

0 ≤ i ≤ n. Sched(M,∼) denotes the set of observation-based schedulers.

2.2.2. ω-automata

Similar to finite automata that serve to accept languages of finite words, there exists the
concept of nondeterministic ω-automata with which an accepted language of infinite words
is associated. As in the finite case the automaton works as follows. Reading a certain input
letter in a given state, the automaton nondeterministically moves to a successor state. As
the input word is infinite the automaton produces a set of infinite runs for the input word. In
order to accept the input word, the automaton has to produce at least one “accepting” run,
where in contrast to the finite case the acceptance condition takes the infinite behavior into
account. For more information on ω-automata see e.g. [Tho90, GTW02].

Definition 2.2.15. [Nondeterministic ω-automata]
A nondeterministic ω-automaton is a tuple

A = (Q,Σ, δ, Q0,Acc),

where

• Q is a finite nonempty set of states,

• Σ is a finite nonempty input alphabet,

• δ : Q× Σ → 2Q is a transition function,

• Q0 ⊆ Q is a nonempty set of initial states and

• Acc is an acceptance condition.

13

2.3. Preliminaries on Temporal Logics Chapter 2. Preliminaries

We call an automaton deterministic if |Q0| = 1 and |δ(p, a)| ≤ 1 for all p ∈ Q and a ∈ Σ.
If |δ(p, a)| ≥ 1 for all p ∈ Q and a ∈ Σ, we call the automaton total.

Within this thesis, we consider the following acceptance conditions.

• Büchi acceptance condition: Acc ⊆ Q (we then write F instead of Acc)

• Rabin or Streett acceptance condition: Acc = {(H1,K1), . . . , (Hn,Kn)},
Hi,Ki ⊆ Q, 1 ≤ i ≤ n

Let T ⊆ Q be a subset of states. Given a Büchi acceptance condition F , the set T is called
accepting, if T ∩ F 6= ∅. Given a Rabin acceptance condition, T is called accepting, if
there exists 1 ≤ i ≤ n such that T ∩Hi = ∅ and T ∩Ki 6= ∅. Given a Streett acceptance
condition, T is called accepting, if for all 1 ≤ i ≤ n it holds that T ∩Hi 6= ∅ or T ∩Ki = ∅.
Thus, Rabin and Streett acceptance are complementary to each other .

Remark 2.2.16. Note that a given Büchi acceptance condition F can be expressed by the
equivalent Rabin condition {(∅, F)} and also by the equivalent Streett condition {(F,Q)}.

A nondeterministic (resp. deterministic) ω-automaton with a Büchi, resp. Rabin, resp.
Streett acceptance condition is called nondeterministic (resp. deterministic) Büchi (NBA
(resp. DBA)), resp. Rabin (NRA (resp. DRA)), resp. Streett (NSA (resp. DSA)) automa-
ton.

ω-automata serve as language acceptors for languages of infinite words over the input alpha-
bet. A run for an infinite word ω = a1a2 . . . is an infinite state sequence π = p0, p1, . . . such

that p0 ∈ Q0 and pi ∈ δ(pi−1, ai), i ∈ N≥1. inf(π) = {p ∈ Q |
∞
∃ i ∈ N≥0 s.th. πi = p}

denotes the set of states that occur infinitely often in π. An infinite run π is called accept-
ing, if inf(π) is accepting with respect to the acceptance condition. We will sometimes
refer to finite runs, which mean finite state sequences p0, p1, . . . pn such that p0 ∈ Q0,
pi ∈ δ(pi−1, ai), 1 ≤ i ≤ n and δ(pn, an+1) = ∅. That is, the automaton cannot consume
the input letter an+1 in state pn and rejects.

The accepted language of a nondeterministic ω-automaton A is defined as

L(A) = {ω ∈ Σω | ∃ accepting run for ω in A}.

Given an automata type, e.g. NBA, we denote by e.g. IL(NBA) the class of languages
definable by this type of automata. It is well known that [Tho90, GTW02]

IL(DBA) (IL(NBA) = IL(DRA) = IL(NRA) = IL(DSA) = IL(NSA) = IL(ω-reg),

where IL(ω-reg) denotes the class of ω-regular languages.

2.3. Preliminaries on Temporal Logics

At last we will shortly introduce two prominent temporal logics, namely Linear Temporal
Logic (LTL) and Probabilistic Computation Tree Logic (PCTL).

14

Chapter 2. Preliminaries 2.3. Preliminaries on Temporal Logics

2.3.1. Linear-time properties and Linear Temporal Logic (LTL)

In this thesis we will be dealing with systems where each state is labeled with a subset of
a set of atomic propositions AP. Thus each infinite path of such a system produces a trace
which is an infinite word over the alphabet 2AP. A linear-time property (LT property) is
just a selection of such possible traces, that is an LT property is a language of infinite words
over 2AP.

Definition 2.3.1. [Linear-time property]
A linear-time property over a given set AP of atomic propositions is a subset of (2AP)ω.

A path π of a system is said to satisfy a given LT property E, if and only if trace(π) ∈ E.

Note that given a set of atomic propositions AP and a nondeterministic ω-automatonA over
the alphabet 2AP, then L(A) is an (ω-regular) LT property.

Another important formalism to specify linear-time properties is the logic LTL [Pnu77]
whose syntax is given in the following definition.

Definition 2.3.2. [Syntax of LTL]
Given a set AP of atomic propositions, LTL formulae over the set AP are formed according
to the following abstract grammar.

ϕ ::= true | a | ¬ϕ | ϕ1 ∧ ϕ2 | Xϕ | ϕ1Uϕ2,

where a ∈ AP. LTL denotes the set of LTL formulae over a given set AP.

Definition 2.3.3. [Semantics of LTL (interpretation over infinite words)]
Let ϕ be an LTL formula over the set of atomic propositions AP. We define the language

of ϕ
L(ϕ) = {ω ∈ (2AP)ω | ω |= ϕ},

where |=⊆ (2AP)ω × LTL is the smallest relation satisfying the properties in Figure 2.1.

Thus, an LTL formula over AP defines an LT property over AP.

ω |= true
ω |= a iff a ∈ ω1

ω |= ¬ϕ iff ω 6|= ϕ
ω |= ϕ1 ∧ ϕ2 iff ω |= ϕ1 ∧ ω |= ϕ2

ω |= Xϕ iff ω↑2 |= ϕ
ω |= ϕ1Uϕ2 iff ∃ j ∈ N≥1.

[
ω↑j |= ϕ2 ∧ ω↑i |= ϕ1, 1 ≤ i < j

]
Figure 2.1: LTL semantics for infinite words over 2AP

Other boolean connectives such as disjunction ∨, implication →, etc. can be derived as
usual, e.g. ϕ1 ∨ ϕ2 := ¬(¬ϕ1 ∧ ¬ϕ2). We will use the following common notations to

15

2.3. Preliminaries on Temporal Logics Chapter 2. Preliminaries

denote the path property

“eventually ϕ ” : 3ϕ := trueUϕ
“always ϕ ” : 2ϕ := ¬(trueU¬ϕ)

We then denote the property “infinitely often ϕ” by 23ϕ and the property “eventually
always ϕ” by 32ϕ.

LTL formulae can be used to express Büchi/Rabin and Streett acceptance for ω-automata.
Given a Büchi acceptance condition F , let AP = {final} and exactly the accepting states
s ∈ F are labeled with final. A run π of the automaton is accepting, if and only if
trace(π) |= 23final. A Rabin acceptance condition Acc = {(H1,K1), . . . , (Hn,Kn)}
can be expressed by

∨
1≤i≤n

[
(32¬Hi ∧ 23Ki)

]
,

whereas a Streett acceptance can be expressed by

∧
1≤i≤n

[
(23Ki → 23Hi)

]
.

Here (and in the rest of the thesis) we sometimes identify state sets with a labeling, e.g.
exactly the states in Hi are labeled with Hi.

2.3.2. Probabilistic Computation Tree Logic (PCTL)

For specifying branching behavior, we will use the logic PCTL (Probabilistic Computation
Tree Logic) [Han94, HJ94, BdA95]. PCTL is a probabilistic modification of Computation
Tree Logic (CTL) [CE81], where the “for all path” and “there exists a path” quantifier have
been substituted by a probabilistic operator that requires a given probability on a certain set
of paths. While in CTL the formula ∀ϕ indicates that the path formula ϕ must hold for all
paths, a PCTL formula [ϕ]>0.98 requires the set of paths that satisfy ϕ to have a probability
measure of more than 0.98. The syntax of PCTL is given in the following definition.

Definition 2.3.4. [Syntax of PCTL]
Given a set AP of atomic propositions, PCTL formulae over the set AP are formed ac-

cording to the following abstract grammar, where Φ denotes a PCTL state formula and ϕ
denotes a PCTL path formula.

Φ ::= true | a | ¬Φ | Φ1 ∧ Φ2 | [ϕ]./p

ϕ ::= XΦ | Φ1UΦ2,

where a ∈ AP, ./∈ {<,≤, >,≥} is a comparison operator and p ∈ [0, 1] is a probability
bound.

16

Chapter 2. Preliminaries 2.3. Preliminaries on Temporal Logics

Definition 2.3.5. [Semantics of PCTL]
Given a set AP of atomic propositions and a state-labeled MDP M where Labels = 2AP,

the semantics of PCTL with respect to a given scheduler class Sched is defined as the
smallest relation |= satisfying the properties in Figure 2.2.

s |= true
s |= a iff a ∈ L(s)
s |= ¬Φ iff s 6|= Φ
s |= Φ1 ∧ Φ2 iff s |= Φ1 ∧ s |= Φ2

s |= [ϕ]./p iff PrM,U
s ({π ∈ PathMinf | π |= ϕ}) ./ p ∀U ∈ Sched

π |= XΦ iff π1 |= Φ
π |= Φ1UΦ2 iff ∃ j ∈ N≥0.

[
πj |= Φ2 ∧ πi |= Φ1, 0 ≤ i < j

]
Figure 2.2: PCTL semantics with respect to a given MDP M and a scheduler class Sched

Note that the set {π ∈ PathMinf | π |= ϕ} in the 5th item of Figure 2.2 is measurable
[Var85, CY95].

17

18

3 Probabilistic Partial Order Reduction

In this chapter we will investigate probabilistic partial order reduction. Partial order reduc-
tion is a prominent reduction technique that has been thouroughly examined in the setting
of non-probabilistic systems [Pel93, HP94, Val94, God96, GPS96, PPH97, Pel97]. Usually
the starting point is a description of an asynchronous parallel system by a representation of
the subsystems that run in parallel, e.g. as in the (non-probabilistic) model checker SPIN
[Hol03] which uses a guarded command language as input language. The rough idea be-
hind partial order reduction is to construct a reduced state graph by abolishing redundancies
in the transition system that origin from the interleaving of independent activities that are
executed in parallel. For independent actions α and β, the interleaving semantics represents
their parallel execution by the nondeterministic choice between the action sequences αβ
and βα. As αβ and βα have the same effect to the control and program variables, and thus
lead to the same state, the investigation of one order (αβ or βα) as a representative for both
suffices under certain side conditions. More general, instead of constructing the full system
T , the goal is to generate an “equivalent” sub-system Tred of the full transition system T .
Here “equivalence” is considered with respect to the type of property to be verified. Thus,
for a path property, we would require that any path π in T is “represented” in Tred by an
“equivalent” path π̂. Of course, the algorithmic construction and analysis of Tred should be
more efficient than model checking the full system T .

We give a small example to illustrate these ideas. Consider two processes P1 and P2 where
P1 increments a variable x (action α) twice and P2 increments a variable y (action β) twice.
Assume that we are only interested in the value of the variable y, that is each state is labeled
with its y value. Then action α does not change the labeling, but action β does. We then
get the following picture of the parallel execution of the two processes, where the shade of
a state node represents its y value (the greater y is, the darker the node is). Now assume that

α

α

β

β

P1 P2

α

α

β

β

β

β

α

α

β α

α β

parallel composition

α

α

β

β

build ”equivalent”

subsystem

P1|||P2 (P1|||P2)red

Figure 3.1: The idea of partial order reduction

19

3.1. Preliminaries for the ample set method Chapter 3. Probabilistic Partial Order Reduction

we want to check whether the property

“The value of y never decreases.”

holds on any path. For the system P1|||P2 of the parallel execution of P1 and P2 in Figure
3.1 this means

“The shades of the nodes never get lighter.”

along any path.

Obviously each path of the system satisfies this property. Now this property has a remark-
able feature. In order to decide whether a path satisfies the property or not, it is only relevant
what changes of the labeling occur along the path, but not how often a certain labeling is
repeated before it changes. The property is so-called stutter invariant. It cannot distinguish
between two paths that follow the same pattern of changes in the labeling (but may differ in
the number of repetitions of a certain labeling). Such two paths are called stutter equivalent.
Now consider the reduced system (P1|||P2)red in Figure 3.1. As any path of P1|||P2 has a
stutter equivalent path in (P1|||P2)red and the property under consideration cannot distin-
guish between such paths, it is sufficient to check whether all paths of the reduced system
satisfy the property. If all paths of the reduced system satisfy the property, so do all paths of
the original system (and vice versa as the reduced system is a subset of the original system).
Thus the reduced system is “equivalent” to the original system with respect to the property.

The goal of partial order reduction is to give criteria with which an “equivalent” reduced
system can be generated. These criteria heavily depend on the class of property that one
wants to preserve (e.g. linear-time properties, branching time properties). In the early
1990s several partial order reduction techniques have been developed for non-probabilistic
systems [Val92, Pel93, Val94, HP94, God96, GPS96, Pel97, Val97, PPH97].

In this chapter we concentrate on one instance of partial order reduction techniques, the
so-called ample set method which was developed by Doron Peled (see e.g. [Pel93, Pel97])
and generalize this method to the probabilistic setting.

The chapter is structured as follows. First we will introduce the necessary preliminaries and
then explain the ample set method in the setting of non-probabilistic systems with respect
to linear-time properties. This provides to the reader who is not familiar with partial order
reduction a good insight into its functioning. We will then examine how the ample set
method can be generalized to MDPs with respect to various kinds of properties.

Throughout the whole chapter we will deal with state-labeled systems.

3.1. Preliminaries for the ample set method

We start with the most basic definition, namely that of the reduced system. Given a nonde-
terministic transition system M, either non-probabilistic (Kripke-structure) or probabilistic
(MDP), the rough idea of the ample set method is to assign to any reachable state s of M
an action-set ample(s) ⊆ Act(s) and to construct a reduced system M̂ that results by using
the action-sets ample(s) instead of Act(s). That is, starting from the initial states ofM, one

20

Chapter 3. Probabilistic Partial Order Reduction 3.1. Preliminaries for the ample set method

builds up M̂ by only applying ample transitions. The reduced system should be equivalent
to the original system in the desired sense

M̂ ≡ M,

e.g. simulation equivalent or bisimulation equivalent, etc. Depending on the desired equiv-
alence the defined ample-sets have to fulfill certain conditions to ensure the equivalence.

Definition 3.1.1. [Reduced system]
Given an MDP M = (S, Act, δ, µ) and given a function ample : S → 2Act with ∅ 6=

ample(s) ⊆ Act(s) for all states s, the state space of the reduced MDP

M̂ = (Ŝ,Act, δ̂, µ̂)

induced by ample is the smallest set Ŝ ⊆ S that contains the states s, such that µ(s) > 0
and any state t where δ(s, α, t) > 0 for some s ∈ Ŝ and α ∈ ample(s). The transition
probability function of M̂ is given by

δ̂(s, α, t) = δ(s, α, t)

for α ∈ ample(s) and 0 otherwise. The initial distribution of M̂ is that of M, i.e. µ̂(s) =
µ(s), for s ∈ Ŝ.

We call a state s fully expanded if ample(s) = Act(s).

As already mentioned in the introduction of this chapter, partial order reduction tries to
give criteria how to generate an “equivalent” subsystem of the given system, by abolishing
redundancies that origin in the interleaving of independent activities that are executed in
parallel. These equivalences typically identify those paths whose traces (i.e. words obtained
from the paths by projection on the state labels) agree up to stuttering. In this context
stuttering refers to the repetition of the same state-labels.

Definition 3.1.2. [Stutter equivalence for words]
Two infinite words ω1 and ω2 over the alphabet Σ are called stutter equivalent,

ω1 ≡st ω2

if and only if there is an infinite word a1, a2, . . . over the alphabet Σ such that

ω1 = ak1
1 , ak2

2 , . . . and ω2 = an1
1 , an2

2 , . . . ,

where ki, ni ∈ N≥1. Two infinite paths π1 and π2 in a state-labeled MDP are called stutter
equivalent, denoted π1 ≡st π2, if and only if their traces trace(π1) and trace(π2) over 2AP

are stutter equivalent.

We call a linear-time property over AP stutter invariant, if it cannot distinguish between
stutter equivalent paths.

Definition 3.1.3. [Stutter invariant LT properties]
A linear-time property E over AP is called stutter invariant if it holds for all stutter equiva-

lent words ω1, ω2 ∈ (2AP)ω that

ω1 ∈ E if and only if ω2 ∈ E.

21

3.1. Preliminaries for the ample set method Chapter 3. Probabilistic Partial Order Reduction

For the partial order reduction we shall moreover need the concept of stutter actions, i.e.
actions that have no effect on the state-labels, no matter in which state they are taken.

Definition 3.1.4. [Stutter action]
Given a state-labeled MDP M = (S, Act, δ, µ), we call action α ∈ Act a stutter action if

and only if for all states s, t ∈ S it holds that:

δ(s, α, t) > 0 implies L(s) = L(t).

We refer to s
β−→ t as a non-probabilistic stutter step if β ∈ Act(s) is a non-probabilistic

stutter action and t is the unique β-successor of s.

The main ingredient of any partial order reduction technique in the probabilistic or non-
probabilistic setting is an adequate notion for the independence of actions. The rough idea
is a formalization of actions belonging to different processes that are executed in parallel
and do not affect each other, e.g. as they only refer to local variables and do not require
any kind of synchronization. In non-probabilistic systems independence of two actions α
and β means that for any state s where both α and β are enabled the execution of α does
not affect the enabledness of β (i.e. the α-successor of s has an outgoing β-transition), and
vice versa, and in addition the action sequences αβ and βα lead to the same state. In the
probabilistic setting the additional requirement that αβ and βα have the same probabilistic
effect is made.

Definition 3.1.5. [Independence of actions, cf. [BGC04, DN04]]
Two actions α, β with α 6= β are called independent in an MDP M if and only if for all

states s ∈ S with {α, β} ⊆ Act(s):

(1) δ(s, α, t) > 0 implies β ∈ Act(t),

(2) δ(s, β, u) > 0 implies α ∈ Act(u)

(3) for all states v ∈ S:∑
t∈S

δ(s, α, t) · δ(t, β, v) =
∑
u∈S

δ(s, β, u) · δ(u, α, v)

Two different actions α and β are called dependent if and only if α and β are not indepen-
dent. If A ⊆ Act and α ∈ Act \A then α is called independent from A if and only if for all
actions β ∈ A, α and β are independent. Otherwise α is called dependent on A.

The formal definition for the independence of actions α and β in a composed transition
system (which captures the semantics of the parallel composition of some processes that
run in parallel) relies on recovering the interleaving diamonds.

Applying the above definition to non-probabilistic actions α and β (i.e. where δ(s, α, t),
δ(s, β, t) ∈ {0, 1} for all states s, t) yields the standard definition of independence of actions
in ordinary transition systems.

22

Chapter 3. Probabilistic Partial Order Reduction 3.2. The ample set method for Kripke structures and linear-time properties

α, 1
6

M1

α, 5
6 β, 1

2

β, 1
2

β, 1
2

β, 1
2

β, 1
2

β, 1
2

α, 5
6

α, 5
6

α, 1
6α, 1

6

M2

s

t u

α, 1
2

β, 1

α, 1
2

β, 1 α, 1

Figure 3.2: Examples of independent actions

Example 3.1.6 (Independent actions). Figure 3.2 shows a fragment of an MDP M1 repre-
senting the parallel execution of independent actions α and β. For example, α might stand
for the outcome of the experiment of tossing a “one” with a dice, while β stands for tossing
a fair coin. In general, whenever α and β represent stochastic experiments that are inde-
pendent in the classical sense then α and β viewed as actions of an MDP are independent.
However, there are also other situations where two actions can be independent that do not
have a fixed probabilistic branching pattern. For instance, actions α and β in the MDP M2

in Figure 3.2 are independent. To see this, first notice that only in state s both α and β are
enabled. The α-successors t, s of s have a β-transition to state u, while the β-successor u
has an α-transition to itself. The probabilistic effect under the action sequences αβ and βα
is the same as in either case state u is reached with probability 1.

3.2. The ample set method for Kripke structures and
linear-time properties

In this section we will deal with non-probabilistic transition systems (Kripke structures),
which will be viewed as an MDP with δ(s, α, t) ∈ {0, 1} for all states s, t and actions α.
Moreover, the initial distribution is assumed to be a Dirac distribution, that is, there is a
unique initial state.

We will now briefly recall the conditions on the ample sets that Doron Peled proposed to
ensure stutter equivalence for a given non-probabilistic system T and its reduced system
T̂ [Pel97]. Later, we will discuss to which extent those conditions are adequate for MDPs.
What does stutter equivalence between non-probabilistic transition systems mean? It means,
that given a path from one of the systems, the other system must be able to produce a stutter
equivalent path.

Definition 3.2.1. [Stutter equivalence for Kripke structures]
Given two non-probabilistic systems Ti = (Si,Acti, δi, µi), i = 1, 2 we call T1 and T2

23

3.2. The ample set method for Kripke structures and linear-time properties Chapter 3. Probabilistic Partial Order Reduction

stutter equivalent,
T1 ≡st T2,

if and only if for each initial path π1 of T1 there exists an initial path π2 of T2 such that
trace(π2) ≡st trace(π1) and vice versa.

Before getting to the ample set method we shortly illustrate its impact on LTL model check-
ing. Consider a stutter invariant linear-time property E and two stutter equivalent non-
probabilistic systems T1 and T2. Then

T1 |= E if and only if T2 |= E,

where T |= E means that for all initial paths π of T , trace(π) ∈ E. In fact, assume T1 |= E
and let π2 be an arbitrary initial path of T2. As the two systems are stutter equivalent, there
is an initial path p1 in T1 that is stutter equivalent to π2, i.e. π1 ≡st π2. As T1 |= E, π1 ∈ E
and therefore π2 ∈ E as E is a stutter invariant property. This shows the claim as the roles
of T1 and T2 can be swapped.

A particular type of stutter invariant linear-time properties are specifications which are de-
scribed by a formula of the Next Step free fragment of Linear Temporal Logic (LTL\X) (see
[Lam83]). A formula of that fragment is an LTL formula that does not use the Next step
operator X (.) Thus given an LTL\X formula ϕ and two stutter equivalent systems T1 and
T2 it holds that

T1 |= ϕ if and only if T2 |= ϕ,

where T |= ϕ means T |= L(ϕ).

We will now explain criteria on the ample sets that guarantee stutter equivalence between a
given non-probabilistic system T and its reduced system T̂ (and therefore preserve stutter
invariant linear-time properties). Basically the conditions shown in Figure 3.3 have been
proposed in [Pel97] where the following result has been shown.

(A0) (Nonemptiness-condition) For all states s ∈ S, ∅ 6= ample(s) ⊆ Act(s).

(A1) (Stutter-condition) If s ∈ Ŝ and ample(s) 6= Act(s) then all actions α ∈ ample(s)
are stutter actions.

(A2) (Dependence-condition) For each path π = s
α1−→ s1

α2−→ . . .
αn−−→ sn

γ−→ . . . in T
where s ∈ Ŝ and γ is dependent on ample(s) there exists an index i ∈ {1, . . . , n}
such that αi ∈ ample(s).

(A3) (Cycle-condition) For each cycle s0 −→ s1 −→ . . . −→ sn = s0 in T̂ it holds that:
α ∈

⋂n−1
i=0 Act(si) implies α ∈

⋃n−1
i=0 ample(si).

Figure 3.3: Conditions for the ample-sets

Theorem 3.2.2 (Ample set method - linear-time properties, cf. [Pel97]).
Given a state-labeled non-probabilistic system T = (S, Act, δ, µ) as well as a function

ample : S → 2Act that satisfies the conditions (A0)-(A3) in Figure 3.3, it holds that

T ≡st T̂ .

24

Chapter 3. Probabilistic Partial Order Reduction 3.2. The ample set method for Kripke structures and linear-time properties

Proof. We will give a rough sketch of the proof.

(A0) Condition (A0) ensures that the reduced system is a sub-MDP of the original
one and has no terminal states (as the original one).

Thus each path of T̂ is also a path of T . It remains to show that for any path π of T there
is a stutter equivalent path π̂ of T̂ . Let

π = s
α1−→ s1

α2−→ s2
α3−→ . . .

be a path of T . We show how to construct a stutter equivalent path π1 starting in s such
that the first action of π1 is an ample action of s. If α1 ∈ ample(s), let π1 be π. If
α1 /∈ ample(s), let n be the smallest number such that αn ∈ ample(s). If none of the αi is
an ample-action of s, let n be ∞. Assume that n is finite.

(A1) As s is not fully expanded and αn ∈ ample(s), (A1) ensures that αn is a stutter
action.

(A2) As αn is the first ample-action of s that occurs along π, (A2) ensures that αn

is independent from {α1, . . . , αn−1}.

That leads to the following picture.

s s1 s2

αn

α1 α2 αn−2 αn−1

α1 α2

αn αn

sn−3 sn−2 sn−1

tn−2 tn−1 snt1 t2 t3
αn−2 αn−1

αn αn αn

Note that L(si) = L(ti+1), i = 0, . . . , n − 1 as αn is a stutter action (where s0 = s).
Hence we may replace the original action sequence α1 . . . αn−1αn by the action sequence
αnα1 . . . αn−1 to obtain a path

π1 = s
αn−→ t1

α1−→ . . .
αn−2−−−→ tn−1

αn−1−−−−→ sn
αn+1−−−→ sn+1

αn+2−−−→ . . .

which is stutter equivalent to π.

If n = ∞, by similar arguments one can replace π by a stutter equivalent path π1 with the
same starting state first(π) and the action sequence βα1α2 . . . where β is an arbitrary action
in ample(first(π)).

In either case we obtain a path π1 that starts with a transition in the reduced system T̂ . We
now may apply the same technique to the path π1 (more precisely, to the suffix of π1 that
starts in the second state) to obtain a stutter equivalent path π2 whose first two transitions are
transitions in T̂ . We continue in this way until the path π of T is “transformed” into a path
π̂ in T̂ . Although conditions (A0)-(A2) are sufficient to guarantee the stutter equivalence of
π and the paths π1, π2, . . ., the cycle condition (A3) is needed to ensure the stutter equiva-
lence of π and π̂. Without the cycle-condition we might postpone some action of π forever

25

3.3. The ample set method for MDPs and linear-time properties Chapter 3. Probabilistic Partial Order Reduction

and then some suffix of the path π̂ consists only of stutter actions. As the cycle-condition
requires that for each cycle in T̂ , it holds that if α is enabled in M in each of the states of
the cycle, then α is also enabled in M̂ in at least one of the states of the cycle, this ensures
that the actions of π are eventually taken in π̂.

We finish this section with an example that shows the necessity of the cycle-condition (A3).
Consider the following transtion system T and its reduced system T̂ that emanates from T
when we consider the ample sets as follows. ample(si) = {αi} and all other states (the grey
states) are fully expanded. This satisfies conditions (A0)-(A2), but not the cycle condition.

α1

T T̂
s1

s2

α2

α1

α2

β

β
s1

s2

α2

α1

t1

t2

The state labeling is given by the shades of the states, so α1 and α2 are stutter actions. Then
T and T̂ are obviously not stutter equivalent, as a grey state can be reached in T , but not in
T̂ . The problem is as described above. Consider the path π in T that follows the action se-
quence β(α1α2)ω. Then π1 follows α1β(α2α1)ω. In general πi follows (α1α2)

i
2 β(α1α2)ω

if i is even and (α1α2)
i−1
2 α1β(α2α1)ω if i is odd. So the πi’s are stutter equivalent to π but

the limit path π̂ postpones action β forever and is therefore not stutter equivalent to π.

3.3. The ample set method for MDPs and linear-time
properties

In this section we show how the ample set method can be extended to MDPs, that means
how the ample set conditions (A0)-(A3) can be extended such that a given MDP M and
its reduced MDP M̂ are stutter equivalent. These results have been published in [BGC04].
First we give the definition of stutter equivalence of two Markov decision processes.

Definition 3.3.1. [Stutter equivalence for MDPs]
Given two state-labeled Markov decision processes Mi = (Si,Acti, δi, µi), i = 1, 2 we

call M1 and M2 stutter equivalent,

M1 ≡st M2,

if and only if for each scheduler U1 of M1 there exists a scheduler U2 of M2 such that,

PrM1,U1(E) = PrM2,U2(E)

for each stutter invariant measurable linear-time property E ⊆ (2AP)ω, and vice versa.

Here, a stutter invariant measurable linear-time property means a language L that is an
element of the σ-algebra generated by the empty set and the trace-cylinders

∆(`+
1 , . . . , `+

n) = {ω ∈ (2AP)ω | ∃k1, . . . kn ≥ 1 s.th. `k1
1 . . . `kn

n is a prefix of ω},

26

Chapter 3. Probabilistic Partial Order Reduction 3.3. The ample set method for MDPs and linear-time properties

where `i 6= `i+1, i = 1, . . . , n− 1 and the `i’s are subsets of 2AP.

Again, before treating the ample set method we shortly explain its impact on probabilistic
LTL model checking. In probabilistic LTL model checking, a specification consists of an
LTL formula, equipped with a probability bound and a comparison operator e.g. (3a,≤ 1

3).
An MDP M is said to satisfy a specification (ϕ, ./ p), i.e. M |= (ϕ, ./ p), if and only if

PrM,U (ϕ) ./ p

for all schedulers U of M.

LTL\X -formulae induce stutter invariant measurable languages [Var85]. Thus, if M1 and
M2 are stutter equivalent, we obtain for every probabilistic LTL\X specification (ϕ, ./ p)
that

M1 |= (ϕ, ./ p) if and only if M2 |= (ϕ, ./ p).

Hence two stutter equivalent MDPs M1 and M2 are fully equivalent for probabilistic
LTL\X specifications. This even holds for arbitrary specifications consisting of a stutter in-
variant measurable ω-language equipped with a probability bound and a comparison opera-
tor. As each ω-regular language over 2AP is measurable (see e.g. [Var85, CY95]), the above
holds for stutter invariant languages that are generated by a nondeterministic ω-automaton.

That means that given a probabilistic LTL\X specification, it suffices to model check M̂
instead of M if we can guarantee the stutter equivalence between a given MDP and the
reduced system. As M̂ is in general smaller than M this yields a possible speedup of the
analysis. Of course the algorithmic construction of appropriate ample sets together with
the construction and the analysis of M̂ should be more efficient than model checking the
full system M. As we will see in the following, the partial order reduction criteria for
the probabilistic setting are rather strong and might often lead to a minor savings of states.
Nevertheless even a reduction that cannot shrink the state space of an MDP but only the
number of transitions can increase the efficiency of the probabilistic model checking pro-
cedure. The latter relies on solving linear programs where the number of linear inequalities
for any state s is given by the number of outgoing transitions from s. Thus removing some
transitions via efficient reduction algorithms that e.g. operate on syntactic descriptions of
the processes, simplifies the linear program to be solved, and can therefore yield a speed-up
of the analysis.

3.3.1. The old conditions are not sufficient

In section 3.2 we introduced conditions (A0)-(A3) on the ample sets of a non-probabilistic
system T that guarantee stutter equivalence between T and the reduced system T̂ . We will
now examine why these conditions are not sufficient in the probabilistic case, i.e. we give a
counterexample of an MDP M and ample sets that satisfy (A0)-(A3) such that M 6≡st M̂.

Remember how the ample set method worked in the non-probabilistic case. Given a path
π of T with the underlying action sequence α1, α2, . . . where α1 /∈ ample(first(π)), the
main idea is to permute the first ample action of first(π) that occurs along that path to
the beginning of the action sequence. We gain a new stutter equivalent path π1. If no

27

3.3. The ample set method for MDPs and linear-time properties Chapter 3. Probabilistic Partial Order Reduction

ample action of first(π) occurs along the path, then we prepend some ample action to the
action sequence α1, α2, . . . and gain a stutter equivalent path π1. Conditions (A1) and (A2)
guarantee the existence of the path π1. Now the first action of π1 is in the reduced system
so we repeat this procedure ad infinitum (using πi↑i). We thus gain a path π̂ in T̂ and the
cycle condition (A3) ensures that π ≡st π̂.

But when dealing with MDPs, a problem arises. A scheduler for a given MDP M might
schedule a non-ample action of the starting state. As this action can be probabilistic there
might be several successors. For each of those the scheduler is able to schedule different
ample actions of the starting state. Which of those should be choosen to be permuted to the
front? In fact, a scenario as above must be forbidden. That is why in the probabilistic setting,
we will need an additional branching condition to make the ample set method work. The
example in Figure 3.4 shows that conditions (A0)-(A3) cannot ensure the stutter equivalence
of a given MDP M and its reduced MDP M̂. Consider the MDP M in Figure 3.4 (α is

M

su

u1

u2 s2

s1 t1

t2

t

β γ

τ

α, 1
3

α, 2
3

β γ

β γ

α, 2
3 α, 2

3

α, 1
3 α, 1

3

τ

τ

τ

M̂τ

τ

τ

τ

su

u1

u2

t1

t2

t

τ

α, 1
3

α, 2
3

β γ

α, 2
3

α, 1
3

τ

τ

τ

τ

τ

τ

τ

Figure 3.4: Conditions (A0)-(A3) do not establish stutter equivalence for MDPs

the only probabilistic action ofM) and the ample sets ample(s) = {β, γ} and ample(s′) =
Act(s′) for all other states s′. It is easy to see that conditions (A0)-(A3) are satisfied (we
assume that the labeling is given by and). Then M̂ in Figure 3.4 shows the reduced
MDP of M with respect to the chosen ample sets, but

M̂ 6≡st M,

as the maximum probability of eventually reaching in M is 1 (by choosing first α and
then β in state s1 and γ in state s2). It is instead 2

3 in M̂.

The problem that arises is the following. The scheduler of M schedules a probabilistic
non-ample action of the starting state s. Depending on the outcome (moving to state s1 or
s2), the scheduler chooses different ample actions (of s). Thus choosing α first postpones
the real nondeterministic decision between the ample actions β and γ. The reduced system
M̂ is not able to mimic such a behavior as it has to decide for a particular ample action
of s (more precisely a distribution over the ample actions of s) in its first step (before the
outcome of α is known). This decision is fixed from then on. It is exactly this behavior that
one has to forbid to gain stutter equivalence between the given system M and its reduced
sytem. That means that if the system can branch probabilistically with non-ample actions
(with respect to the starting state) then there should be only one ample action of the starting
state. Thus we propose an additional branching-condition (A4) that ensures exactly this.

28

Chapter 3. Probabilistic Partial Order Reduction 3.3. The ample set method for MDPs and linear-time properties

3.3.2. A sufficient extension of the old ample set conditions

(A0) (Nonemptiness-condition) For all states s ∈ S, ∅ 6= ample(s) ⊆ Act(s).

(A1) (Stutter-condition) If s ∈ Ŝ and ample(s) 6= Act(s) then all actions α ∈ ample(s)
are stutter actions.

(A2) (Dependence-condition) For each path π = s
α1−→ s1

α2−→ . . .
αn−−→ sn

γ−→ . . . in M
where s ∈ Ŝ and γ is dependent on ample(s) there exists an index i ∈ {1, . . . , n}
such that αi ∈ ample(s).

(A3) (End component condition) For each end component (T,A) in M̂ it holds that:
α ∈

⋂
t∈T A(t) implies α ∈

⋃
t∈T ample(t).

(A4) (Branching-condition) If π = s
α1−→ s1

α2−→ . . .
αn−−→ sn

α−→ . . . is a path in M where
s ∈ Ŝ, α1, . . . , αn, α /∈ ample(s) and α is probabilistic, then |ample(s)| = 1.

Figure 3.5: Conditions for the ample-sets of MDPs

For the sake of completeness we stated conditions (A0)-(A2) again and please note that we
weakened the cycle-condition to an end component condition (A3).

Remark 3.3.2 (Conservative extension of the ample set method).

• If applied to non-probabilistic systems, the end component condition (A3) is equiva-
lent to the cycle-condition (A3). However the end component condition also allows
for certain cycles violating the cycle-condition. For instance, for the MDP M2 in
Figure 3.2, page 23, the end component condition allows to choose ample(s) = {α}
(provided that α is a stutter-action), as state s is not contained in an end component.
However, this choice of ample(s) violates the cycle condition as the state s not only
has an α self-loop, but also an outgoing β transition.

• One should notice that condition (A4) is irrelevant for non-probabilistic systems.

Thus the extended ample set method falls back to the original one, if applied to non-
probabilistic systems.

It remains to show

Theorem 3.3.3 (Ample set method for MDPs - linear-time properties).
Given a state-labeled Markov decision process M = (S, Act, δ, µ) as well as a function
ample : S → 2Act that satisfies the conditions (A0)-(A4) in Figure 3.5, it holds that

M ≡st M̂.

Proof. Let an MDP M = (S, Act, δ, µ) and a function ample : S → Act that satisfies the
conditions (A0)-(A4) in Figure 3.5 be given. We have to show that for each scheduler U of
M there exists a scheduler Û of M̂ such that,

PrM,U (E) = PrM̂,Û (E) (+)

29

3.3. The ample set method for MDPs and linear-time properties Chapter 3. Probabilistic Partial Order Reduction

for each stutter invariant measurable linear-time property E ⊆ (2AP)ω, and vice versa.

As M̂ is a sub-MDP of M it is obvious that for any scheduler Û of M̂ there is a scheduler
U of M such that (+) holds. We just may set U = Û .

Now let a scheduler U of M be given. We will later show how to construct an infinite
sequence of schedulers U1,U2,U3, . . . ofM, such that condition (+) holds for U and Ui (for
each state s) and Ui(π) ∈ Distr(ample(last(π))) for all finite Ui paths π of length < i. That
is

PrM,U
s (E) = PrM,Ui

s (E) (++)

for each stutter invariant measurable linear-time property E and each state s and for each
Ui-path π the i-th prefix of π is a path in M̂. Moreover Ui+1 mimicks Ui on its first i − 1
steps, i.e.

Ui+1(π) = Ui(π)

if |π| ≤ i − 1. Finally, a scheduler Û for M̂ is derived from the schedulers Ui as follows.
We define

Û(π̂) = Ui+1(π̂),

if π̂ is a finite Û-path of length i.

The remaining argumentation is similar to the non-probabilistic case. We cannot immedi-
ately conclude that U and Û yield the same probabilities for the trace-cylinders because the
generated Û-paths might “delay” a certain action of a U-path ad infinity as in the following
example.

β s t
α, 1

2

α, 1
2

β

The state labeling is given by the shades of the states, thus, β is a stutter action, while α is
not. For ample(s) = {β} and scheduler U where U(π) = α for all paths π with last(π) = s,
the construction explained in subsection 3.3.2.1 yields

Ui(s
β−→ s . . .

β−→ s︸ ︷︷ ︸
length j

) =
{

β : for j ≤ i− 1,
α : for j = i.

Thus, scheduler Û always schedules β in the state s. In fact, Û is the only scheduler for
M̂ as M̂ consists only of state s with the β-loop. Under U and each of the schedulers Ui,
we obtain probability 1 to reach the grey state t, while the probability to reach state t under
Û is 0. However, in this example, conditions (A0), (A1), (A2) and (A4) hold, but the end
component (s, {β}) violates the end component condition (A3).

30

Chapter 3. Probabilistic Partial Order Reduction 3.3. The ample set method for MDPs and linear-time properties

We now show that the end component condition (A3) ensures that any action of a U-path
will be “consumed” by Û almost surely. To simplify the notations we consider here only
the case where U(s) = α1 /∈ ample(s) and show that

PrM̂,Û
s ({π̂ ∈ PathsM̂inf (s) | α1 ∈ Act(π̂)}) = 1.

Let us assume that the sum is strictly less than 1. Then,

PrM̂,Û
s

(
{π̂ ∈ PathsM̂inf (s) : α1 /∈ Act(π̂)}

)
> 0 (+++)

All infinite Û-paths π̂ with first(π̂) = s = s0 and α1 /∈ Act(π̂) have the form

π̂ = s
β1−→ s1

β2−→ s2
β3−→ . . .

where α1 ∈ Act(si) \ ample(si) for all indices i. This follows from condition (A2) which
guarantees that α1 is independent from the βi’s, and hence, enabled in all states si. More-
over, Ui (and Û) would have chosen α1 for π̂↑i if α1 ∈ ample(si). Because of (+++) and
Lemma 2.2.13, page 13 we may choose such a Û-path π̂ where Lim(π̂) is an end component.
Recall that Lim(π̂) consists of all states that occur infinitely often in π̂ and their actions that
are chosen infinitely often in π̂. Thus, it holds that α1 ∈ Act(t) \ ample(t) for all states t
of an end component in M̂. But this contradicts the end component condition (A3). This
observation together with the fact that U and the intermediate schedulers Ui yield the same
probabilities for all stutter invariant measurable linear-time properties allows us to conclude
that for all ¯̀= (`1, . . . , `n) ∈ (2AP)∗ and all action sequences ᾱ = α1 . . . αn,

PrM,U
s (∆(¯̀+, ᾱ)) = PrM̂,Û

s (∆(¯̀+, ᾱ)).

Here, ∆(¯̀+, ᾱ) denotes the set of all finite paths π of minimal length that induce a trace of
the form `+

1 . . . `+
n and that have an action sequence which results from ᾱ by exchanging the

order of independent actions and possibly adding stutter actions. From this, we derive (+)
for all stutter invariant measurable linear-time properties E which concludes the proof.

3.3.2.1. Constructing the schedulers Ui

We now explain how the desired schedulers Ui, i = 1, 2, . . . are constructed. Recall that
starting with a scheduler U of M, we want to construct an infinite sequence of schedulers
U1,U2,U3, . . . of M, such that for each i the constrain (++)

PrM,U
s (E) = PrM,Ui

s (E)

holds for each stutter invariant measurable linear-time property E and each state s and for
each Ui-path π the i-th prefix of π is a path in M̂. Using standard arguments of measure
theory, to prove (++) for all stutter invariant measurable linear-time properties, it suffices to
establish condition (++) for all trace-cylinders ∆(`+

1 , . . . , `+
k).

Assume that an MDP M, a scheduler U and ample sets satisfying conditions (A0)-(A4) are
given. We fix a state s ∈ M̂ and present the definition of U1(π) for finite paths π starting
in s. But first we fix some notation.

31

3.3. The ample set method for MDPs and linear-time properties Chapter 3. Probabilistic Partial Order Reduction

Notation 3.3.4. Recall that if π is a finite or infinite path then −−→πAct denotes the action
sequence of π and Act(π) denotes the set of actions occurring in π.

Given a state s we denote by na(s) the actions of s that are not in the ample set of s, i.e.
na(s) = Act(s) \ ample(s).

Given a regular language A ⊆ Act∗, a finite path ρ and a scheduler U , we denote by

PrUs (ρ A−→) := PrUs
(
{π ∈ Pathinf(s) | π↑|ρ| = ρ ∧ ∃~a ∈ A s.th. (−−→πAct)↑|ρ|+|~a| = −−→ρAct ◦ ~a}

)
the probability that U produces a path that has ρ as a prefix and follows afterwards some
action sequence in A. Note that the set of such paths is measurable. Thus for example,

PrUs (s
α1na(s)∗β−−−−−−→) denotes the probability that U produces a path that starts in s, executes

α1, a possibly empty sequence of non-ample actions of s and then β.

By

PrUs (ρ A−→ t) := PrUs
(
{π ∈ Pathinf(s) |

π↑|ρ| = ρ ∧ ∃~a ∈ A s.th. (−−→πAct)↑|ρ|+|~a| = −−→ρAct ◦ ~a ∧ π|ρ|+|~a| = t}
)

we denote the probability of the set of such paths that in addition visit the state t after exe-
cuting the particular action sequence of A.

We denote by

PrUs (ρ
na(s)ω

−−−−→) := PrUs
(
{π ∈ Pathinf(s) | π↑|ρ| = ρ ∧ Act(π↑|ρ|) ∩ ample(s) = ∅}

)
the probability that U produces a path that has ρ as a prefix and afterwards never executes
an action in ample(s).

Notation 3.3.5. For finite paths starting in s, where ample(s) 6= Act(s), we define ∼ to be
the finest equivalence such that

(1)
π ∼ σ and π ∼ π′

for all finite paths π, π′ and σ of the form

π = s
β−→ t0

α1−→ . . .
αn−1−−−→ tn−1

αn−→ t

π′ = s
β−→ u0

α1−→ . . .
αn−1−−−→ un−1

αn−→ t

σ = s
α1−→ s1

α2−→ . . .
αn−→ sn

β−→ t

where α1, . . . , αn /∈ ample(s) are independent from β ∈ ample(s) and there exist
state-labels `0, . . . , `n ⊆ AP such that

trace(π) = trace(π′) = `0, `0, `1, . . . , `n

and trace(σ) = `0, `1, . . . , `n, `n. Note that β is a stutter action as ample(s) 6=
Act(s). Moreover

32

Chapter 3. Probabilistic Partial Order Reduction 3.3. The ample set method for MDPs and linear-time properties

(2)
π ◦ ρ ∼ π′ ◦ ρ ∼ σ ◦ ρ

for all π, π′, σ as in (1) and all finite paths ρ starting in t.

[π] denotes the ∼-equivalence class of π.

We now give the definition of U1. There are three different possibilities.

Case [1] s is fully expanded, i.e. ample(s) = Act(s).

We define U1(π1) := U(π1) for all π1 ∈ Pathfin(s). Then (++) obviously holds for each
stutter invariant linear-time property E.

Case [2] |ample(s)| = 1

Assume ample(s) = {β}. Obviously we have to define

U1(s)(β) = 1.

Let π ∈ Pathfin(s) be a path of length greater than zero. We define U1(π) as shown in
Figure 3.6. Some explanations are in order. If π is a U1-path as in Notation 3.3.5 then the

α 6= β

U1(π)(α) = 1∑
π′∈[π]

PrU1
s (π′)

·
(∑

σ∈[π]

PrUs (σ) · U(σ)(α) +

∑
ρ s.t. ρ

β
−→ last(π) ∈ [π]

ample(s) ∩ Act(ρ) = ∅

PrUs (ρ) · U(ρ)(α) · δ
(
last(ρ), β, last(π)

))

U1(π)(β) =

∑
σ∈[π]

PrUs (σ) · U(σ)(β)∑
π′∈[π]

PrU1
s (π′)

Recall that s = first(π).

Figure 3.6: Definition of the scheduler U1(π), if |π| ≥ 1 (ample(s) = {β})

U-paths σ ∈ [π] have the form

σ = s
α1−→ s1

α2−→ . . .
αi−→ si

β−→ vi
αi+1−−−→ . . .

αn−→ vn,

33

3.3. The ample set method for MDPs and linear-time properties Chapter 3. Probabilistic Partial Order Reduction

where 0 ≤ i ≤ n, and π↑i+1 = vi
αi+1−−−→ . . .

αn−→ vn. Moreover, L(sk) = L(πk+1), k =
1, . . . , i. So these are the paths, where β has already been executed.

The paths ρ in the right sum in Figure 3.6 have the form ρ = s
α1−→ s1

α2−→ . . .
αn−→ sn where

α1, . . . , αn /∈ ample(s) and

ρ
β−→ last(π) = s

α1−→ s1
α2−→ . . .

αn−→ sn
β−→ last(π) ∈ [π].

These are the paths where β has not yet been executed. Note that there might be other paths
π̃ that follow the action sequence β, α1, . . . , αn and are stutter equivalent to the path π, but
which end in a different state than π, i.e. last(π̃) 6= last(π) = t. Thus π̃ /∈ [π] and [π̃] 6= [π].

But then ρ
β−→ last(π̃) is in [π̃]. Thus the path ρ accounts for [π] as well as [π̃]. The factor

δ(last(ρ), β, last(π)) brings in just the fraction that corresponds to [π].

If the given U1-path π has the form

π = s
β−→ t0

α1−→ . . .
αn−→ tn

γ1−→ tn+1 . . .
γm−−→ tn+m,

where α1, . . . , αn /∈ ample(s) are independent from β, γ1 ∈ ample(s) or γ1 and β are
dependent, then the sum on the right in Figure 3.6 equals zero as no such path ρ exists.

We first show that U1 is indeed a HR-scheduler, i.e. we have to prove that

(i) U1(π)(α) > 0 implies α ∈ Act(last(π)) and

(ii)
∑

γ∈Act(s)

U1(π)(γ) = 1.

Both (i) and (ii) are obvious if π has length zero (i.e. π = s).

Let π be a path of length greater than zero, i.e. |π| ≥ 1. Then (i) is an easy verification.
Indeed, the definition of U1(π)(α) in Figure 3.6 shows that U1(π)(α) > 0 implies either

• U(σ)(α) > 0 for some path σ ∈ [π], so α ∈ Act(last(σ)) = Act(last(π)) or

• U(ρ)(α) > 0 for some path ρ, such that Act(ρ) ∩ ample(s) = ∅, α /∈ ample(s) and
δ(last(ρ), β, last(π)) > 0. Thus α ∈ Act(last(ρ)), β ∈ Act(last(ρ)) and condition
(A2) ensures that α is independent to β and therefore α ∈ Act(last(π)).

(ii) is an immediate consequence of the following observation.

Lemma 3.3.6. Let π be a path of length greater than zero. Then∑
π′∈[π]

PrU1
s (π′) =

∑
σ∈[π]

PrUs (σ) (I)

+
∑

ρ s.t. ρ
β−→ last(π) ∈ [π]

ample(s) ∩ Act(ρ) = ∅

PrUs (ρ) · (1− U(ρ)(β)) · δ(last(ρ), β, last(π))

Proof. see subsection 3.3.2.2

34

Chapter 3. Probabilistic Partial Order Reduction 3.3. The ample set method for MDPs and linear-time properties

Case [3] 1 < |ample(s)| < |Act(s)|

Note that in this case condition (A4) ensures that for each path s
α1−→ s1

α2−→ . . .
αn−→ sn in

M with αi /∈ ample(s), 1 ≤ i ≤ n it holds that αi is non-probabilistic, 1 ≤ i ≤ n. Thus
as long as no ample action occurs on a path, all actions yield unique successors. Despite
this, it is possible that different ample actions of s are scheduled by U , as U can choose
non-ample actions probabilistically and therefore yield an execution tree. But this does not
raise a problem, as U1 can simulate this. The main idea is that U1 executes in s an ample
action β with the probability that β occurs as the first ample action under the scheduler
U . It then redistributes the appropriate probability mass to the particular paths. As there
might be U-paths that never execute an ample action of s, we fix a designated ample action
βs ∈ ample(s), that will be prepended to those paths.

We define the scheduler U1 for the path of length zero.

U1(s)(β) = PrUs (s
na(s)∗β−−−−→)

for βs 6= β ∈ ample(s) and

U1(s)(βs) = PrUs (s
na(s)∗βs−−−−−→) + PrUs (s

na(s)ω

−−−−→).

Let π ∈ Pathfin(s) be a path of length greater than zero, i.e. |π| ≥ 1. We define U1(π)
as shown in Figure 3.7, where β ∈ ample(s) is the first action that occurs on π. Some

α /∈ ample(s) and β 6= βs :
U1(π)(α) = 1∑

π′∈[π]

PrU1
s (π′)

·
(∑

σ∈[π]

PrUs (σ) · U(σ)(α) +

∑
ρ s.t. ρ

β
−→ last(π) ∈ [π]

ample(s) ∩ Act(ρ) = ∅

PrUs (ρ
αna(s)∗β−−−−−−→) · δ

(
last(ρ), β, last(π)

))

γ ∈ ample(s) :

U1(π)(γ) =

∑
σ∈[π]

PrUs (σ) · U(σ)(γ)∑
π′∈[π]

PrU1
s (π′)

s = first(π) and β ∈ ample(s) is the first action on π.

Figure 3.7: Definition of the scheduler U1(π), if |π| ≥ 1 (1 < |ample(s)| < |Act(s)|)

explanations are in order. Note that the sum in the right summand ranges over at most one
path. Indeed, if ρ is a path in the right sum in Figure 3.7, then it has the form ρ = s

α1−→

35

3.3. The ample set method for MDPs and linear-time properties Chapter 3. Probabilistic Partial Order Reduction

s1
α2−→ . . .

αn−→ sn where α1, . . . , αn /∈ ample(s) and

ρ
β−→ last(π) = s

α1−→ s1
α2−→ . . .

αn−→ sn
β−→ last(π) ∈ [π].

Since the αi’s are not in ample(s), condition (A4) implies that the αi’s are non-probabilistic,
so ρ is uniquely defined. If the given U1-path π has the form

π = s
β−→ t0

α1−→ . . .
αn−→ tn

γ1−→ tn+1 . . .
γm−−→ tn+m,

where α1, . . . , αn /∈ ample(s) are independent from β, γ1 ∈ ample(s) or γ1 and β are
dependent, then the sum on the right in Figure 3.7 equals zero as no such path ρ exists.

The paths σ ∈ [π] are the paths where β has already been executed as the first ample(s)
action on σ. The path ρ in the second summand is the path where no ample action of s has
yet been executed (the sum ranges over at most one path). Note that there might be other
paths π̃ that follow the action sequence β, α1, . . . , αn and are stutter equivalent to the path
π, but which end in a different state than π, i.e. last(π̃) 6= last(π) = t. Thus π̃ /∈ [π]

and [π̃] 6= [π]. But then ρ
β−→ last(π̃) is in [π̃]. Thus the path ρ accounts for [π] as well as

[π̃]. The factor δ(last(ρ), β, last(π)) brings in just the fraction that corresponds to [π]. The
factor

PrUs (ρ
αna(s)∗β−−−−−→) = PrUs (ρ α−→) · PrUs (ρ

αna(s)∗β−−−−−→)

PrUs (ρ α−→)
brings in only the fraction of the probability that U executes ρ and schedules α afterwards,
where the first action of ample(s) that appears, will be β.

If the first action on π is the designated ample action βs, then we define U1(π)(α) for
α /∈ ample(s) as

U1(π)(α) = 1∑
π′∈[π]

PrU1
s (π′)

·
(∑

σ∈[π]

PrUs (σ) · U(σ)(α) +

∑
ρ s.t. ρ

βs−−→ last(π) ∈ [π]
ample(s) ∩ Act(ρ) = ∅

PrUs (ρ
αna(s)∗βs−−−−−−→) · δ

(
last(ρ), βs, last(π)

)
+

∑
ρ s.t. ρ

βs−−→ last(π) ∈ [π]
ample(s) ∩ Act(ρ) = ∅

PrUs (ρ
αna(s)ω

−−−−−→) · δ
(
last(ρ), βs, last(π)

))

The factor

PrUs (ρ
αna(s)ω

−−−−→) = PrUs (ρ α−→) · PrUs (ρ
αna(s)ω

−−−−→)

PrUs (ρ α−→)
in the last summand brings in only the fraction of the probability that U executes ρ and
schedules α afterwards, where no action of ample(s) will ever occur.

Again we have to show that U1 is indeed a HR-scheduler, i.e. we have to prove that

36

Chapter 3. Probabilistic Partial Order Reduction 3.3. The ample set method for MDPs and linear-time properties

(i) U1(π)(α) > 0 implies α ∈ Act(last(π)) and

(ii)
∑

γ∈Act(s)

U1(π)(γ) = 1.

Both (i) and (ii) are obvious if π has length zero (i.e. π = s).

Let π be a path of length greater than zero, i.e. |π| ≥ 1. Then (i) is an easy verification as
in case [2]. (ii) can be derived from the following observation.

Lemma 3.3.7. Let π be a path such that s = first(π) and β ∈ ample(s) is the first action
on π (and β 6= βs). Then∑

π′∈[π]

PrU1
s (π′) =

∑
σ∈[π]

PrUs (σ) (I’)

+
∑

ρ s.t. ρ
β−→ last(π) ∈ [π]

ample(s) ∩ Act(ρ) = ∅

PrUs (ρ
na(s)+β−−−−−→) · δ(last(ρ), β, last(π))

If β = βs then the right hand side of equation (I’) contains the additional summand∑
ρ s.t. ρ

βs−−→ last(π) ∈ [π]
ample(s) ∩ Act(ρ) = ∅

PrUs (ρ
na(s)ω

−−−−→) · δ(last(ρ), βs, last(π))

Proof. see subsection 3.3.2.3

Note that equation (I) can be written in the same style as equation (I’) as

PrUs (ρ) · (1− U(ρ)(β)) = PrUs (ρ
na(s)−−−→) = PrUs (ρ

na(s)+β−−−−−→) + PrUs (ρ
na(s)ω

−−−−→),

if ample(s) = {β}.

We now show that U and U1 yield the same probabilities for all stutter invariant measurable
languages.

Notation 3.3.8. If π is a finite U1-path of length ≥ 1 starting in s (thus, the first action in
π is in ample(s)) then [π]+ denotes the union of all equivalence classes [π′] where π′ is a
finite path with −−→πAct =

−−→
π′Act and trace(π) = trace(π′).

Note that the paths in [π]+ are pairwise stutter equivalent. From (I’), resp. (I) we derive∑
π′∈[π]+

PrU1
s (π′) =

∑
σ∈[π]+

PrUs (σ) +
∑

ρ s.t. ρ
β
−→last(π)∈[π]+

ample(s) ∩ Act(ρ) = ∅

PrUs (ρ
na(s)+β−−−−−→) (II)

Again as for equation (I’), if β = βs then the right hand side of equation (II) contains the
additional summand ∑

ρ s.t. ρ
βs−−→ last(π) ∈ [π]+

ample(s) ∩ Act(ρ) = ∅

PrUs (ρ
na(s)ω

−−−−→)

37

3.3. The ample set method for MDPs and linear-time properties Chapter 3. Probabilistic Partial Order Reduction

Notation 3.3.9. Given a state s, an action β 6= βs, β ∈ ample(s) and the sequences ¯̀ =
`0, `1, . . . , `n ∈ (2AP)∗ and ᾱ = α1, . . . , αn ∈ Act∗, we define the path-set PCylsβ(¯̀, ᾱ)
consisting of (1) all infinite paths

ς = s
α1−→ s1

α2−→ . . .
αi−1−−−→ si−1

β−→ ti−1
αi−→ ti

αi+1−−−→ . . .
αn−→ tn −→ . . .

where i ∈ {1, . . . , n + 1}, {α1, . . . , αi−1} ∩ ample(s) = ∅ and trace(ς) has the prefix
`0, `1, . . . , `i−1, `i−1, `i, `i+1, . . . , `n and (2) all infinite paths

ς = s
α1−→ s1

α2−→ . . .
αn−→ sn

α−→ . . .

where {α1, . . . , αn, α} ∩ ample(s) = ∅, −→ςAct ∈ na(s)∗βActω and trace(ς) has the prefix
`0, `1, . . . , `n.

PCylsβs
(¯̀, ᾱ) additionally contains all infinite paths

ς = s
α1−→ s1

α2−→ . . .
αn−→ sn . . .

where no ample(s) action appears on ς , i.e. −→ςAct ∈ na(s)ω and trace(ς) has the prefix
`0, `1, . . . , `n.

If π is a U1-path with first(π) = s, −−→πAct = βα1 . . . αn and trace(π) = `0, `0, `1, . . . , `n

then ς ∈ PCylsβ(¯̀, ᾱ) if and only if either ς has a prefix in [π]+ or −→ςAct = α1 . . . αnα . . . ∈
na(s)∗βActω (or ∈ na(s)ω if β = βs), where {α1, . . . , αn, α} ∩ ample(s) = ∅ and
`0, `1, . . . , `n is a prefix of trace(ς). The latter case is only possible if α1, . . . , αn (and
α) are independent from β. This observation yields with s = first(π) and β the first action
on π.

PrU1
s (PCylsβ(¯̀, ᾱ)) =

∑
π′∈[π]+

PrU1
s (π′) (III)

PrUs (PCylsβ(¯̀, ᾱ)) =
∑

σ∈[π]+
PrUs (σ) +

∑
ρ s.t. ρ

β
−→last(π)∈[π]+

ample(s) ∩ Act(ρ) = ∅

PrUs (ρ
na(s)+β−−−−−→) (IV)

If β = βs then the right hand side of equation (IV) contains the additional summand∑
ρ s.t. ρ

βs−−→ last(π) ∈ [π]+

ample(s) ∩ Act(ρ) = ∅

PrUs (ρ
na(s)ω

−−−−→)

Combining (II), (III) and (IV) yields:

PrU1
s (PCylsβ(¯̀, ᾱ)) = PrUs (PCylsβ(¯̀, ᾱ)) (V)

We now abstract away from the action sequences and the ample action β and define PCyls(¯̀)
as the union of all path-sets PCylsβ(¯̀, ᾱ). As the path-sets PCylsβ(¯̀, ᾱ) are pairwise disjoint,

38

Chapter 3. Probabilistic Partial Order Reduction 3.3. The ample set method for MDPs and linear-time properties

we conclude from (V) that

PrU1
s (PCyls(¯̀)) =

∑̄
α

β ∈ ample(s)

PrU1
s (PCylsβ(¯̀, ᾱ))

=
∑̄
α

β ∈ ample(s)

PrUs (PCylsβ(¯̀, ᾱ)) = PrUs (PCyls(¯̀)). (VI)

If we are given a trace-cylinder ∆(`+
1 , . . . , `+

n) ⊆ (2AP)ω (where `i 6= `i+1, i = 1, . . . , n−
1) then the induced path-cylinder

PCyls(`+
1 , . . . , `+

n) = {ς ∈ Pathinf(s) : trace(ς) ∈ ∆(`+
1 , . . . , `+

n)}

agrees with

⋃
k1,...,kn≥1

 ⋃
`∈2AP

` 6=`n

PCyls(`k1
1 , . . . , `kn

n , `) ∪
⋂
k≥1

PCyls(`k1
1 , . . . , `kn

n , `k
n)


The paths-sets PCyls(`k1

1 , . . . , `kn
n , `) and

⋂
k≥1 PCyls(`k1

1 , . . . , `kn
n , `k

n) are pairwise dis-
joint. Thus, we obtain from (VI) that

PrU1
s (∆(`+

1 , . . . , `+
n)) = PrUs (∆(`+

1 , . . . , `+
n)).

Hence
PrU1

s (E) = PrUs (E)

for any stutter invariant measurable linear-time property E.

Inductive definition of the scheduler sequence. In a similar fashion we can now define
a sequence of schedulers U2,U3, . . ., where Ui+1 is constructed from Ui, mimicking its first
i− 1 steps, i.e.

Ui+1(π) = Ui(π)

if |π| ≤ i − 1. For the paths of length ≥ i we apply the technique described in the con-
struction of U1 from U . This yields that Ui(π) ∈ Distr(ample(last(π))) for each path π of
length < i, that is the i-th prefix of any Ui-path is a path in M̂.

Using induction on i, we obtain for each i ∈ N≥1

PrUi
s (E) = PrUs (E)

for all stutter invariant measurable linear-time property E, which is what we wanted to show.

39

3.3. The ample set method for MDPs and linear-time properties Chapter 3. Probabilistic Partial Order Reduction

3.3.2.2. Proof of Lemma 3.3.6

Remember that case [2] holds, so |ample(s)| = 1. In particular, ample(s) = {β}. We need
to show that

∑
π′∈[π]

PrU1
s (π′) =

∑
σ∈[π]

PrUs (σ) (I)

+
∑

ρ s.t. ρ
β−→ last(π) ∈ [π]

ample(s) ∩ Act(ρ) = ∅

PrUs (ρ) · (1− U(ρ)(β)) · δ(last(ρ), β, last(π))

holds. First we fix some notation. Let π1 = s
β−→ t0

α1−→ . . .
αn−1−→ tn−1

αn−→ tn,
where α1, . . . , αn /∈ ample(s) are independent from β and π2 = v0

γ1−→ v1
γ2−→ . . .

γm−1−→
vm−1

γm−→ vm where γ1 is dependent on ample(s) and v0 = tn. Let π be π1 ◦ π2 and
`i = {s : L(s) = L(ti)}, 0 ≤ i ≤ n. We observe that if m ≥ 1, then for π′1 ∈ [π1] the
following holds.

[π′1 ◦ π2↑−1] = [π1 ◦ π2↑−1] (∗)

[π1 ◦ π2↑−1] = {π′′1 ◦ π2↑−1 | π′′1 ∈ [π1]}, (∗∗)

where for a given path σ of length ≥ 1, σ↑−1 denotes the prefix σ↑|σ|−1.

We split the proof of equation (I) in two parts, one dealing with m ≥ 1 and one dealing with
m = 0.

Case m ≥ 1 :
Therefore π = π1 ◦ π2, where |π2| ≥ 1. It thus follows that

∑
π′∈[π]

PrU1
s (π′) =

∑
π′1∈[π1]

PrU1
s (π′1 ◦ π2) =

∑
π′1∈[π1]

PrU1
s (π′1 ◦ π2↑−1) · U1(π′1 ◦ π2↑−1)(γm) · δ(vm−1, γm, vm) =

∑
π′1∈[π1]

PrU1
s (π′1 ◦ π2↑−1) · δ(vm−1, γm, vm) ·

[P
σ′∈[π′1◦π2↑−1]

PrUs (σ′)·U(σ′)(γm)+ 0
]

P
π′′∈[π′1◦π2↑−1]

Pr
U1
s (π′′)

(∗)
=

∑
π′1∈[π1]

PrU1
s (π′1 ◦ π2↑−1) · δ(vm−1, γm, vm) ·

P
σ′∈[π1◦π2↑−1]

PrUs (σ′)·U(σ′)(γm)

P
π′′∈[π1◦π2↑−1]

Pr
U1
s (π′′)

(∗∗)
=

40

Chapter 3. Probabilistic Partial Order Reduction 3.3. The ample set method for MDPs and linear-time properties

∑
σ′∈[π1◦π2↑−1]

PrUs (σ′) · U(σ′)(γm) · δ(vm−1, γm, vm) ·

P
π′1∈[π1]

Pr
U1
s (π′1◦π2↑−1)

P
π′′1∈[π1]

Pr
U1
s (π′′1 ◦π2↑−1)

=

∑
σ′∈[π1◦π2↑−1]

PrUs (σ′
γm−−→ vm) =

∑
σ∈[π]

PrUs (σ)

which is what we wanted to show, since the second sum on the right hand side of equation
(I) equals zero in the case that m ≥ 1.

Case m = 0 : (thus π2 = tn)
So π = π1 = s

β−→ t0
α1−→ . . .

αn−1−→ tn−1
αn−→ tn, where α1, . . . , αn /∈ ample(s) are

independent from β. We fix some notation. Let

Xn = {x | ∃π′ ∈ [π] s.th. x = π′n}.

Note that L(x) = L(tn−1) for all x ∈ Xn (by definition of∼ and thus [π]). To each x ∈ Xn

we define a distinguished path πx such that last(πx) = x and πx
αn−→ tn ∈ [π]. Then

[π] =
.⋃

x∈Xn

.⋃
π′∈[πx]

{π′ αn−→ tn}
.⋃
{π′ ∈ [π] |

−−→
π′Act = α1 . . . αnβ}. (∗∗∗)

It follows that

∑
π′∈[π]

PrU1
s (π′) =

∑
x∈Xn

π′ ∈ [πx]

PrU1
s (π′ αn−→ tn) +

∑
π′′∈[π]:

−−→
π′′Act = α1 . . . αnβ

PrU1
s (π′′) =

∑
x∈Xn

π′ ∈ [πx]

PrU1
s (π′) · U1(π′)(αn) · δ(x, αn, tn) + 0 =

∑
x∈Xn

π′ ∈ [πx]

PrU1
s (π′) · δ(x, αn, tn) · 1P

π′′∈[π′]
Pr
U1
s (π′′)

·
[∑

σ′∈[π′]

PrUs (σ′) · U(σ′)(αn) +

n − 1∑
i=1

yi ∈ `i

PrUs (s α1−→ . . .
αn−1−−−→ yn−1︸ ︷︷ ︸

σ′′

) · U(σ′′)(αn) · δ(yn−1, β, x)
]

=

41

3.3. The ample set method for MDPs and linear-time properties Chapter 3. Probabilistic Partial Order Reduction

∑
x∈Xn

[∑
π′∈[πx]

PrU1
s (π′) · 1P

π′′∈[π′]
Pr
U1
s (π′′)

·
∑

σ′∈[π′]

PrUs (σ′) · U(σ′)(αn) · δ(x, αn, tn)
]

+

∑
x∈Xn

[∑
π′∈[πx]

PrU1
s (π′) · 1P

π′′∈[π′]
Pr
U1
s (π′′)

·

n − 1∑
i=1

yi ∈ `i

PrUs (s α1−→ . . .
αn−1−−−→ yn−1︸ ︷︷ ︸

σ′′

) · U(σ′′)(αn) · δ(yn−1, β, x) · δ(x, αn, tn)
]

For the sake of readability we will compute the two summands separately. Note that (i)
[π′] = [πx] for π′ ∈ [πx]. The first summand gives

(a) =

∑
x∈Xn

[∑
π′∈[πx]

PrU1
s (π′) · 1P

π′′∈[π′]
Pr
U1
s (π′′)

·
∑

σ′∈[π′]

PrUs (σ′) · U(σ′)(αn) · δ(x, αn, tn)
]

(i)=

∑
x∈Xn

[∑
π′∈[πx]

PrU1
s (π′) · 1P

π′′∈[πx]

Pr
U1
s (π′′)

·
∑

σ′∈[πx]

PrUs (σ′) · U(σ′)(αn) · δ(x, αn, tn)
]

=

∑
x∈Xn

[∑
σ′∈[πx]

PrUs (σ′) · U(σ′)(αn) · δ(x, αn, tn) ·

P
π′∈[πx]

Pr
U1
s (π′)P

π′′∈[πx]

Pr
U1
s (π′′)

]
=

∑
x∈Xn

∑
σ′∈[πx]

PrUs (σ′ αn−→ tn)

Recall that (ii) β is a stutter action and (iii) αn and β are independent. The second summand
leads to

(b) =∑
x∈Xn

[∑
π′∈[πx]

PrU1
s (π′) · 1P

π′′∈[π′]
Pr
U1
s (π′′)

·

n − 1∑
i=1

yi ∈ `i

PrUs (s α1−→ . . .
αn−1−−−→ yn−1︸ ︷︷ ︸

σ′′

) · U(σ′′)(αn) · δ(yn−1, β, x) · δ(x, αn, tn)
]

(i)=

∑
x∈Xn

[n − 1∑
i=1

yi ∈ `i

PrUs (s α1−→ . . .
αn−1−−−→ yn−1︸ ︷︷ ︸

σ′′

) · U(σ′′)(αn) · δ(yn−1, β, x) · δ(x, αn, tn) ·

∑
π′∈[πx]

PrU1
s (π′) · 1P

π′′∈[πx]

Pr
U1
s (π′′)

]
=

42

Chapter 3. Probabilistic Partial Order Reduction 3.3. The ample set method for MDPs and linear-time properties

n − 1∑
i=1

yi ∈ `i

PrUs (s α1−→ . . .
αn−1−−−→ yn−1︸ ︷︷ ︸

σ′′

) · U(σ′′)(αn) ·
∑

x∈Xn

δ(yn−1, β, x) · δ(x, αn, tn) (ii)=

n − 1∑
i=1

yi ∈ `i

PrUs (s α1−→ . . .
αn−1−−−→ yn−1︸ ︷︷ ︸

σ′′

) · U(σ′′)(αn) ·
∑
x

δ(yn−1, β, x) · δ(x, αn, tn) (iii)=

n − 1∑
i=1

yi ∈ `i

PrUs (s α1−→ . . .
αn−1−−−→ yn−1︸ ︷︷ ︸

σ′′

) · U(σ′′)(αn) ·
∑
x

δ(yn−1, αn, x) · δ(x, β, tn) (ii)=

n∑
i=1

yi ∈ `i

PrUs (s α1−→ . . .
αn−1−−−→ yn−1︸ ︷︷ ︸

σ′′

) · U(σ′′)(αn) · δ(yn−1, αn, yn) · δ(yn, β, tn) =

n∑
i=1

yi ∈ `i

PrUs (s α1−→ y1 . . .
αn−1−−−→ yn−1

αn−→ yn) · δ(yn, β, tn) =

n∑
i=1

yi ∈ `i

PrUs (s α1−→ y1 . . .
αn−1−−−→ yn−1

αn−→ yn︸ ︷︷ ︸
= σ′

) · δ(yn, β, tn) ·

(
(1− U(σ′)(β)) + U(σ′)(β)

)
=∑

ρ s.t. ρ
β−→ last(π) ∈ [π]

ample(s) ∩ Act(ρ) = ∅

PrUs (ρ) · (1− U(ρ)(β)) · δ(last(ρ), β, tn) +

n∑
i=1

yi ∈ `i

PrUs (s α1−→ y1 . . .
αn−1−−−→ yn−1

αn−→ yn︸ ︷︷ ︸
= σ′

) · U(σ′)(β) · δ(yn, β, tn) =

∑
ρ s.t. ρ

β−→ last(π) ∈ [π]
ample(s) ∩ Act(ρ) = ∅

PrUs (ρ) · (1− U(ρ)(β)) · δ(last(ρ), β, tn) +

n∑
i=1

yi ∈ `i

PrUs (s α1−→ y1 . . .
αn−1−−−→ yn−1

αn−→ yn
β−→ tn)

This concludes to

∑
π′∈[π]

PrU1
s (π′) = (a) + (b) =

∑
x∈Xn

∑
σ′∈[πx]

PrUs (σ′ αn−→ tn) +
n∑

i=1
yi ∈ `i

PrUs (s α1−→ y1 . . .
αn−1−−−→ yn−1

αn−→ yn
β−→ tn) +

∑
ρ s.t. ρ

β−→ last(π) ∈ [π]
ample(s) ∩ Act(ρ) = ∅

PrUs (ρ) · (1− U(ρ)(β)) · δ(last(ρ), β, tn)
(∗∗∗)
=

43

3.3. The ample set method for MDPs and linear-time properties Chapter 3. Probabilistic Partial Order Reduction

∑
σ∈[π]

PrUs (σ) +
∑

ρ s.t. ρ
β−→ last(π) ∈ [π]

ample(s) ∩ Act(ρ) = ∅

PrUs (ρ) · (1− U(ρ)(β)) · δ(last(ρ), β, tn)

which is equation (I) and completes the proof.

44

Chapter 3. Probabilistic Partial Order Reduction 3.3. The ample set method for MDPs and linear-time properties

3.3.2.3. Proof of Lemma 3.3.7

Remember that case [3] holds, so 1 < |ample(s)| < Act(s). Let π be a path such that
s = first(π) and β ∈ ample(s) is the first action on π (and β 6= βs). Then we need to show
equation (I’).

∑
π′∈[π]

PrU1
s (π′) =

∑
σ∈[π]

PrUs (σ) (I’)

+
∑

ρ s.t. ρ
β−→ last(π) ∈ [π]

ample(s) ∩ Act(ρ) = ∅

PrUs (ρ
na(s)+β−−−−−→) · δ(last(ρ), β, last(π))

We use the same notation as in the proof of Lemma 3.3.6 in subsection 3.3.2.2.

Let π1 = s
β−→ t0

α1−→ . . .
αn−1−→ tn−1

αn−→ tn, where α1, . . . , αn /∈ ample(s) are indepen-
dent from β and π2 = v0

γ1−→ v1
γ2−→ . . .

γm−1−→ vm−1
γm−→ vm where γ1 is dependent on

ample(s) and v0 = tn. Let π be π1 ◦ π2 and `i = {s : L(s) = L(ti)}, 0 ≤ i ≤ n.

We split the proof of (I’) in two parts, one dealing with m ≥ 1 and one dealing with m = 0.

Case m ≥ 1 : This follows the same lines as in the proof of Lemma 3.3.6.

Case m = 0 : (thus π2 = tn)
So π = π1 = s

β−→ t0
α1−→ . . .

αn−1−→ tn−1
αn−→ tn, where α1, . . . , αn /∈ ample(s)

are independent from β. Note that the sum in the second summand of the definition of
U1(π′↑−1)(αn) ranges over the single path ρ′ = s

α1−→ s1 . . .
αn−1−−−→ sn−1 for π′ ∈ [π].

Indeed the si’s are uniquely defined as the αi’s are non-probabilistic actions (since we are
in case [3]). Let sn be the uniquely defined state such that δ(sn−1, αn, sn) = 1. We then
compute

∑
π′∈[π]

PrU1
s (π′) =

∑
x∈Xn

π′ ∈ [πx]

PrU1
s (π′ αn−→ tn) +

∑
π′′∈[π]:

−−→
π′′Act = α1 . . . αnβ

PrU1
s (π′′) =

∑
x∈Xn

π′ ∈ [πx]

PrU1
s (π′) · U1(π′)(αn) · δ(x, αn, tn) + 0 =

∑
x∈Xn

π′ ∈ [πx]

PrU1
s (π′) · δ(x, αn, tn) · 1P

π′′∈[π′]
Pr
U1
s (π′′)

·
[∑

σ′∈[π′]

PrUs (σ′) · U(σ′)(αn) +

PrUs (ρ′
αnna(s)∗β−−−−−−→) · δ(sn−1, β, x)

]
=

45

3.3. The ample set method for MDPs and linear-time properties Chapter 3. Probabilistic Partial Order Reduction

∑
x∈Xn

[∑
π′∈[πx]

PrU1
s (π′) · 1P

π′′∈[π′]
Pr
U1
s (π′′)

·
∑

σ′∈[π′]

PrUs (σ′) · U(σ′)(αn) · δ(x, αn, tn)
]

+

∑
x∈Xn

[∑
π′∈[πx]

PrU1
s (π′) · 1P

π′′∈[π′]
Pr
U1
s (π′′)

·

PrUs (ρ′
αnna(s)∗β−−−−−−→) · δ(sn−1, β, x) · δ(x, αn, tn)

]
For the sake of readability we compute the two summands separately. As in the proof of
Lemma 3.3.6, the first summand amounts to

(a) =∑
x∈Xn

[∑
π′∈[πx]

PrU1
s (π′) · 1P

π′′∈[π′]
Pr
U1
s (π′′)

·
∑

σ′∈[π′]

PrUs (σ′) · U(σ′)(αn) · δ(x, αn, tn)
]

=

∑
x∈Xn

∑
σ′∈[πx]

PrUs (σ′ αn−→ tn)

The second summand leads to

(b) =∑
x∈Xn

[∑
π′∈[πx]

PrU1
s (π′) · 1P

π′′∈[π′]
Pr
U1
s (π′′)

·

PrUs (ρ′
αnna(s)∗β−−−−−−→) · δ(sn−1, β, x) · δ(x, αn, tn)

]
(i)=

∑
x∈Xn

[
PrUs (ρ′

αnna(s)∗β−−−−−−→) · δ(sn−1, β, x) · δ(x, αn, tn) ·

∑
π′∈[πx]

PrU1
s (π′) · 1P

π′′∈[πx]

Pr
U1
s (π′′)

]
=

PrUs (ρ′
αnna(s)∗β−−−−−−→) ·

∑
x∈Xn

δ(sn−1, β, x) · δ(x, αn, tn) (ii)=

PrUs (ρ′
αnna(s)∗β−−−−−−→) ·

∑
x

δ(sn−1, β, x) · δ(x, αn, tn) (iii)=

PrUs (ρ′
αnna(s)∗β−−−−−−→) ·

∑
x

δ(sn−1, αn, x) · δ(x, β, tn) (iv)=

PrUs (ρ′
αnna(s)∗β−−−−−−→) · δ(sn, β, tn)

Recall that (iv) sn is the uniquely defined state such that δ(sn−1, αn, sn) = 1.

46

Chapter 3. Probabilistic Partial Order Reduction 3.3. The ample set method for MDPs and linear-time properties

As αn is non-probabilistic it holds that

PrUs (ρ′
αnna(s)∗β−−−−−−→) = PrUs (ρ′ αn−→ sn

na(s)∗β−−−−→) =

PrUs (ρ
na(s)∗β−−−−→) = PrUs (ρ

β−→) + PrUs (ρ
na(s)+β−−−−−→),

where ρ = ρ′
αn−→ sn. So we continue the above computation which leads to

(b) =

PrUs (ρ′
αnna(s)∗β−−−−−−→) · δ(sn, β, tn) =

(
PrUs (ρ

β−→) + PrUs (ρ
na(s)+β−−−−−→)

)
· δ(sn, β, tn) =

PrUs (ρ
β−→) · δ(sn, β, tn) + PrUs (ρ

na(s)+β−−−−−→) · δ(sn, β, tn)

This concludes to∑
π′∈[π]

PrU1
s (π′) = (a) + (b) =

∑
x∈Xn

∑
σ′∈[πx]

PrUs (σ′ αn−→ tn) + PrUs (ρ
β−→) · δ(sn, β, tn) +

PrUs (ρ
na(s)+β−−−−−→) · δ(sn, β, tn) =

∑
x∈Xn

∑
σ′∈[πx]

PrUs (σ′ αn−→ tn) + PrUs (ρ
β−→ tn) +

PrUs (ρ
na(s)+β−−−−−→) · δ(sn, β, tn)

(∗∗∗)
=∑

σ∈[π]

PrUs (σ) +

∑
ρ s.t. ρ

β−→ last(π) ∈ [π]
ample(s) ∩ Act(ρ) = ∅

PrUs (ρ
na(s)+β−−−−−→) · δ(last(ρ), β, last(π))

which is equation (I’) and completes the proof.

Remark 3.3.10. ([β = βs]) In the case that β = βs, similar computations apply.

Note that as αn is non-probabilistic it holds that

PrUs (ρ′
αnna(s)ω

−−−−−→) = PrUs (ρ′ αn−→ sn
na(s)ω

−−−−→) = PrUs (ρ
na(s)ω

−−−−→),

47

3.4. The ample set method for MDPs and branching time properties Chapter 3. Probabilistic Partial Order Reduction

where ρ = ρ′
αn−→ sn. So if the first action on π is βs, then the additional summand∑

ρ s.t. ρ
βs−−→ last(π) ∈ [π]

ample(s) ∩ Act(ρ) = ∅

PrUs (ρ
αna(s)ω

−−−−→) · δ
(
last(ρ), βs, last(π)

)

in the definition of U1(π)(α) for α /∈ ample(s) leads to the additional summand

PrUs (ρ′
αnna(s)ω

−−−−−→) · δ(sn, βs, tn) = PrUs (ρ
na(s)ω

−−−−→) · δ(sn, βs, tn)

in the computations above and therefore to the additional summand of equation (I’) in
Lemma 3.3.7.

3.4. The ample set method for MDPs and branching time
properties

While conditions (A0)-(A4) ensure the equivalence of a given MDPM and its reduced sub-
MDP M̂ in the context of stutter invariant linear-time specifications, they are not sufficient
for branching time specifications. This is rather not surprising as the conditions (A0)-(A4)
fall back to the original conditions (A0)-(A3), if applied to non-probabilistic systems. In
the non-probabilistic setting, these conditions ensure equivalence of a given system T and
its reduced system T̂ in the linear-time setting, but not in the branching time setting (see
[GKPP95]). In [GKPP95] the authors proposed the branching condition

(A4.1) (Branching condition)
|ample(s)| = 1 or ample(s) = Act(s) for any state s ∈ Ŝ.

and showed that the additional condition (A4.1) ensures that T and T̂ are visible bisimilar
(which implies equivalence of T and T̂ with respect to CTL\X formulae).

Remark 3.4.1. Note that condition (A4.1) is stronger than the branching condition (A4)
that we used in the previous section.

The reason why conditions (A0)-(A3) do not ensure CTL\X equivalence between a non-
probabilistic transition system T and its reduced system T̂ can be seen in the following
example in Figure 3.8 which is taken from [GKPP95, Pel97]. In the transition system T
the state labeling is indicated by the shades of the states. As α is independent to β and γ,
conditions (A0)-(A3) are fulfilled when choosing the ample-set {β, γ} in the initial state s0

which leads to the reduced system T̂ (note that all other reachable states of T̂ are trivially
fully expanded). But then, the CTL\X -formula

∀
(
2

(
→ (∀3 ∨ ∀3)

))
holds for T̂ , but not for T . The reason for this is that the state t1 is no longer reachable
in T̂ . As in this state the nondeterministic choice between β and γ still exists, there is no

48

Chapter 3. Probabilistic Partial Order Reduction 3.4. The ample set method for MDPs and branching time properties

T
s0

ααα

ττ

s1 s2

t1

t2 t3

v1u1

β

T̂

γ

β γ

s0

αα

ττ

s1 s2

t2 t3

v1u1

β γ

Figure 3.8: Conditions (A0)-(A3) are not sufficient for CTL\X

state in T̂ that is visible bisimilar to t1 (note that bisimilar states must have the same state
labeling).

So the problem that occurs is that a non-fully expanded state has several successors in the
reduced system that are not CTL\X -equivalent, because the choice between those successor
can be delayed in the original system by taking non-ample actions. But this might lead to
some states in the original system (like t1 in the example above) that do not have a bisimilar
state in the reduced system.

In the non-probabilistic setting this problem is solved by the branching condition (A4.1),
that requires that the ample-set of a non-fully expanded state consists of a single action,
thus yielding only one possible successor in the reduced system. However this does not
work in the probabilistic setting as this single ample action can branch probabilistically and
therefore yields several successors in the reduced system.

3.4.1. The old conditions are not sufficient

Example 3.4.2 (Conditions (A0)-(A3) and (A4.1) are not sufficient for PCTL\X). We can
easily modify the above example to show that condition (A4.1) is not strong enough to
ensure the equivalence of a given MDP M and its reduced sub-MDP M̂ with respect to
PCTL\X formulae. The counterexample given in Figure 3.9 illustrates this. Again the state
labeling is indicated by the shades of the states, so β is a stutter action. Actions α and β are
independent. Conditions (A0)-(A3) and (A4.1) are fulfilled when choosing the singleton
ample-set {β} in the initial state s0 which leads to the reduced MDP M̂ in Figure 3.9 (note
that all other reachable states of M̂ are trivially fully expanded). But then, the PCTL\X -
formula [

2
(

→ ([3]=1 ∨ [3]=1)
)]

=1

holds for M̂, but not for M.

The explanation for this is the same as earlier in the non-probabilistic case. Although β

49

3.4. The ample set method for MDPs and branching time properties Chapter 3. Probabilistic Partial Order Reduction

M
s0

s1 s2

t1

t2 t3

v1u1

M̂
s0

s1 s2

t2 t3

v1u1

β, 1
3

α, 1α, 1

τ, 1τ, 1

α, 1

β, 1
3

α, 1α, 1

τ, 1τ, 1

β, 1
3

β, 2
3

β, 2
3

β, 2
3

Figure 3.9: Conditions (A0)-(A3) and (A4.1) are not sufficient for PCTL\X

is the only ample action of the state s0, it branches probabilistically and yields several
successors that are not PCTL\X -equivalent. This branching is delayed when executing the
non-ample action α in s0, yielding t1 as the successor. But then t1 has no corresponding
state in the reduced MDP M̂.

Remark 3.4.3. D’Argenio and Niebert noted in [DN04] that “the interplay between nonde-
terminism and probabilism is comparable to that of existential and universal quantification.”
They thus followed the approach by Gerth et al [GKPP95] and proposed condition (A4.1)
to ensure that the interplay between nondeterministic and probabilistic choices is preserved:
either the unique nondeterministic choice is safe (hence |ample(s)| = 1) or all branching is
preserved (ample(s) = Act(s)). We have already seen in example 3.4.2 that this does not
preserve PCTL\X , but [DN04] established a (probabilistic weak) complete forward simula-
tion equivalence between a given MDP M and the reduced MDP M̂. In their simulation
equivalence a state of M is not simulated by one state of M̂, but by a probability distri-
bution over the states of M̂. Thus, in example 3.4.2 the state t1 of M is simulated by
1
3 · t2 + 2

3 · t3 in M̂.

The reader should notice that [DN04] required a stronger underlying structure for the given
MDP. They assumed each action to have a fixed probabilistic branching pattern. Moreover
they assumed the stronger cycle condition (A3) and not the end component condition.

3.4.2. Sufficient conditions for preserving branching time properties

We have seen that in order to preserve branching time properties, it is crucial to ensure that
a non-fully expanded state yields a unique successor in the reduced system. We therefore
propose a stronger branching condition

(A4.2) (Branching condition)
If ample(s) 6= Act(s) then ample(s) is a singleton consisting of a non-probabilistic
action.

50

Chapter 3. Probabilistic Partial Order Reduction 3.4. The ample set method for MDPs and branching time properties

Remark 3.4.4 (Conservative extension of the ample set method). It should be noticed that
condition (A4.2) is stronger than (A4.1) and collapses to (A4.1) for ordinary transition sys-
tems. Thus, the conditions (A0)-(A3), (A4.2) that we suggest for a reduction that preserves
probabilistic branching time properties yield a conservative adaption of the conditions (A0)-
(A3), (A4.1) suggested by Gerth et al. [GKPP95, Pel97] for non-probabilistic systems and
CTL\X -properties.

Remark 3.4.5 (Cycle versus end component condition). Please notice, that in combination
with (A4.2) the end component condition (A3) collapses to the original cycle condition.
This follows from the fact that for any cycle in M̂where none of its states is fully expanded,
the ample-sets of all its states are singletons consisting of a non-probabilistic action. So the
cycle under consideration is an end component in M̂ and thus, the end component condition
implies the cycle condition.

In the remainder of this subsection we will show the correctness of our approach which is
stated in the following theorem.

Theorem 3.4.6 (Ample set method for MDPs - branching time properties).
If (A0)-(A3) and (A4.2) are fulfilled then M and M̂ satisfy the same PCTL∗\X state

formulae.

We use a proof technique similar to those of [GKPP95, Pel97] where (A0)-(A3) and (A4.1)
are shown to be sufficient for CTL∗\X properties and non-probabilistic transition systems.
However, we have here the additional difficulty to reason about probabilistic behaviors and
will therefore need the concept of weight functions.

Definition 3.4.7. [Weight functions, cf. [JL91]]
Let S, S′ be finite sets and R ⊆ S × S′. If µ and µ′ are probability distributions on S

and S′ respectively then a weight function for (µ, µ′) with respect to R denotes a function
w : S × S′ → [0, 1] such that

• w(s, s′) > 0 implies (s, s′) ∈ R,

•
∑

s′∈S′ w(s, s′) = µ(s) for all s ∈ S and
∑

s∈S w(s, s′) = µ′(s′) for all s′ ∈ S′.

We write µ vR µ′ to denote the existence of a weight function for (µ, µ′) with respect toR
and refer to vR as the lifting of R to distributions.

In the sequel, we will use the following observation which is e.g. shown in [Bai98, Des99].

Proposition 3.4.8 (Transitivity of vR). If R is a binary, transitive relation on a set S and
µ, µ′, µ′′ are distributions on S such that µ vR µ′ and µ′ vR µ′′, then µ vR µ′′.

The following definition can be viewed as a probabilistic variant of the so-called visible
bisimulation that has been introduced in [GKPP95, Pel97].

Definition 3.4.9. [Probabilistic visible bisimulation (pvb)]
Let M = (S, Act, δ, µ) and M′ = (S′,Act′, δ′, µ′) be two state-labeled MDPs with the

same set of atomic propositions AP and the labeling functions L and L′. Let R ⊆ S × S′

be a binary relation. Then R is called a probabilistic visible simulation if µ vR µ′ and for
any pair (s, s′) in R the following three conditions are fulfilled.

51

3.4. The ample set method for MDPs and branching time properties Chapter 3. Probabilistic Partial Order Reduction

(1) L(s) = L′(s′)

(2) For any action α ∈ Act(s) at least one of the following two conditions holds:

(2.1) α is a non-probabilistic stutter action such that (t, s′) ∈ R for the unique α-
successor t of s.

(2.2) There is a finite path of the form s′ = s′0
β0−→ s′1

β1−→ . . .
βn−1−−−→ s′n in M′ (with

n ≥ 0) such that

• β0, . . . , βn−1 are non-probabilistic stutter actions,
• (s, s′i) ∈ R for 1 ≤ i ≤ n,
• α ∈ Act′(s′n) and δ(s, α, ·) vR δ′(s′n, α, ·).

(3) If there is an infinite path of the form s = s0
α0−→ s1

α1−→ s2
α2−→ s3

α3−→ . . . in M
consisting of non-probabilistic stutter actions α0, α1, α2, . . . and such that (si, s

′) ∈
R, i = 0, 1, 2, . . . then there is a finite path of the form

s′ = s′0
γ0−→ s′1

γ1−→ . . .
γj−1−−−→ s′j

γj−→ s′j+1

in M′ such that (s, s′i) ∈ R, i = 0, 1, . . . , j and an index k such that (sk, s
′
j+1) ∈ R,

and γ0, γ1, . . . , γj−1, γj are non-probabilistic stutter actions.

R is called a probabilistic visible bisimulation for (M,M′) if R is a probabilistic visi-
ble simulation for (M,M′) and R−1 is a probabilistic visible simulation for (M′,M).
We write M ≈pvb M′ if and only if there exists a probabilistic visible bisimulation for
(M,M′).

Our goal is to show that M ≈pvb M̂ where M denotes the “full” MDP and M̂ the re-
duced MDP that results from ample-sets satisfying (A0)-(A3) and (A4.2). The following
proposition completes then our argumentation.

Proposition 3.4.10 (Soundness of pvb for PCTL∗\X). Let M and M′ be two MDPs as in
Definition 3.4.9 such that M ≈pvb M′. Then, M and M′ satisfy the same PCTL∗\X state
formulae.

Proof. (Sketch). One proof obligation relies on proving that the coarsest probabilistic vis-
ible bisimulation R is a divergence-sensitive probabilistic branching bisimulation and the
latter is sound for PCTL∗\X [SL95, Seg95].1

Another different proof obligation is to provide a direct proof for the claim and to show
by structural induction on the syntax of PCTL∗\X state/path formulae that whenever R is a
probabilistic visible bisimulation then

• for all PCTL∗\X state formulae Φ and (s, s′) ∈ R: s |= Φ iff s′ |= Φ

1There are some minor differences between our approach and those in [SL95, Seg95], e.g. they use an
action-labeled setting and prove the preservation result under the assumption of probabilistic convergence
(rather than considering a divergence-sensitive variant of probabilistic branching bisimulation). However,
the main argumentation for the preservation result for a notion of divergence-sensitive probabilistic branch-
ing bisimulation will be the same.

52

Chapter 3. Probabilistic Partial Order Reduction 3.4. The ample set method for MDPs and branching time properties

• for all PCTL∗\X path formulae ϕ and (π, π′) ∈ Rpath: π |= ϕ iff π′ |= ϕ

Here, Rpath denotes the “lifting” of R to paths (which has to be defined in an appropriate
way). We skip the details of this proof obligation too as it relies on standard arguments pro-
vided e.g. in [SL95, Seg95] (and also [DGJP02] for an MDP-like model where probabilistic
and nondeterministic states alternate).

In the sequel, we assume ample sets that satisfy (A0)-(A3) and (A4.2). Our goal is now to
establish a probabilistic visible bisimulation that relates M and M̂.

Definition 3.4.11. [Forming path, relation ;]
Let M be an MDP as before and let s, s′ ∈ S. A forming path from s to s′ is a finite path
π of the form

s = s0
β0−→ s1

β1−→ . . .
βn−1−−−→ sn = s′ (∗)

where β0, . . . , βn−1 are non-probabilistic stutter actions and, for i = 0, 1, . . . , n − 1, the
singleton action-set {βi} satisfies the dependence condition (A2) for state si. That is, for
any finite path si

α0−→ t1
α1−→ . . .

αm−1−−−→ tm
γ−→ . . . where γ is dependent on βi there exists

j ∈ {0, 1, . . . ,m − 1} such that αj = βi. We write s ; s′ if and only if there exists a
forming path from s to s′. v; denotes the lifting of ; to distributions on S via weight
functions as in Definition 3.4.7.

As the formal definition of forming paths only refers to non-probabilistic actions and agrees
exactly with the definition of forming paths in the non-probabilistic setting [GKPP95, Pel97],
the following properties that were established for non-probabilistic systems also hold for
MDPs. First, we observe that the relation ; is transitive and reflexive (even though, in
general, non-symmetric). Second, if π is a forming path from s to s′ of length n as in (∗)
in Definition 3.4.11 then si ; sj for 0 ≤ i ≤ j ≤ n. In addition, forming paths enjoy
the property that they can be replicated after an independent operation is performed. In a
probabilistic setting this can be depicted as in Fig. 3.10 and is formally stated in the next
proposition.

Proposition 3.4.12 (Properties of forming paths). Let s, s′ be two states in M such that
s ; s′ and let α ∈ Act(s).

(a) If there is a forming path from s to s′ in which α does not occur then α ∈ Act(s′)
and δ(s, α, ·) v; δ(s′, α, ·).

(b) If α is a non-probabilistic stutter action with s
α−→ t and t 6; s′ then α ∈ Act(s′) and

s′
α−→ t′ where t ; t′. In particular, we also have δ(s, α, ·) v; δ(s′, α, ·).

Proof.

(a) We prove part (a) using induction on the length n of a forming path from s to s′ where
α does not occur. The basis of induction n = 0 is obvious as we then have s = s′. In
the induction step n− 1 =⇒ n(n ≥ 1) we assume that

s = s0
β0−→ s1

β1−→ . . .
βn−2−−−→ sn−1

βn−1−−−→ sn = s′

53

3.4. The ample set method for MDPs and branching time properties Chapter 3. Probabilistic Partial Order Reduction

is a forming path from s to s′ such that α /∈ {β0, . . . , βn−1}. By induction hypothesis
we have α ∈ Act(sn−1) and

δ(s, α, ·) v; δ(sn−1, α, ·) (+)

As the dependence condition (A2) holds for state sn−1 and the singleton action-set
{βn−1}, actions α and βn−1 are independent. Therefore the probabilistic effect of the
action sequences αβn−1 and βn−1α in state sn−1 are the same, which gives∑

t∈S

δ(sn−1, α, t) · δ(t, βn−1, u) =
∑
t∈S

δ(sn−1, βn−1, t) · δ(t, α, u)

for any state u ∈ S. Observe that βn−1 is a non-probabilistic stutter action and that
sn = s′ is the unique βn−1-successor of sn−1. Thus the above equation simplifies to∑

t∈supp(δ(sn−1,α,·))
βn−1(t)=u

δ(sn−1, α, t) = δ(s′, α, u)

for any state u ∈ S, where βn−1(t) is the unique βn−1-successor of t if βn−1 ∈
Act(t), otherwise βn−1(t) is undefined (this is illustrated in Figure 3.10 for n = 2).
We may now choose the weights

β0

β1

βn−1

α

s

s1

s2

s′

βn−1 βn−1

β0

β1

α

α

α

β1

β1

β0

β0

t
t′ t′′

u′′u

Figure 3.10: Illustration of Proposition 3.4.12, part (a)

w(t, βn−1(t)) = δ(sn−1, α, t) (++)

for t ∈ supp(δ(sn−1, α, ·)) and w(·, ·) = 0 in all remaining cases.

Since α and βn−1 are independent and (A2) holds for state sn−1 and the singleton
action-set {βn−1}, condition (A2) also holds for any α-successor t of sn−1 and the

singleton action-set {βn−1}. Thus t
βn−1−−−→ βn−1(t) is a forming path and therefore

t ; βn−1(t) for any α-successor t. Hence, with (++)

δ(sn−1, α, ·) v; δ(sn, α, ·).

Using the induction hypothesis (+) and the transitivity of v; (see Proposition 3.4.8)
we get δ(s, α, ·) v; δ(sn, α, ·).

54

Chapter 3. Probabilistic Partial Order Reduction 3.4. The ample set method for MDPs and branching time properties

(b) Let α be a non-probabilistic stutter action such that s
α−→ t and t 6; s′. We have to

show that α ∈ Act(s′) and that t ; α(s′) where given a non-probabilistic action α,
α(s) denotes the unique α-successor of s if α ∈ Act(s) and is undefined otherwise.
We claim that α does not occur on any forming path from s to s′. But then part (a)
applies (as s ; s′) and we obtain that α ∈ Act(s′) and δ(s, α, ·) v; δ(s′, α, ·). As
α is a non-probabilistic action, δ(s, α, ·) v; δ(s′, α, ·) implies that α(s) ; α(s′),
which shows the claim.

It remains to show that α does not occur on any forming path from s to s′. Indeed
assume a forming path

s = s0
β0−→ s1

β1−→ . . .
βn−1−−−→ sn = s′

on which α occurs. Let i be the minimal index such that α = βi. Then starting from
α(s), the action sequence β0, . . . , βi−1, βi+1, . . . , βn−1 produces a forming path from
α(s) to s′ (see Figure 3.11). This contradicts the assumption that α(s) 6; s′. Note

s s1 s2 si−1 si si+1 sn−1 s′

α

β0 β1 β2 βi−1 βi = α βi+1βi−2 βn−2 βn−1

β0 β1 β2 βi−2

α α α

βi−1

Figure 3.11: Illustration of Proposition 3.4.12, part (b)

that the singleton action-set {βj} satisfies the dependence condition (A2) for the state
sj and that α 6= βj ∈ Act(sj) is independent to βj , j < i. But then the singleton
action-set {βj} also satisfies the dependence condition (A2) for the state α(sj).

Note that part (a) of Proposition 3.4.12 applies to all actions α ∈ Act(s) which are prob-
abilistic or which are non-stutter actions. But there might also be non-probabilistic stutter
actions α enabled in s that do not occur on at least one forming path from s to the given
state s′.

Definition 3.4.13. [Relation R]
Recall that ample sets are given that satisfy conditions (A0)-(A3) and (A4.2). As usual, S

denotes the state space of M and Ŝ ⊆ S the state space of M̂. We define the relation R by

R =
{
(s, t) ∈ S × Ŝ : s ; t in M

}
.

In the following, a forming path in M̂ means a forming path ŝ0
β0−→ ŝ1

β1−→ . . .
βn−1−−−→ ŝn as

in Definition 3.4.11 where ŝ0, ŝ1, . . . , ŝn ∈ Ŝ and βi ∈ ample(ŝi), i = 0, 1, . . . , n− 1.

Proposition 3.4.14 (Forming paths in the reduced MDP). Let ŝ be a state in M̂.

(a) If π̂ is a forming path in M̂ starting in state ŝ and (s, ŝ) ∈ R then (s, û) ∈ R for all
states û in π̂.

55

3.4. The ample set method for MDPs and branching time properties Chapter 3. Probabilistic Partial Order Reduction

(b) If α ∈ Act(ŝ) then there exists a forming path π̂ in M̂ from ŝ to some state û such
that α ∈ ample(û) and δ(ŝ, α, ·) v; δ(û, α, ·).

Proof.

(a) This follows immediately from the transitivity of ;.

(b) Part (b) can be derived from Proposition 3.4.12 as follows. Note that any finite path in
M̂ where none of its states is fully expanded is a forming path (because of conditions
(A1), (A2) and (A4.2)).

Thus, if there is a path in M̂ from ŝ to some fully expanded state t̂ then there is also
a forming path π̂ in M̂ from ŝ to a fully expanded state û (let û be the first fully
expanded state that appears on the path from ŝ to t̂). Let α ∈ Act(ŝ). If α does not
occur in π̂ then part (a) of Proposition 3.4.12 yields

α ∈ Act(û) = ample(û) and δ(ŝ, α, ·) v; δ(û, α, ·).

If α appears in π̂ then we consider the longest prefix σ̂ of π̂ where α does not occur.
Let v̂ = last(σ̂). Then π̂ has the form

ŝ −→ . . . −→ v̂︸ ︷︷ ︸
=σ̂

α−→ . . . −→ û.

In particular, α ∈ ample(v̂). Again, part (a) of Proposition 3.4.12 yields δ(ŝ, α, ·) v;

δ(v̂, α, ·).
Now assume that there is no path in M̂ from ŝ to some fully expanded state t̂. This
means that any finite path in M̂ that starts in ŝ is a forming path. Let π̂ be a path in
M̂ that starts in ŝ and has length |Ŝ + 1|. Then π̂ contains a cycle. If α appears in π̂
then (as above) we consider the longest prefix σ̂ of π̂ where α does not occur. If v̂ =
last(σ̂), then α ∈ ample(v̂) and part (a) of Proposition 3.4.12 yields δ(ŝ, α, ·) v;

δ(v̂, α, ·). If α does not occur in π̂ then α ∈ Act(t̂) and δ(ŝ, α, ·) v; δ(t̂, α, ·) for
each state t̂ on π̂ (by part (a) of 3.4.12). Since π̂ contains a cycle, the cycle condition
(A3) ensure the existence of a state û on π̂ such that α ∈ ample(û) which shows the
claim.

We can now prove that M and M̂ are probabilistic visible bisimilar.

Theorem 3.4.15 (M and M̂ are probabilistic visible bisimilar).
R is a probabilistic visible bisimulation for (M,M̂).

Proof. Clearly, µ vR µ′ and µ′ vR−1 µ. We show that for any (s, ŝ) ∈ R conditions
(1)-(3) in Definition 3.4.9 hold, and conversely, that (1)-(3) are fulfilled for the “inverse”
pair (ŝ, s) ∈ R−1.

56

Chapter 3. Probabilistic Partial Order Reduction 3.4. The ample set method for MDPs and branching time properties

(1) It is obvious that L(s) = L(ŝ) as all actions on a forming path are stutter actions.
Thus, all states on a forming path have the same labeling.

(2) We first show that condition (2) in Definition 3.4.9 holds for (s, ŝ) ∈ R. Let α ∈
Act(s).

If α is a non-probabilistic stutter action and s
α−→ t where t ; ŝ (and thus, (t, ŝ) ∈ R)

then we are in the situation of condition (2.1) in Definition 3.4.9.

Let us now assume that α is probabilistic or a non-stutter action or s
α−→ t is a non-

probabilistic stutter step where t 6; ŝ. If α is probabilistic or a non-stutter action
then it cannot appear on any forming path from s to ŝ. Thus we may apply part (a) of
Proposition 3.4.12. If s

α−→ t is a non-probabilistic stutter step where t 6; ŝ, we may
apply part (b) of Proposition 3.4.12. In either case this yields

α ∈ Act(ŝ) and δ(s, α, ·) v; δ(ŝ, α, ·). (+)

As ŝ is a state in the reduced MDP M̂, part (b) of Proposition 3.4.14 yields the
existence of a forming path from ŝ in the reduced MDP M̂ to some state û where
α ∈ ample(û) and δ(ŝ, α, ·) v; δ(û, α, ·). Hence, by (+) and the transitivity of v;

(see Proposition 3.4.8) we obtain:

α ∈ Act(û) and δ(s, α, ·) v; δ(û, α, ·). (++)

We may compose the forming path in M from s to ŝ (which exists as s ; ŝ) with
the forming path π̂ from ŝ to û in M̂ and thus obtain s ; û. As û ∈ Ŝ, we get
(s, û) ∈ R. By part (a) of Proposition 3.4.14 we get (s, v̂) ∈ R for all states v̂ in π̂.
Thus, (++) yields that we are in the situation of condition (2.2) in Definition 3.4.9.

Let us now consider the inverse pair (ŝ, s) ∈ R−1 ⊆ Ŝ × S and an action α ∈
ample(ŝ). As (ŝ, s) ∈ R−1 we have s ; ŝ. Thus there is a forming path

s
β0−→ s1

β1−→ s2 . . .
βn−2−−−→ sn−1

βn−1−−−→ ŝ

from s to ŝ. But then si
βi−→ si+1 . . .

βn−2−−−→ sn−1
βn−1−−−→ ŝ is a forming path for all i =

0, 1, . . . , n (where s = s0 and ŝ = sn). Therefore (ŝ, si) ∈ R−1 for i = 0, 1, . . . , n.
Using the trivial fact that δ(ŝ, α, ·) v; δ(ŝ, α, ·) we are in the case of condition (2.2)
in Definition 3.4.9

(3) Let us assume that there is an infinite path of the form s = s0
α0−→ s1

α1−→ s2
α2−→

. . . in M consisting of non-probabilistic stutter actions α0, α1, α2, . . . and such that
(si, ŝ) ∈ R, i = 0, 1, 2, We distinguish two cases.

Case (i): ŝ is not fully expanded. Then by (A4.2) ample(ŝ) = {γ} for some
non-probabilistic stutter action γ. Let ŝ′ be the unique successor of γ in ŝ. As the
singleton action set {γ} satisfies condition (A2) in state ŝ (since ample(ŝ) = {γ}), it
follows that ŝ

γ−→ ŝ′ is a forming path. Thus, ŝ ; ŝ′ and as s ; ŝ and ŝ′ ∈ Ŝ, we
obtain (s, ŝ′) ∈ R. We already showed that condition 2) of Definition 3.4.9 holds for
R. As α0 ∈ Act(s), condition 2) applied to (s, ŝ′) ∈ R yields either

(2.1) α0 is a non-probabilistic stutter action such that (s1, ŝ
′) ∈ R, but then the

path ŝ
γ−→ ŝ′ shows that condition 3) holds (with k=1). Or it yields that

57

3.4. The ample set method for MDPs and branching time properties Chapter 3. Probabilistic Partial Order Reduction

(2.2) there is a finite path of the form ŝ′ = ŝ0
γ0−→ ŝ1

γ1−→ . . .
γn−1−−−→ ŝn in M̂ such

that

• γ0, . . . , γn−1 are non-probabilistic stutter actions,

• (s, ŝi) ∈ R for 0 ≤ i ≤ n,

• α0 ∈ ample(ŝn) and δ(s, α0, ·) v; δ̂(ŝn, α0, ·).

Observe, that ample(ŝi) = {γi}, i = 0, . . . , n − 1 and thus ŝ′ = ŝ0
γ0−→ ŝ1

γ1−→
. . .

γn−1−−−→ ŝn is a forming path. Therefore s ; ŝi and (s, ŝi) ∈ R, i = 0, . . . , n.

Then the path
ŝ

γ−→ ŝ′
γ0−→ ŝ1

γ1−→ ŝ2 . . .
γn−1−−−→ ŝn

α0−→ α0(ŝn)

shows condition 3) (with k=1). Note that s1 = α0(s0) ; α0(ŝn) since δ(s, α0, ·) v;

δ̂(ŝn, α0, ·) and α0 is a non-probabilistic action.

Case (ii): ŝ is fully expanded. We claim that there is an index j ≥ 0, such that αj

does not appear on some forming path from sj to ŝ. This can be seen as follows. Let

s
β0−→ t1

β1−→ t1 . . .
βn−1−−−→ tn−1 = ŝ

be a forming path from s to ŝ. Assume that α0 appears on this path, say α0 /∈
{β0, . . . , βi−1} and α0 = βi, i ≤ n − 1. Then the path from s1 = α0(s0) to ŝ that
follows the action sequence β0, β1, . . . , βi−1, βi+1, βi+2, . . . , βn−1 is a forming path.
See Figure 3.11 on page 55. Thus there is a forming path from s1 to ŝ that is shorter

than the forming path s
β0−→ t0

β1−→ t1 . . .
βn−1−−−→ tn−1 = ŝ. If α1 appears on this

forming path from s1 to ŝ we can construct an even shorter forming path from s2 to
ŝ. As we started with a forming path of length n− 1, this shows that there is an index
j such that αj does not appear on some forming path from sj to ŝ. By Proposition
3.4.12, part (a), we obtain that αj ∈ Act(ŝ) = ample(ŝ) and that δ(sj , αj , ·) v;

δ(ŝ, αj , ·). As αj is a non-probabilistic action, δ(sj , αj , ·) v; δ(ŝ, αj , ·) implies
that sj+1 = αj(sj) ; αj(ŝ). Since αj ∈ ample(ŝ), the path ŝ

αj−→ αj(ŝ) shows
condition 3) (with k=j+1).

Let us now consider the inverse pair (ŝ, s) ∈ R−1 ⊆ Ŝ × S and assume that there is
an infinite path

ŝ = ŝ0
α0−→ ŝ1

α1−→ ŝ2
α2−→ . . .

in M̂ such that the αi’s are non-probabilistic stutter actions and (ŝi, s) ∈ R−1, i =

0, 1, Thus there is a forming path from s to ŝ1. Let s
β−→ s1 be the first step on

such a forming path. Then s1 ; ŝ1 ∈ Ŝ, so (ŝ1, s1) ∈ R−1. Therefore the path

s
β−→ s1 shows condition 3) (with k=1).

Theorem 3.4.15 together with Proposition 3.4.10 completes the proof of our main result
stated in Theorem 3.4.6.

58

Chapter 3. Probabilistic Partial Order Reduction 3.5. Partial order reduction versus process equivalences

3.5. Partial order reduction versus process equivalences

In this section we give a brief overview of the connections between different partial order
reduction criteria and probabilistic process equivalences. With suitable notions of stutter
equivalence, simulation and bisimulation equivalence we obtain:

(a) If conditions (A0)-(A3) and (A4) hold, then M and M̂ are stutter equivalent (see
section 3.3), but in general M̂ does not simulate M.

(b) If conditions (A0)-(A3) and (A4.1) hold, then M and M̂ are simulation equivalent
(see [DN04] and Remark 3.4.3, page 50), but in general not bisimilar.

(c) If conditions (A0)-(A3) and (A4.2) hold, then M and M̂ are bisimilar (see section
3.4).

The underlying notion of stutter equivalence essentially agrees with trace distribution equiv-
alence [Seg95] (reformulated for our model and state labels rather than action labels). The
underlying simulation relation has been formally defined in [DN04] and is a variant of
probabilistic forward simulation as introduced by Segala [Seg95]. This kind of simulation
allows a state s to be simulated by a distribution over states (rather than a single state). The
underlying notion of bisimulation is probabilistic visible bisimulation (as defined in Defi-
nition 3.4.9) and could also be replaced with a divergence-sensitive, state-based variant of
probabilistic branching bisimulation defined in the style of [SL95].

We will now give examples for the statements in (a) and (b). The example in Figure 3.8
shows a reduction satisfying (A0)-(A3) and (A4) where M̂ = T̂ does not simulateM = T
(as stated in (a)). Here M and M̂ do not contain probabilistic actions, and hence can be
viewed as ordinary transition systems. The intuitive argument why M̂ does not simulate
M is that there is no possibility to mimic the nondeterministic choice of M in state t1 via
a probabilistic choice over the states t2 and t3 in M̂. Note that a scheduler for M in state
t1 might choose β and γ (and thus combine the states t2 and t3) with arbitrary probabilities
while a probabilistic forward simulation would require a fixed probability distribution over
the states t2 and t3 in M̂ to mimic the possible behaviors of t1 inM, which is not possible.

The example in Figure 3.9 shows a reduction satisfying (A0)-(A3) and (A4.1) where M
and M̂ are not bisimilar (as stated in (b)), since there is no state in M̂ that corresponds to
state t1 inM. ButM and M̂ are simulation equivalent as the state t1 inM is simulated by
the probability distribution 1

3 · t2 + 2
3 · t3 in M̂.

Please note that for the simulation equivalence as in (b) [DN04] required a stronger under-
lying structure for the given MDP. They assumed each action to have a fixed probabilistic
branching pattern. Moreover they assumed the stronger cycle condition (A3) and not the end
component condition. Using the end component condition (A3) would require a notion of
probabilistic forward simulation that allows for (certain) infinite computations to simulate a
single transition, while for the cycle condition (A3) a simpler version of simulation suffices
where any transition of the simulated process has to be matched by a finite computation tree
of the simulating process. The approach of [DN04] works with the cycle condition (A3)
and a formalization of finite computation trees by means of SOS-rules. Yet, to deal with

59

3.6. Conclusion Chapter 3. Probabilistic Partial Order Reduction

the end component condition (A3) and possibly infinite computation trees a further rule that
captures the semantics of infinite behaviors could be added.

3.6. Conclusion

We extended a certain partial order reduction approach, namely the ample set method to
Markov decision processes. We showed ample set conditions such that

a) a given MDP and its reduced MDP are stutter equivalent.

b) a given MDP and its reduced MDP are probabilistic visible bisimilar.

The main ingredient for a) was to introduce a branching condition. The need for such a
branching condition can intuitively be justified by concluding that the experiments

“first toss a coin, then decide between action α and β”
and “first decide between action α and β, then toss a coin”

are different. For b), the branching condition had to be strengthened. The extension of
the classical conditions is conservative in both cases, which means that if the new stronger
conditions are applied to an ordinary (non-probabilistic) transition system, then they are
equivalent to the classical ample set conditions. The proof techniques for the soundness
(for both a) and b)) are similar to the ones used in the non-probabilistic setting, but are in
detail much more complicated as the probabilism comes into play, especially for a), where
we have to reason about schedulers instead of single paths. b) allowed for a “simpler” proof
since a “local reasoning” by means of bisimulation is possible.

The presented results make the ample set method applicable to probabilistic model checking
and therefore allow to only analyze a fragment of the state space rather than the full state
space. We followed here the approach of the ample sets, but we expect that also the concepts
of persistent [God96] or stubborn [Val90, Val94] sets could be adapted for the probabilistic
case. In [GNB+06], the results presented in this chapter have been extended such that
the ample set method also applies to probabilistic reward models in combination with a
modification of PCTL that allows to reason about the rewards. Concerning quantitative
LTL model checking with fairness, we expect that the established results can be extended
such that the ample set method is applicable.

The probabilistic partial order reduction has been implemented in the quantitative LTL
model checker LiQuor [BCG05, BC06a] which has been developed in our workgroup by
Frank Ciesinski. The implementation uses similar heuristics as the (non-probabilistic) LTL
model checking tool SPIN [Hol03]. Below we state some experimental results that we ob-
tained using LiQuor, where our focus is on the benefits of the partial order reduction. We
investigated the “Dining Cryptographers”, a randomized gossiping protocol and a random-
ized Leader Election protocol. The second column in the table below indicates the number
of processes (e.g. cryptographers) involved.

60

Chapter 3. Probabilistic Partial Order Reduction 3.6. Conclusion

M︷ ︸︸ ︷ M̂︷ ︸︸ ︷
Scenario # # of states # of transitions # of states # of transitions

Dining Crypt. 3 9865 36544 6748 20916
Dining Crypt. 4 96753 415687 81817 306236
Dining Crypt. 5 1.56 ·106 6.32 ·106 746556 1.54 ·106

gossiping protocol 3 4015 5298 403 488
gossiping protocol 4 488902 661307 4424 5380
gossiping protocol 5 n/a n/a 74485 90998

Leader Election 4 53621 156072 21063 78072
Leader Election 5 896231 3.2 ·106 299670 1.3 ·106

Leader Election 6 1.1 ·107 6.2 ·107 4.1 ·106 1.4 ·107

Unfortunately, an on-the-fly technique that combines the construction of the reduced MDP
with the verification algorithm, as realized in SPIN, seems to be difficult for a quantitative
analysis, as the latter requires solving linear programs rather than performing a cycle-search.
Although the construction of the reduced MDP can be performed using the same techniques
as for non-probabilistic systems, the question arises whether special algorithms can be de-
veloped that generate better (i.e. smaller) ample sets using the topological characteristics of
end components (rather than cycles). For detailed implementation issues and more experi-
mental results see the forthcoming PhD thesis of Frank Ciesinski.

61

62

4 Probabilistic ω-Automata

We introduce probabilistic variants of ω-automata that serve as acceptors for languages over
infinite words. The essential idea is to equip nondeterministic ω-automata with probabilistic
distributions that resolve the nondeterministic choices and to define the acceptance of an
infinite input word by the requirement that the set of accepting runs has a positive probability
measure. Although probabilistic finite automata (PFA) have attracted many researchers, see
e.g. [Rab63, Paz66, Fre81, MHC03, DS90, BC03], we are not aware of any paper that
deals with probabilistic language acceptors for infinite words and defines the acceptance
criterion for an infinite word by means of the probability measure of the accepting runs.
There is a wide range of publications where probabilistic automata are used for modeling
randomized behaviors, see e.g. [vGSST90, Seg95, Bea02]. These approachs are opposed to
our setting as we aim at a probabilistic formalism to represent (non-probabilistic) languages
over infinite words. As far as we know, the paper [Rei98] by Reisz is the only approach
where probabilistic automata have been used for the recognition of infinite words. However,
in the approach of Reisz, an infinite word is accepted if and only if there exists an infinite
accepting run for this word with positive probability. With this acceptance criterion, the
concept of probabilistic Büchi automata is rather close to nondeterministic Büchi automata
that are deterministic in limit [CY95] and, in our opinion, less interesting than probabilistic
language acceptors where the probability measure of the set of accepting runs serves as the
acceptance criterion.

Potential application areas of probabilistic ω-automata might be any research topic where
ω-regular languages are of importance, such as the verification of reactive systems [Var96]
or reasoning with biological processes [FOS03]. Given the wide range of applications of
PFA (e.g., for speech recognition [RST96], Arthur-Merlin games [BM88], planning ques-
tions in Markov decision processes [MHC99, BT00], or prediction of climatic parameters
[MLMdCT02]), probabilistic ω-automata might be of interest also for other areas. In addi-
tion, probabilistic ω-automata could serve as basis for “quantum ω-automata” (in analogy
to quantum finite automata [KW97, AF98] which can be regarded as an extension of PFA)
or they might be useful in combination with costs as in [DK03, DP04] where ω-variants of
weighted automata are studied. The established results on PBA are also relevant for par-
tial information games with ω-regular winning objectives [CDHR06] as well as POMDPs
[Son71, Mon82, PT87, Lov91], which are used to model a wide range of applications. PBA
also find an application in randomized monitoring [CSV08].

In this chapter we will investigate the concept of probabilistic ω-automata. This includes
several aspects as the expressiveness and the efficiency to represent ω-languages as well
as composition operators and the emptiness problem. We will also study an alternative
semantics, the so-called almost-sure semantics.

63

4.1. Introduction to probabilistic ω-automata Chapter 4. Probabilistic ω-Automata

4.1. Introduction to probabilistic ω-automata

In this section we introduce probabilistic ω-automata which can be viewed as nondetermin-
istic ω-automata where the nondeterminism is resolved by a probabilistic choice. That is,
for any state p and letter a ∈ Σ either p does not have any a-successor or there is a prob-
ability distribution for the a-successors of p. We start our discussion with an acceptance
condition that requires that the probability measure of the accepting runs of an input word
is positive in order to accept the word.

Probabilistic ω-automata have also been defined in [Rei98, Rei99], but we use a different
syntax and semantics as introduced in [BG05]. In the approach of Reisz, an infinite word
is accepted if and only if there exists an infinite accepting run for this word with positive
probability.

Throughout this chapter, PFA, NFA and DFA denote probabilistic, nondeterministic and
deterministic finite automata, which serve as acceptors for languages over finite words.

4.1.1. Definition of probabilistic ω-automata

Definition 4.1.1. [Probabilistic ω-automata]
A probabilistic ω-automaton is a tuple

P = (Q,Σ, δ, µ0,Acc),

where

• Q is a finite nonempty set of states,

• Σ is a finite nonempty input alphabet,

• δ : Q × Σ × Q → [0, 1] is a transition probability function such that for all p ∈ Q
and a ∈ Σ, either δ(p, a, .) is a probability distribution on Q or δ(p, a, .) is the null-
function (i.e. δ(p, a, q) = 0 for all q ∈ Q),

• µ0 is a probability distribution on Q (called the initial distribution) and

• Acc is an acceptance condition.

Apparently, a probabilistic ω-automaton P is an MDP equipped with an acceptance condi-
tion. We will use the notation P also to denote only the underlying MDP of the automaton.
We call the automaton total if the underlying MDP is total. The operational behavior of P
for a given input word ω = a1a2 . . . ∈ Σω is as follows. The automaton chooses at random
an initial state p0 according to the initial distribution µ0. After having consumed the first i
input symbols a1, . . . , ai, P in state pi moves with probability δ(pi, ai+1, p) to state p and
tries to read the next input symbol ai+2 in state p. If there is no outgoing ai+1-transition
from the current state pi, i.e. if ai+1 /∈ Act(pi), then P rejects. As for nondeterminis-
tic automata, a resulting infinite state-sequence p0, p1, . . . is called a run for ω in P . This
behavior interprets the input word as a scheduler. Given an input word ω we define the

64

Chapter 4. Probabilistic ω-Automata 4.1. Introduction to probabilistic ω-automata

scheduler U(ω) such that U(ω)(p0, . . . , pn) = ωn+1, that is in step i, the scheduler chooses
the letter ωi as the next action. Then the operational behavior of P reading the input word
ω, is formalized by the Markov chain PU(ω). In contrast to nondeterministic automata,
where an input word ω is accepted by the automaton, if there exists an accepting run for
ω, we require for probabilistic automata that the set of accepting runs for ω has a positive
measure.

The accepted language of a probabilistic ω-automaton P is thus defined as

L(P) =
{

ω ∈ Σω | PrP,U(ω)({π ∈ PathPinf | inf(π) is accepting}) > 0
}

.

By the results of [Var85, CY95] the set of accepting runs for ω is measurable when dealing
with Büchi-, Rabin- or Streett-acceptance.

Throughout this thesis we will identify an input word ω with its associated scheduler U(ω),
thus we will write PrU ,ω(.) instead of PrU ,U(ω)(.). For the sake of convenience we also fix
the following notation for the acceptance probability of a word ω and a given probabilistic
ω-automaton P .

PrP(ω) := PrP,U(ω)({π ∈ PathPinf | inf(π) is accepting})

Note that equipped with the equivalence relation ∼= Q × Q, {U(ω) | ω ∈ Σω} =
Sched

(P,∼)
HD . Thus when restricting to deterministic observation-based schedulers, a proba-

bilistic automaton can be seen as a POMDP. Notice that w.l.o.g. we can assume a proba-
bilistic automaton to be total.

Let a probabilistic ω-automaton P and an input word ω be given. Given an end component
(T,A) we denote by

PrP,ω((T,A)) := PrP,ω{π ∈ PathPinf | Lim(π) = (T,A)}

the probability of all paths π such that Lim(π) = (T,A). We call the end component (T,A)
accepting if the state set T is accepting (w.r.t. the acceptance condition of P).

Recall Lemma 2.2.13 stating that given an MDP and a scheduler, almost all runs form an
end-component in their limit. Thus the acceptance probability Pr(ω) agrees with the prob-
ability measure of the set of runs π for ω such that Lim(π) is an accepting end component.
As P has only finitely many end components this yields the following lemma.

Lemma 4.1.2 (AEC-Lemma). For any probabilistic ω-automaton P and any input word ω,
it holds that ω ∈ L(P) if and only if PrP,ω((T,A)) > 0 for some accepting end component
(T,A).

Notation 4.1.3. We will sometimes abuse the notion of the transition probability function
using it as in the case of non-probabilistic automata. This means that we will write δ(s, a)
instead of supp(δ(s, a, .)), thus δ(s, a) = {t | δ(s, a, t) > 0}. Generalizing the input letter
to a finite word ρ we define δ(s, ρ) = {t | ∃u : u ∈ δ(s, ρ↑|ρ|−1) and t ∈ δ(u, last(ρ))}.
At last we define δ(S, ρ) =

⋃
s∈S δ(s, ρ) for a set of states S ⊆ Q.

65

4.1. Introduction to probabilistic ω-automata Chapter 4. Probabilistic ω-Automata

4.1.2. Examples of probabilistic Büchi automata

We will now start out with a few examples for probabilistic Büchi automata (PBA). Given a
PBA, intuitively, Pr(ω) denotes the probability for the event “infinitely often F ” under the
scheduling policy induced by ω, that is PrP(ω) = PrP,ω(23F). In the pictures of PBA,
we use boxes to denote the accepting states and circles for the non-accepting states. We
might simply write a as label for a transition from p to q if δ(p, a, q) = 1. Label a, x with
x ∈]0, 1[for a transition from p to q denotes that δ(p, a, q) = x. An initial state will be
indicated through an incoming edge, labeled with the initial probability of the state. Again,
if the probability is 1, we might omit it.

Note that the accepted language of a PBA is included in the language that is accepted by
the naive associated NBA, i.e. the NBA that stems from the given PBA by ignoring the
probabilities.

p0 p1
a, 1

2

b, 1; a, 1
2

a, 1
1

Figure 4.1: PBA for the language (a + b)∗aω

Example 4.1.4 (PBA). Figure 4.1 shows a PBA that accepts the language (a+b)∗aω. To see
this, we first notice that only the words in (a + b)∗aω have an accepting run, because the a-
labeled self-loop in the accepting state p1 is the only outgoing transition of state p1. On the
other hand, Pr(aω) = 1 (as the non-accepting run p0, p0, p0, . . . has probability 0 while all
other runs for aω are accepting). For any word ω ∈ (a+ b)nbaω, the acceptance probability
is at least (1

2)n as the the set of accepting runs for ω is equal to the set ∆((p0)n+2) \ {pω
0 }

and given any word ω ∈ (a + b)nbaω, it holds that Pr(ω)(∆((p0)n+2) \ {pω
0 }) ≥ (1

2)n.

Clearly, any DBA can be viewed as a PBA, where δPBA(p, a, q) = 1 if δDBA(p, a) = {q}
and µPBA

0 = µ1
q0

. On the other hand it is well known that the language (a+ b)∗aω cannot be
described by a DBA, thus the above example shows that PBA are strictly more expressive
than DBA. It is worth mentioning that the qualitative criteria “accepting runs have posi-
tive probability” is different from the acceptance criteria “there is an accepting run” in the
context of languages of infinite words, while they agree for probabilistic automata viewed
as acceptors for finite words. In fact, the naive transformation from PBA to NBA which
relies on ignoring the probabilities, in general fails to yield an equivalent NBA. Consider
for example the automaton P1 on the left of Figure 4.2. Its underlying NBA (that we obtain
by ignoring the probabilities) accepts the language

(
(ac)∗ab

)ω whereas the automaton P1

accepts the language (ab+ac)∗(ab)ω. The intuitive argument why any word ω in (ab+ac)ω

with infinitely many c’s is rejected relies on the observation that almost all runs for ω are
finite and end in state p1 (where the next input symbol is c and cannot be consumed in state
p1). 1

1The formulation “almost all runs have property x” means that the probability measure of the runs where
property x does not hold is 0.

66

Chapter 4. Probabilistic ω-Automata 4.2. A closer look

Another example is the PBA P2 on the right of Figure 4.2. It accepts the empty language as
any infinite word in (ab + ac)ω has exactly one accepting run in P2, but its probability is 0.
However, the underlying NBA accepts the language (ab + ac)ω.

p0

p1

a, 1
2

p2

b b, c c
q0

q1 q2

a, 1
2

a, 1
2

a, 1
2

P1 : P2 :

b

Figure 4.2: PBA for (ab + ac)∗(ab)ω and for ∅

4.2. A closer look

Having introduced a few simple examples of PBA in the last section, we will now examine
PBA a little closer.

4.2.1. Expressiveness of PBA

At first we establish the result stating that the class of languages that can be accepted by a
PBA strictly contains the class of ω-regular languages.

Theorem 4.2.1 (PBA are strictly more expressive than ω-regular languages).

IL(ω- reg) (IL(PBA)

The proof of Theorem 4.2.1 is split into two parts. In Lemma 4.2.2 we show that for any
NBA A there exists a PBA P such that L(P) = L(A). Then, in Lemma 4.2.3 we provide
an example of a PBA for which the accepted language is not ω-regular.

Following [CY95] we call an NBA A deterministic in limit if |δ(p, a)| ≤ 1 for any state p
that is reachable from an accepting state q ∈ F and any symbol a ∈ Σ. If we regard an NBA
A that is deterministic in limit as a PBAP (with arbitrary probability distributions to resolve
the nondeterministic choices) then L(A) = L(P). [CY95] provided a transformation from
a given NBA A into an equivalent NBA that is deterministic in limit and whose size is
(single) exponential in |A|. This yields the proof of the following lemma.

Lemma 4.2.2 (From NBA to PBA). For any NBA A there is a PBA P such that L(P) =
L(A) and |P| = O(exp(|A|)).

67

4.2. A closer look Chapter 4. Probabilistic ω-Automata

It remains to provide an example for a PBA that recognizes a language that is not ω-regular.

Lemma 4.2.3 (Example for a PBA that accepts a non ω-regular language). The PBA
depicted in Figure 4.3 accepts a language that is not ω-regular.

p0 p1

a,λ

a, 1−λ

a, 1

b, 1

1

Figure 4.3: PBA Pλ (0 < λ < 1) that accepts a non-ω-regular language

Proof. The PBA Pλ depicted in Fig. 4.3 recognizes the language L(Pλ) = Lλ where

Lλ =
{
ak1bak2bak3b . . . : k0, k1, . . . ∈ N≥1 such that

∞∏
i=1

(1− (1− λ)ki) > 0
}
.

Note that L(Pλ) ⊆ (a+b)ω as every accepting run for an infinite word ω that has only
finitely many b’s has to stay in state p0 from some point on. But such runs have probability
0. Let ω = ak1bak2 . . . ∈ (a+b)ω. Starting in p0 and reading the first k1 letters a, the
automaton reaches state p0 with probability (1 − λ)k1 and thus state p1 with probability
1 − (1 − λ)k1 . Reading the first b the automaton thus rejects with probability (1 − λ)k1

and carries on to read the input word with probability 1 − (1 − λ)k1 . This shows that the

probability not to reject while reading the word ω is
∞∏
i=0

(
1− (1− λ)ki

)
and moreover this

agrees with the probability to visit infinitely often the final state p0. Therefore L(Pλ) = Lλ.

We now show that L(Pλ) is not ω-regular. Otherwise, there exists an NBA A with L(A) =
L(Pλ). Then A has a reachable accepting cycle

q0
a1−→ . . .

an−→ qn = q0.

(An accepting cycle means a cycle in A that contains at least one accepting state.) Then,
there is at least one index 1 ≤ j ≤ n such that aj = b. W.l.o.g. (cyclic permutation) assume
j = n. Hence, a1a2 . . . an is a word of the form aj1baj2b . . . ajkb. But then, A accepts a
word of the form

(a+b)∗
(
aj1baj2b . . . ajkb

)ω
,

which contradicts the assumption L(A) = L(Pλ) as no such word is accepted by Pλ. This
shows that Pλ accepts a non-ω-regular language.

Remark 4.2.4 (Non-regular convergence conditions). The non-regular convergence condi-
tion for the words accepted by the PBAPλ in Figure 4.3 can be explained by the observation
that there are finite input words such that Pλ rejects with arbitrary small probability while
reading those. More precisely, when Pλ tries to read a finite word akb in state p0 then Pλ

68

Chapter 4. Probabilistic ω-Automata 4.2. A closer look

fails to consume the last letter b (i.e. rejects) with probability (1−λ)k. If k tends to infinity,
the rejecting probability (1− λ)k tends to 0.

Similarly, there are PBA and infinite input words that have accepting runs in the underlying
nondeterministic automaton, while the probabilities for the run fragments connecting two
accepting states tend to zero.

For example, we regard the PBA P̃λ shown in Figure 4.4. It accepts the following language

p0

p1p2

pF

a,λ

a, 1−λb, 1

a, 1

a,λ b, 1

a, 1−λ

a, 1−λ

a,λ

Figure 4.4: PBA P̃λ (0 < λ < 1) that accepts a non-ω-regular language

L̃λ =
{
ak1bak2bak3b . . . | k1, k2, k3 . . . ∈ N≥1 s.t.

∞∏
i=1

(1− (1− λ)ki) = 0
}
.

L̃λ is thus roughly the complement of the language accepted by the PBA Pλ shown in
Figure 4.3. More precisely, it holds that L̃λ = (a+b)ω \ L(Pλ). Hence, P̃λ combined with
a PBA for (a + b)∗aω, b(a + b)ω and (a + b)∗bb(a + b)ω yields a PBA that recognizes the
complement of L(Pλ). This yields immediately that P̃λ accepts a non-ω-regular language.

We now check that P̃λ is indeed L̃. Starting in p0 (or pF), (1 − λ)ki is the probability
to be in p2 after reading the word aki . Hence, 1 − (1 − λ)ki represents the probability
to be in state p1 after the input word aki . As a consequence

∏
i

(
1 − (1 − λ)ki

)
is the

probability to avoid forever the final state pF . The probability to visit pF after reading the
word ak1bak2b · · · akN−1b and to avoid pF from then on is therefore

(1− λ)kN−1 ·
∏
i≥N

(
1− (1− λ)ki

)
with the convention k0 = 0. Hence, given an input word ω = ak1bak2bak3b . . ., the proba-
bility to avoid qF from some point on is∑

N≥1

(
(1− λ)kN−1

∏
i≥N

(
1− (1− λ)ki

))
.

69

4.2. A closer look Chapter 4. Probabilistic ω-Automata

Thus, Pr
ePλ(ω) = 1 −

∑
N≥1

(
(1 − λ)kN−1

∏
i≥N

(
1 − (1 − λ)ki

))
. To prove that L(P̃λ)

is as indicated above, we need to show that:

1−
∑
N≥1

(
(1− λ)kN−1

∏
i≥N

(
1− (1− λ)ki

))
> 0 ⇐⇒

∏
i≥1

(
1− (1− λ)ki

)
= 0.

⇐ : First assume that
∏

i≥1

(
1 − (1 − λ)ki

)
= 0. It then holds for all N ∈ N that∏

i≥N

(
1−(1−λ)ki

)
= 0, and thus

∑
N≥1

(
(1−λ)kN−1

∏
i≥N

(
1−(1−λ)ki

))
= 0.

Note that this implies that Pr ePλ
(ω) = 1, if

∏
i≥1

(
1− (1− λ)ki

)
= 0.

⇒ : The second implication is more involved. Assume that
∏

i≥1

(
1 − (1 − λ)ki

)
> 0.

We have to show that
∑

N≥1

(
(1 − λ)kN−1

∏
i≥N

(
1 − (1 − λ)ki

))
= 1. With θi =

1− (1− λ)ki we obtain:∑
N≥1

(
(1− λ)kN−1

∏
i≥N

(
1− (1− λ)ki

))
=

∑
N

(
(1− θN−1)

∏
i≥N

θi

)
=

∑
N

(∏
i≥N

θi − θN−1

∏
i≥N

θi

)
=

∑
N

(∏
i≥N

θi −
∏

i≥N−1

θi

)
= lim

N→∞

∏
i≥N

θi since θ0 = 0

To conclude, we have to show that limN→∞
∏

i≥N θi = 1, using the assumption
c :=

∏∞
i=1 θi > 0. But this is obvious since

0 6= c =
N∏

i=1

θi ·
∞∏

i=N+1

θi.

As the left factor converges to c if N tends to infinity, the right factor has to converge
to 1. This completes the proof that

L(P̃λ) =
{
ak1bak2bak3b · · · | (ki)∞i=1 ∈ (N≥1)N≥1 s.t.

∞∏
i=1

(1− (1− λ)ki) = 0
}
.

Remark 4.2.5. The above proof shows that each word ω ∈ L(P̃λ) is accepted by P̃λ with
probability 1. That means that

Pr
ePλ(ω) ∈ {0, 1}

for all ω ∈ {a, b}ω. Thus, the automaton P̃λ is quite remarkable as it not only accepts a non-
ω-regular language, but also has the property that each word is accepted with probability 0
or 1.

70

Chapter 4. Probabilistic ω-Automata 4.2. A closer look

We showed that PBA are strictly more expressive than ω-regular languages. Note that
[BG05] identified a subclass of PBA that corresponds to the class of ω-regular languages.
For this purpose [BG05] introduced so-called uniform PBA. The uniformity condition is
motivated by the observation made in Remark 4.2.4 and serves to rule out PBA with “non-
regular converging behaviors”, as it is the case for the PBA Pλ and P̃λ of Figure 4.3 and
4.4.

4.2.2. The precise probabilities matter

Another peculiarity of P̃λ as well as the automaton Pλ is that their accepted languages
depend on the precise transition probabilities.

Theorem 4.2.6 (The precise probabilities matter).

For 0 < λ < 1
2 < η < 1, L(Pλ) 6= L(Pη).

Recall that L(Pλ) = {ak1bak2b · · · |
∏

i≥1(1 − (1 − λ)ki) > 0}. Theorem 4.2.6 is an
immediate consequence of the following lemma (for n = 2).

Lemma 4.2.7. For each n ∈ N≥2 there exists a sequence (ki)i≥1 such that

∏
i≥1(1− λki) > 0 if and only if λ < 1

n .

Proof. Given n ∈ N≥2, we define the sequence (ki)i≥1 in the following way: the first n
elements are set to 1, then the n2 following elements are set to 2, the n3 next elements are
set to 3, etc. The sequence (ki)i≥1 is non-decreasing, and defined by plateaux of increasing
values and exponentially increasing length. We show that

∏
i(1 − λki) is positive if and

only if λ < 1
n . To see this, we consider the series

∑
i log(1 − xki) which converges if and

only if
∏

i(1−xki) is positive. Now,
∑

i log(1−xki) =
∑

i n
i log(1−xi) by definition of

the sequence (ki)i≥1, and the latter series behaves as −
∑

i n
ixi (i.e. either both converge,

or both diverge) since log(1 − ε) ∼ε7→0 −ε. Hence
∑

i n
i log(1 − xi) < ∞ if and only if

x < 1
n , and

∏
i(1− λki) > 0 if and only if λ < 1

n which proofs the claim.

Thus, given two PBA with the same underlying NBA, their accepted languages might differ.

4.2.3. Efficiency of PBA

We saw in Lemma 4.2.2 on page 67 that for each NBA there exists an equivalent PBA of
size exponential in the size of the NBA. We now study the efficiency of PBA in more detail
and show that for some languages, PBA can be exponentially better than nondeterministic
ω-automata.

71

4.2. A closer look Chapter 4. Probabilistic ω-Automata

a,b a,b a,b a,b

a
a

a

1a 2a 3a na

a,b a,b a,b a,b
1b 2b 3b nb

b
b

b

a a

b b

b

a

a
b

Figure 4.5: PBA for Ln as in the proof of Lemma 4.2.8

4.2.3.0. Example 1

Lemma 4.2.8 (PBA can be exponentially smaller than NSA). There exist ω-regular lan-
guages Ln ⊆ {a, b}ω which are accepted by a PBA with 2n states, while any NSA for Ln

has at least 2n

n states.

Proof. The language Ln =
{
xyω : x ∈ {a, b}∗, y ∈ {a, b}n

}
is accepted by the PBA P

shown in Figure 4.5. Note that all states of P are accepting and that all states except na

have a b-transition to the state 1b and all states except nb have an a-transition to the state
1a. We assume uniform distibutions, that is all edges except the a-edge in state na and the
b-edge in state nb are taken with probability 1

2 .

Let ω = a1a2 . . . /∈ Ln. Then there are infinitely many indices i such that ai = a ∧ ai+n =
b. Since every state except the state nb has an a-transition to state 1a, the stochastic process
induced by P and the input word ω will almost surely be infinitely often in state 1a with
the letter b coming up in n steps. But each time (with probability 1

2n−1) the process will
have moved to the state na while reading the upcoming n − 1 letters, thus rejecting upon
reading the b. Thus, almost surely the process will reject infinitely often with probability

1
2n−1 which shows that almost all runs are rejecting. Thus PrP,ω = 0 and ω /∈ L(P).
Therefore L(P) ⊆ Ln.

On the other hand, given a word ω ∈ Ln, we can write ω as xyω with x ∈ {a, b}∗ and
y ∈ {a, b}n. Then, π̂ = 1c1 , . . . , 1ck

, 1d1 is a run for xd1, where x = c1c2 . . . ck and
y = d1d2 . . . dn. (The c’s and d’s are symbols in {a, b}). The probability for this run is
strictly greater than zero. Since from that state 1d1 on, the process will never reject while
reading the remaining suffix of ω and since every infinite run is accepting, this shows that
ω will be accepted with a probability greater than zero. This yields Ln ⊆ L(P).

It remains to show that any NSA for Ln has at least 2n

n states. Let A be an NSA with
L(A) = Ln. Let x = c1 . . . cn, y = d1 . . . dn ∈ {a, b}n such that

72

Chapter 4. Probabilistic ω-Automata 4.2. A closer look

c1 . . . cn 6= di . . . dnd1 . . . di−1 for all i = 1, . . . , n (+)

Then, any two accepting cycles for (c1 . . . cn)ω and (d1 . . . dn)ω are disjoint. Otherwise,
A would accept a word of the form (a + b)∗(c1 . . . cjdi . . . dnd1 . . . di−1cj+1 . . . cn)ω. But
such a word is not in Ln because of (+). Thus, A has at least 2n

n disjoint acceptance cycles,
which proves the claim.

4.2.3.0. Example 2

Another example that illustrates the efficiency of PBA is the language Ln consisting of all
infinite words ω = a1a2 . . . ∈ {a, b, c}ω such that, for all 0 ≤ i < n, if akn+i = a for
infinitely many k then akn+i = b for infinitely many k, and vice versa. Ln is accepted by a
PBA of polynomial size, while the size of any NBA that accepts Ln is at least exponential
(but there exist small equivalent NSA).

Lemma 4.2.9 (PBA can be exponentially smaller than NBA). Let Ln be the language
consisting of all infinite words ω = a1a2a3 . . . ∈ {a, b, c}ω such that for all 0 ≤ i < n:

∞
∃ k s.th. akn+i = a if and only if

∞
∃ k s.th. akn+i = b. (++)

Then, Ln is accepted by a PBA with O(n2) states, while any NBA that accepts Ln has
Ω(2n) states.

Proof. Safra and Vardi [SV89] proved that any NBA that accepts Ln has Ω(2n) states. But
there exists an NSA that accepts Ln and consists of O(n) states.

It remains to show that there is a PBA of quadratic size that accepts Ln. For any word
ω = a1a2 . . . ∈ Ln, we refer to the suffix arn+1arn+2 . . . such that

(1) for all 0 ≤ i < n either akn+i = c for all k ≥ r or there are infinitely many k, ` with
akn+i = a and a`n+i = b and

(2) r is minimal w.r.t. (1)

as the legal suffix of ω. A PBA P with O(n2) states that accepts Ln is depicted in Fig-
ure 4.6 (we assume uniform distributions). All following calculations with indices i, j ∈
{0, 1, . . . , n− 1} are modulo n, i.e. we simply write i + 1 instead of (i + 1) mod n.

The automaton P consists of

• a subautomaton Pinit which serves to wait until the legal suffix of ω starts. It consists
of a cycle of accepting states 0, 1, . . . , n− 1 that are passed in this order.

• subautomata P(i,a) and P(i,b) that are entered from Pinit when reading the letter a,
resp. b, in state i. The automata P(i,a) and P(i,b) consist of a cycle of nonaccepting
states 0, 1, . . . , n − 1 that are passed in this order. They are entered in state i + 1
(coming from state i of Pinit upon reading the letter a, resp b) and can be left via an
accepting state only when reading the letter b, resp a, in state i.

73

4.2. A closer look Chapter 4. Probabilistic ω-Automata

0

1

2

n-1

0

1

2

3 4

n-1

accept(1,a)

accept(2,a)

accept(3,a)

accept(0,a)

a b
c

c

c

c

c c

a

a

a

b

b

b

a,b,c

a,b,c

a,b,c

a

a,c

accept(1,b)

b

a,b,c

0 12

a,b,c

a,b,c

a,b,c a,c

b

a,b,c

2

accept(2,b)

3 1

a,b,c

a,b,c

a,b,c a,c

b

a,b,c

34 2

accept(3,b)

a,b,c

a,b,c

a,b,c a,c

b

a,b,c

01 n-1

accept(0,b)

a,b,c

a,b,c

a,b,c

a,b,c

a,b,c

a,b,c

a,b,ca,b,c

a,b,ca,b,c

a,b,ca,b,cb,c

b,c

b,c

b,c

a

a

a

a,b,c

1

12

2

3

0

a,b,c

a,b,c

a,b,c

Figure 4.6: PBA with O(n2) states, while any equivalent NBA has Ω(2n) states

Note that for all words ω ∈ {a, b, c}ω all runs are infinite and almost all runs leave the
subautomaton Pinit if ω contains infinitely many a’s or b’s. The automaton rejects if it
entersP(i,a) orP(i,b), but there is no following position kn+i with akn+i = b or akn+i = a,
respectively.

Let ω = a1a2 . . . /∈ Ln. Without loss of generality, there is some r ≥ 0 and some i ∈
{0, 1, . . . , n − 1} such that akn+i = a for infinitely many k, but akn+i 6= b for all k ≥ r.
Assume for simplicity that for all j 6= i, condition (++) is fulfilled. We now consider the
stochastic process induced by P and ω. As there are infinitely many such k’s, the process
will almost surely enter P(i,a) but never leave it. Hence, almost all runs for ω are rejecting
which yields ω /∈ L(P). If (++) is violated for several indices i ∈ {0, . . . , n− 1}, then the
process will almost surely end up in several P(i,a) and P(i,b) and never leave those. Hence,
almost all runs for ω are rejecting which yields ω /∈ L(P).

Vice versa, let ω = a1a2 . . . ∈ Ln and arn+1, arn+2, . . . be the legal suffix of ω. Then,
all runs for ω that stay in Pinit for the first rn input symbols (the prefix a1 . . . arn of ω)
will infinitely often be in Pinit and are therefore accepting. Hence, Pr(ω) > 0 and ω ∈
L(P).

74

Chapter 4. Probabilistic ω-Automata 4.3. Composition operators for PBA

4.3. Composition operators for PBA

After the general discussion on PBA in the last section, we will now present composition
operators for PBA that realize union, intersection and complementation. For union and
intersection we may roughly apply the same techniques as for NBA. More interesting is
the complementation operator which relies on a transformation of the given PBA P into an
equivalent PRA PR that accepts each word with probability 0 or 1. This PRA can easily be
turned into a PSA for the complement language, which will at last be transformed into an
equivalent PBA.

4.3.1. Union and Intersection

Let P1 = (Q1,Σ, δ1, µ
1
0, F1) and P2 = (Q2,Σ, δ2, µ

2
0, F2) be two PBA over the same

alphabet.

Union: A PBA P that accepts the language L(P1) ∪ L(P2) can be obtained by taking the
disjoint union of the state spaces Q1 and Q2, equipped with the transitions in P1 and P2.
The initial distribution µ0 in P assigns probability 1

2µi
0(q) to any state q ∈ Qi (i = 1, 2).

The set of accepting states of P is F1 ∪ F2. Intuitively, the automaton P simulates P1 and
P2, each with probability 1

2 . It thus holds that

PrP(ω) = 1
2PrP1(ω) + 1

2PrP2(ω)

and therefore L(P) = L(P1) ∪ L(P2).

Intersection: For the intersection operator, we use the same trick as for NBA and generate
a generalized PBA (GPBA) P1 ./P2 that results by the parallel composition of P1 and P2

and that accepts the intersection language L(P1) ∩ L(P2). A generalized Büchi automaton
is equipped with several acceptance sets and in order to be an accepting run, a run has to
visit each of the acceptance sets infinitely often. The generalized PBA P1 ./P2 can then be
turned into an equivalent PBA (as for NBA). The formal definition of the generalized PBA
P1 ./P2 is fairly standard and relies on the idea that P1 and P2 run in parallel. Formally,
the state space of P1 ./P2 is the cartesian product Q1 ×Q2. The transition probabilities in
the product are given by

δ((p1, p2), a, (q1, q2)) = δ1(p1, a, q1) · δ2(p2, a, q2).

The initial distribution in P1 ./ P2 is defined by µ0((p1, p2)) = µ1
0(p1) · µ2

0(p2). P1 ./P2

has two acceptance sets, namely Q1×F2 and F1×Q2 that both have to be visited infinitely
often in order to accept. Then

PrP1./P2
GPBA (ω) = PrP1./P2,ω({π | π |= 23Q1×F2 ∧23F1×Q2}) = PrP1(ω) ·PrP2(ω).

Hence,the accepted language of the generalized PBA P1 ./P2 is L(P1) ∩ L(P2).

We now explain the transformation how a GPBA P = (Q,Σ, δ, µ0, F1, . . . , Fn), n ≥ 1
with the acceptance condition

∧
1≤i≤n 23Fi can be transformed into an equivalent PBA

75

4.3. Composition operators for PBA Chapter 4. Probabilistic ω-Automata

P ′ = (Q′,Σ, δ′, µ′0, F
′). This follows the same idea used for the transformation of GNBA

to NBA. P ′ consists of n copies of P , where the transitions from a state in the acceptance
set Fi of the ith copy lead to the appropriate states in the (i+1)st copy. The other transitions
stay in their own copy. The automaton P ′ starts in the 1st copy of P and the acceptance
condition of P ′ is F1 of the 1st copy. As the automaton switches the copy whenever a state
of Fi is visited in the ith copy, this ensures that whenever F1 is visited infinitely often in
the first copy, then all other acceptance sets Fj are visited infinitely often too. Formally,
Q′ = Q×{1, . . . , n}, µ′0(〈q, 1〉) = µ0(q) and F ′ = F1×{1}. The transition function δ′ is
defined as follows. Let q, p ∈ Q, a ∈ Σ and i ∈ {1, . . . , n}.

q ∈ Fi : δ′(〈q, i〉, a, 〈p, i + 1〉) = δ(q, a, p)
q /∈ Fi : δ′(〈q, i〉, a, 〈p, i〉) = δ(q, a, p)

Here the indices are computed modulo n, that is n+1 = 1. All other transition probabilities
are zero. As each run (for a given input word) in P has exactly one lifting to a run in P ′
with equal stepwise probabilities, the same reasoning as in the case for nondeterministic
automata shows PrPGPBA(ω) = PrP,ω({π | π |=

∧
1≤i≤n 23Fi}) = PrP

′
(ω) for any

input word ω.

4.3.2. Complementation of PBA

The question whether the class of languages recognizable by PBA is closed under comple-
mentation was left open in [BG05]. We show here that for each PBA P there exists a PBA
that accepts the complement of L(P) [BBG08].

Theorem 4.3.1 (IL(PBA) is closed under complementation).
For each PBA P there exists a PBA P ′ of sizeO(exp(|P|)) such that L(P ′) = Σω \L(P).
Moreover, P ′ can be effectively constructed from P .

Proof. The idea for the complementation of a given PBA P is to provide the following
series of transformations

PBA P (1)=⇒ 0/1-PRA PR with L(PR) = L(P)
(2)=⇒ 0/1-PSA PS with L(PS) = Σω \ L(PR)
(3)=⇒ PBA P ′ with L(P ′) = L(PS)

where 0/1-PRA denotes a PRA with PrPR(ω) ∈ {0, 1} for each word ω ∈ Σω. We will
show the transformation of step (1) in Theorem 4.3.2 below, explain step (2) right now and
refer to Theorem 4.3.4 for step (3).

Let P = (Q,Σ, δ, µ0, F) be a PBA. The goal is to provide a PBA P ′ that accepts the
language

L(P) = Σω \ L(P).

To do so, we apply Theorem 4.3.2 and construct an equivalent probabilistic Rabin automa-
ton PR such that for each infinite word, all runs are infinite and the probability of the

76

Chapter 4. Probabilistic ω-Automata 4.3. Composition operators for PBA

accepting runs in PR is either 0 or 1. Hence

L(P) = L(PR) =
{
ω ∈ Σω : PrPR

Rabin(ω) > 0
}

=
{
ω ∈ Σω : PrPR

Rabin(ω) = 1
}
.

For the sake of clarity we may index Pr or L by Rabin, Streett or Büchi to stress that the
automaton is of such a kind. We now use the duality between Rabin and Streett automata
and switch from the Rabin acceptance condition

∨
1≤j≤n(32¬Hj ∧ 23Kj) to the Streett

acceptance condition
∧

1≤j≤n(23Kj → 23Hj). Let PS be the probabilistic Streett
automaton that agrees with PR. As PS interprets the acceptance condition dually to PR, a
run in PS is accepting if and only if it is not accepting in PR. Thus, for each infinite word
ω it holds that

PrPS
Streett(ω) = 1− PrPR

Rabin(ω).

Hence
LStreett(PS) = {ω | PrPS

Streett(ω) > 0}

= {ω | PrPR
Rabin(ω) < 1}

= {ω | PrPR
Rabin(ω) = 0}

= LRabin(PR) = LBüchi(P).

We then can apply Theorem 4.3.4 to transform the PSA PS into an equivalent PBA P ′,
which yields

L(P ′) = L(PS) = L(PR) = L(P).

Let n be the number of states in the original PBAP . The construction presented in the proof
of Theorem 4.3.2 yields that the number of states in PR (and PS) is bounded by 2O(n log n),
while the number of acceptance pairs in PR and PS is n. Therefore, the size of the PBA
P ′ generated from PS by Theorem 4.3.4 is bounded by n2 · 2O(n log n), thus P ′ is at most
exponentially larger than P .

In the previous proof, the most interesting part is step (1), which has some similarities
with Safra’s determinization algorithm for NBA and also relies on some kind of powerset
construction. However, we argue that the probabilistic setting is slighty simpler. Instead of
organizing the potential accepting runs in Safra trees, we may deal with up to n independent
sample runs (where n is the number of states in P) that are representative for all potential
accepting runs. The idea is to represent the current states of the sample runs by tuples
〈p1, . . . , pk〉 of pairwise distinct states in P . Whenever two sample runs meet at some
point, say the next states p′1 and p′2 in the first two sample runs agree, then they are merged,
which requires a shift operation for the other sample runs and yields a tuple of the form
〈p′1, p′3, . . . , p′k, . . . , q, . . .〉where p′i is a successor of pi in the i-th sample run. Additionally,
new sample runs are generated in case the original PBA P can be in an accepting state
q /∈ {p′1, . . . , p′k}. The Rabin condition serves to express the condition that at least one of
the sample runs enters the set F of accepting states in P infinitely often and is a proper
run in P (i.e. is affected by the shift operations only finitely many times). Intuitively, the
automaton PR “simulates” P and moreover each time P could be in an accepting state, PR

starts a new sample run (if necessary). Let ω ∈ L(P), thus PrP(ω) > 0 and with positive
probability P can be in an accepting state infinitely often. But then PR almost surely either

77

4.3. Composition operators for PBA Chapter 4. Probabilistic ω-Automata

already is in a corresponding sample run or starts a new sample run infinitely often and
from there on accepts the remaining suffix with positive probability > c for some c > 0
(as it “simulates” P and PrP(ω) > 0). This yields that the automaton PR accepts ω with
probability 1. We will formalize this idea in the proof of

Theorem 4.3.2 (From PBA to 0/1-PRA).
For each PBA P there exists a PRA PR such that L(P) = LRabin(PR) and such that for

each infinite word ω it holds that PrPR(ω) ∈ {0, 1}.

Proof. Let P = (Q, δ, µ0, F) be the given PBA. Without loss of generality, we may sup-
pose that P is total. The idea for the definition of PR is to deal with states of the form
〈p1, . . . , pk, R〉 where p1, . . . , pk are pairwise distinct states that represent the current states
of “independent” runs for the given input word. The acceptance condition of PR will then
require that at least one of these runs in P is accepting. The last component R is a subset of
Q, representing the set of all potential states in which the original automaton P could be. It
will be obtained by the standard powerset construction for finite automata.

To organize the independent runs in a finite-state automaton (rather than an infinite tree) we
abstract away from multiple occurrences of some state and merge runs that meet at some
point.This causes some technical difficulties because PR has to recover fictive sample runs
that enter F infinitely often by combining fragments of infinitely many runs. For this reason,
we attach a bit ξj ∈ {0, 1} for each of the states pj which indicates whether the last step
results from a proper transition in P (in which case ξj = 0) or pj is the first state of a newly
generated run (in which case ξj = 1). These bits will be used in the definition of the Rabin
acceptance condition of PR which requires that for some j, the j-th run visits F infinitely
often and in some infinite suffix, the attached bits are 0.

We will structure our states in PR in such a way that we first list the states that result
from a proper transition in P (having the attached bit 0) and then we list the states that are
newly generated (because the automaton P could be in an accepting state). Those have the
attached bit 1. Thus, for each state 〈p1, ξ1, . . . , pn, ξn, R〉, it holds that

whenever ξi = 1 then ξj = 1 for i < j ≤ n. (+)

Since several sample runs could be in the same next state (with the attached bit 0), we may
need to merge them. Therefore we define a normalization operator ν that takes as input k
states p1, . . . , pk in P augmented with bits ξ1, . . . , ξk, possibly with multiple occurrences
of some states, and returns a normalized tuple where each state in {p1, . . . , pk} appears
exactly once, with an appropriate bit. Formally, given a 2k-tuple 〈p1, ξ1, . . . , pk, ξk〉 ∈
(Q × {0, 1})k where k ≥ 1 and the ξi’s satisfy (+) we now define ν(〈p1, ξ1, . . . , pk, ξk〉)
to be the unique tuple 〈pi1 , ξ

′
i1

, . . . , pi` , ξ
′
i`
〉 where i1, . . . , i` ∈ {1, . . . , k} are indices such

that

• i1 < i2 < . . . < i` and
{
p1, . . . , pk

}
=

{
pi1 , . . . , pi`

}
,

• pi1 , . . . , pi` are pairwise distinct and pih /∈ {p1, . . . , pih−1} for 1 ≤ h ≤ `,

• ξ′ih = 1 if h < ih and ξ′ih = ξih if h = ih.

78

Chapter 4. Probabilistic ω-Automata 4.3. Composition operators for PBA

Note that ξ′1, . . . , ξ
′
` satisfy (+). For instance, ν(〈p, 0, q, 1, p, 1〉) = ν(〈p, 0, p, 0, q, 0〉) =

〈p, 0, q, 1〉. The idea is to identify all tuples 〈p1, ξ1, . . . , pk, ξk〉 and 〈q1, ζ1, . . . , qj , ζj〉 such
that

ν(〈p1, ξ1, . . . , pk, ξk〉) = ν(〈q1, ζ1, . . . , qj , ζj〉).

The reason why the normalization operator ν requires ξih = 1 if h < ih is that the bit 1
serves as a separation symbol in the state sequence induced by the (2h − 1)-st component
of the states in a run in PR. Given a run π in PR such that for infinitely many states in
π the bit in the 2h-th component is 1, then the state sequence obtained by the (2h − 1)-st
components of the states in π results from the concatenation of fragments of infinitely many
runs in P . Hence, it does not necessarily represent a run in P . This will be important for
the acceptance condition in PR.

We now present the precise definition of the PRA PR. The state space of the PRA PR is

Q =
⋃

1≤k≤n

Qk

where n = |Q| and Qk is the set of all tuples 〈p1, ξ1, . . . , pk, ξk, R〉 ∈ (Q× {0, 1})k × 2Q

such that pi 6= pj for 1 ≤ i < j ≤ k and that ξ1, . . . , ξk satisfy (+). Let us fix the notation
Q≥j =

⋃
j≤k≤n Qk to denote the set of states of PR that represent at least j sample runs.

Similarly Q<j =
⋃

1≤k<j Qk denotes the set of states of PR that represent less than j
sample runs. Intuitively, when reading letter a in state q = 〈q1, ξ1, . . . , qk, ξk, R〉 in PR

then the possible successors are the tuples

p = 〈p1, ζ1, . . . , pk, ζk, pk+1, ζk+1, . . . , pm, ζm, S〉

where

(i) pi ∈ δ(qi, a) for 1 ≤ i ≤ k,

(ii) pk+1, . . . , pm are pairwise distinct states in P such that

{pk+1, . . . , pm} = (δ(R, a) ∩ F) \ {p1, . . . , pk},

(iii) ζ1 = . . . = ζk = 0 and ζk+1 = . . . = ζm = 1,

(iv) S = δ(R, a).

These tuples p might be not contained in Q, but they will be turned into states of PR by
applying the ν-operator. The intuitive meaning of condition (i) is the independence of the
transitions qi

a−→ pi, i = 1, . . . , k, that serve to mimick P’s behavior by sample runs. Con-
dition (ii) can be understood as the creation of new sample runs that are potential accepting
runs inP . We attach the bit 0 to the first k components to denote that the last step of the sam-
ple runs 1, . . . , k was a proper transition in P , while the attached bit 1 for runs k+1, . . . ,m
indicate that new runs have been generated (condition (iii)). The last condition (iv) states
that the last component is obtained with the standard powerset construction. The probability

79

4.3. Composition operators for PBA Chapter 4. Probabilistic ω-Automata

to obtain the tuple p (note that p /∈ Q is possible as there might be multiple occurrences of
states with the attached bit 0) from state q ∈ Q by reading letter a is given by

∆(q, a, p) =
∏

1≤i≤k

δ(qi, a, pi),

provided that the above conditions (i), (ii), (iii) and (iv) hold. For all other tuples we set
∆(q, a, p) = 0.

For given states q ∈ Q and q′ ∈ Q in PR, the transition probability δPR
(q, a, q′) in PR

is obtained by summing up the values ∆(q, a, p) where p ranges over all tuples that are
represented by state q′ in PR and satisfy conditions (i), (ii), (iii) and (iv). Formally, given a
state

q′ = 〈q′1, ξ′1, . . . , q′`, ξ′`, R′〉 ∈ Q,

let [[q′]] be the set of all tuples p = 〈p1, ζ1, . . . , pm, ζm, S〉 such that

ν(〈p1, ζ1, . . . , pm, ζm〉) = 〈q′1, ξ′1, . . . , q′`, ξ′`〉 and R′ = S.

The transition probabilities in PR are defined by:

δPR
(q, a, q′) =

∑
p∈[[q′]]

∆(q, a, p).

The acceptance condition of the probabilistic Rabin AutomatonPR consists of n acceptance
pairs (H1,K1), . . . , (Hn,Kn). Intuitively, the j-th pair (Hj ,Kj) formalizes the condition
stating that the state sequence obtained by the (2j − 1)-st components of a given run π in
PR stands for an accepting run in P . This requires that F is visited infinitely often and
that from some moment on the attached bit at position 2j is 0. Intuitively, these conditions
assert that the state sequence in Q obtained by the (2j − 1)-st components of the states in
π contains an infinite suffix which is the suffix of an accepting run in P . Formally, the set
Kj ⊆ Q consists of all states

〈p1, ξ1, . . . , pj , ξj , . . . , pk, ξk, R〉 ∈ Q≥j such that pj ∈ F.

The set Hj ⊆ Q consists of all states

〈p1, ξ1, . . . , pj , ξj , . . . , pk, ξk, R〉 ∈ Q≥j such that ξj = 1.

The initial distribution in PR is given by

µ0(〈p, 0, Qinit〉) = µ0(p)

where Qinit is the set of initial states in P , i.e. Qinit = {q ∈ Q : µ0(q) > 0}.

Given an infinite word ω = a1a2a3 . . . ∈ Σω, we show the equivalence of the following
three statements.

(1) PrPR
Rabin(ω) > 0

(2) PrPBüchi(ω) > 0

80

Chapter 4. Probabilistic ω-Automata 4.3. Composition operators for PBA

(3) PrPR
Rabin(ω) = 1

The equivalence of the statements (1), (2) and (3) yields

LRabin(PR) = LBüchi(P) and PrPR
Rabin(ω) ∈ {0, 1} for all ω ∈ Σω,

which is what we wanted to prove.

(3) ⇒ (1): This implication is obvious.

(1) ⇒ (2): We now show that (1) implies (2). Suppose that PrPR
Rabin(ω) > 0. Then, there is

some j ∈ {1, . . . , n} such that

PrPR
{
π : π is a run for ω in PR such that π |= 32¬Hj ∧ 23Kj

}
> 0.

As the set of runs that satisfy 32¬Hj is the disjoint union of the sets of runs satisfy-
ing 3=k−1Hj ∧ 2≥k¬Hj , k = 0, 1, 2, . . ., there exists m ∈ N≥0 such that

PrPR
{
π : π is a run for ω such that π |= 2≥m¬Hj ∧ 23Kj

}
> 0.

Here, π |= 2≥k¬Hj if and only if π` /∈ Hj , for ` ≥ k. As the set Q \ Hj is finite,
there exists a state r /∈ Hj , such that

PrPR
{
π : π is a run for ω such that π |= 3=mr ∧ 2≥m¬Hj ∧ 23Kj

}
> 0,

where π |= 3=mr if and only if πm = r.

It follows from the transition relation of PR that whenever there is a transition from
a state q ∈ Qi to a state p ∈ Qj , where i < j, then the jth bit in p is set to 1. Thus,
Q≥j can only be entered from Q<j via a state in Hj and therefore a run that satisfies
2≥m¬Hj ∧ 23Q≥j satisfies 2≥m−1Q≥j .

As Kj ⊆ Q≥j , the condition 3=mr ∧ 2≥m¬Hj ∧ 23Kj can only hold for runs

π = q0, q1, q2, . . .

in PR that have an infinite suffix qm, qm+1, qm+2, . . . consisting of states qi =
〈p1,i, ξ1,i, . . . , pj,i, ξj,i, . . . , Ri〉 in Q≥j where ξj,i = 0 for all i ≥ m. Moreover
qm = r and there are infinitely many indices i such that pj,i ∈ F .

But then the projection to the (2j−1)-st components in qm, qm+1, qm+2, . . . yields an
infinite suffix pj,m, pj,m+1, pj,m+2, . . . of an accepting run for ω in P . Furthermore,
state rj = pj,m is reachable from an initial state q0 ∈ Qinit via a run for the prefix
a1 . . . am of ω, where rj denotes the (2j − 1)st component of r. Thus,

PrP(q0
a1...am−−−−−→ rj) > 0

in P . Hence

PrPBüchi(ω) ≥ PrP(q0
a1...am−−−−−→ rj) · PrPR

{
π is a run for ω in PR s.t.

π |= 3=mr ∧ 2≥m¬Hj ∧ 23Kj

}
.

Hence, PrPBüchi(ω) > 0, and therefore, ω ∈ L(P).

81

4.3. Composition operators for PBA Chapter 4. Probabilistic ω-Automata

(2) ⇒ (3): We now prove that (2) implies (3). That is, we suppose that θ = PrPBüchi(ω) > 0
and aim to show that PrPR

Rabin(ω) = 1. We pick some state p ∈ F such that

PrP
{
π : π is an accepting run for ω such that π |= 23p

}
> 0.

Let Ri = δ(Qinit, a1 . . . ai) for i ≥ 0. Then, p ∈ Ri ∩F for infinitely many i ∈ N≥1.
For each such index i, let

θi = PrPp
{
π : π is a run for ai+1ai+2ai+3 . . . starting in p such that π |= 23p

}
Note that θi can be written as a sum

θi =
∞∑

j=i+1

ς[i, j] · θj

where ς[i, j] denotes the probability of the set of runs qi, qi+1, . . . , qj for the finite
subword ai+1 . . . aj of ω with qi = qj = p and p /∈ {qi+1, . . . , qj−1}. As

0 ≤ ς[i, j] ≤ 1 and
∑
j>i

ς[i, j] ≤ 1,

for each i ∈ N≥1 there exists some j > i with θi ≤ θj . Hence, there exists an infinite
sequence i1 < i2 < i3 < . . . of natural numbers such that p ∈ Rih ∩ F for all h ≥ 1
and

0 < θ = θi1 ≤ θi2 ≤ θi3 ≤ . . .

We now regard the stochastic process induced by PR and the input word ω. Let
I = {i1, i2, i3, . . .}. For each index i ∈ I , the process enters a state

pi = 〈p1,i, ξ1,i, . . . , pk,i, ξk,i, Ri〉 where p ∈ Ri ∩ F ⊆ {p1,i, . . . , pk,i}.

Say p = pj,i. With probability θi, the state sequence obtained by scanning the suffix
ai+1ai+2ai+3 . . . of ω from p = pj,i is a run pi, pi+1, pi+2, . . . in P that visits p
infinitely often. Thus, with probability at least θi, the stochastic process induced by
PR and ω will generate from position i on a run pi, pi+1, pi+2, . . . where after at
most j − 1 shifts via the ν-operator an infinite suffix pi, pi+1, pi+2, . . . (with pi = p)
of an accepting run in P will be generated in the (2` − 1)-st component for some
` ≤ j. This holds for each index i ∈ I . Hence, the probability for PR to generate an
accepting run for ω is at least

∞∑
h=1

∏
1≤k<h

(1− θik) · θih = lim
N→∞

N∑
h=1

∏
1≤k<h

(1− θik) · θih

= lim
N→∞

(
1−

∏
1≤k≤N

(1− θik)
)

≥ lim
N→∞

(
1− (1− θ)N

)
= 1 − 0 = 1

This yields PrPR
Rabin(ω) = 1 and shows the Theorem.

82

Chapter 4. Probabilistic ω-Automata 4.3. Composition operators for PBA

To finish the proof of Theorem 4.3.1, we still have to show step (3) (the transformation from
a PSA to an equivalent PBA).

Remark 4.3.3. In order to obtain a complementation with a single exponential blow-up (as
stated in Theorem 4.3.1), the transformation in step (3) must avoid an exponential blow-up.
We will give here a transformation from an arbitrary PSA to an equivalent PBA that only
causes a polynomial blow-up. This is a remarkable result as in the nondeterministic case
the switch from Streett to Büchi acceptance may cause an unavoidable exponential blow-up
[SV89]. Note that in the following Theorem we do not exploit the special structure of the
0/1-PSA PS that results from step (2).

Theorem 4.3.4 (Polynomial transformation from PSA to PBA).
For any PSA PS there exists a PBA P with LStreett(PS) = L(P) and |P| = O(m2|PS |),

where m is the number of acceptance-pairs in PS .

Proof. Let PS = (QS ,Σ, δS , µ0
S , {(H1,K1), . . . , (Hm,Km)}) be a PSA. For simplicity,

we may assume that Hi∩Ki = ∅ as otherwise Ki could be replaced with Ki\Hi. Intuitively,
the PBA P arises from PS by making several copies of PS : a subautomaton Pinit in which
the process starts, a subautomaton Paccept which has to be visited infinitely often and which
is reachable with positive probability via any outgoing transition from the states in Pinit ,
and subautomata Pi and Pi,j for i, j ∈ {1, . . . ,m}, i 6= j, that are reached from Paccept

whenever a state in Ki is visited in Paccept . Subautomaton Pi can only be left via transitions
from a Hi-state in Pi from which we move back to Paccept . Subautomaton Pi,j can behave
as Pi, but in addition it also serves to take care about the Streett-acceptance pair (Hj ,Kj).
When we reach a Kj-state in Pi,j then we randomly choose to stay in Pi,j or to move to
Pj or one of the subautomata Pj,k. Formally, the PBA P = (Q,Σ, δ, µ0, F) is defined as
follows. The state space is

Q = Qinit ∪Qaccept ∪
⋃

1≤i≤m
Qi ∪

⋃
1≤i,j≤m

i6=j

Qi,j

where Q∗ = {〈q, ∗〉 : q ∈ QS}. The set of accepting states is F = Qaccept . The initial
distribution is given by µ0(〈q, init〉) = µ0

S(q) and µ0(〈q, ∗〉) = 0 for all other states 〈q, ∗〉 ∈
Q.

The transition probabilities in P are shown in Figure 4.7 where q, p ∈ QS . Here, i, j, k
range over all indices in {1, . . . ,m} with i 6= j and j 6= k (but possibly i = k). In the
sequel, we refer to the fragment of the Q∗-states as the P∗-subautomaton.

Why do we need the Pi,j subautomata? The problem is that without the Pi,j subau-
tomata, the Büchi automata could visit infinitely many K2 states while being in P1 and
thus would not take care of also visiting infinitely many H2 states, but might nevertheless
accept as the following example shows. Assume the above construction without the Pi,j

subautomata. For simplicity assume that the acceptance condition consists of two pairs
{(H1,K1), (H2,K2)} such that K1 \ K2 6= ∅. Let k1 ∈ K1 \ K2, k2 ∈ K2, h1 ∈ H1.
W.l.o.g assume k2 /∈ H1. Then the nonaccepting (possible) path

k1, k2, h1, k1, k2, h1, . . .

83

4.3. Composition operators for PBA Chapter 4. Probabilistic ω-Automata

δ(〈q, init〉, a, 〈p, init〉) = 1
2 · δS(q, p)

δ(〈q, init〉, a, 〈p, accept〉) = 1
2 · δS(q, p)

δ(〈q, accept〉, a, 〈p, accept〉) = δS(q, p) if q /∈ K1 ∪ . . . ∪Km

δ(〈q, accept〉, a, 〈p, i〉) = 1
|{`|q∈K`}|·m · δS(q, p) if q ∈ Ki

δ(〈q, accept〉, a, 〈p, i, j〉) = 1
|{`|q∈K`}|·m · δS(q, p) if q ∈ Ki

δ(〈q, i〉, a, 〈p, accept〉) = δS(q, p) if q ∈ Hi

δ(〈q, i〉, a, 〈p, i〉) = δS(q, p) if q /∈ Hi

δ(〈q, i, j〉, a, 〈p, accept〉) = δS(q, p)·
8>>><>>>:

0, q /∈ Hi ∪ Kj

0, q ∈ Kj \ Hi

1, q ∈ Hi \ Kj
1

m+2 , q ∈ Hi ∩ Kj

δ(〈q, i, j〉, a, 〈p, i, j〉) = δS(q, p)·
8>>><>>>:

1, q /∈ Hi ∪ Kj
1

m+1 , q ∈ Kj \ Hi

0, q ∈ Hi \ Kj
1

m+2 , q ∈ Hi ∩ Kj

δ(〈q, i, j〉, a, 〈p, j〉) = δS(q, p)·
8>>><>>>:

0, q /∈ Hi ∪ Kj
1

m+1 , q ∈ Kj \ Hi

0, q ∈ Hi \ Kj
1

m+2 , q ∈ Hi ∩ Kj

δ(〈q, i, j〉, a, 〈p, j, k〉) = δS(q, p)·
8>>><>>>:

0, q /∈ Hi ∪ Kj
1

m+1 , q ∈ Kj \ Hi

0, q ∈ Hi \ Kj
1

m+2 , q ∈ Hi ∩ Kj

Figure 4.7: Transition probabilities of the PBA constructed in the proof of Theorem 4.3.4
(where i, j, k ∈ {1, . . . ,m} s.th. i 6= j and j 6= k (but possibly i = k))

in the Streett automaton would be lifted with positive probability to accepting paths of the
form

. . . , 〈k1, accept〉, 〈k2, 1〉, 〈h1, 1〉, 〈k1, accept〉, 〈k2, 1〉, 〈h1, 1〉, . . .
in the Büchi automaton. To avoid this, we need the Pi,j subautomata.

And why do we need thePi subautomata? Why are thePi,j subautomata not sufficient? The
problem is that without the Pi subautomata, the Büchi automata could visit infinitely many
K1 states while being in Paccept moving to P1,2. If the automaton also visits infinitely many
K2 states but no H1 states, the Büchi automaton will almost surely leave P1,2 and move to
P2,1 which it can leave to Paccept if it visits infinitely many H2 states. Thus it could accept
also it might not satisfy the Streett condition {(H1,K1)}. This is shown in the following
example. Assume the above construction without the Pi subautomata. Assume that the
acceptance condition consists of two pairs {(H1,K1), (H2,K2)} such that K1 \K2 6= ∅,
K2 \H1 6= ∅ and H2 \K1 6= ∅. Let k1 ∈ K1 \K2, k2 ∈ K2 \H1, h2 ∈ H2 \K1. Then the
nonaccepting (possible) path

k1, k2, h2, k1, k2, h2, . . .

in the Streett automaton would be lifted with positive probability to accepting paths of the

84

Chapter 4. Probabilistic ω-Automata 4.3. Composition operators for PBA

form

. . . , 〈k1, accept〉, 〈k2, 1, 2〉, 〈h2, 2, 1〉, 〈k1, accept〉, 〈k2, 1, 2〉, 〈h2, 2, 1〉, . . .

in the Büchi automaton. To avoid this, we need the Pi subautomata.

In the following we will denote by AccPS
Streett = ∧1≤j≤m(23Kj ⇒ 23Hj) the Streett

acceptance condition of PS and by AccPS
Rabin = ∨1≤j≤m(32¬Hj ∧ 23Kj) the acceptance

condition that we gain from the acceptance pairs of PS by interpreting them as a Rabin
acceptance condition. We now show that LBüchi(P) = LStreett(PS)

⊆: Let ω /∈ LStreett(PS), thus PrPS ,ω({π | π |= AccPS
Streett}) = 0 and hence it holds that

PrPS ,ω({π | π |= AccPS
Rabin}) = 1. Consider a run π of PS that satisfies the Rabin

condition ∨1≤j≤m(32¬Hj ∧ 23Kj), thus there exist an index j such that π |=
32¬Hj ∧ 23Kj . Consider the liftings of π in the constructed Büchi automaton P .
(By a lifting of π we mean any run inP for ω whose projection to the QS-components
agrees with π.) As the above construction ensures that whenever a Kj-state is visited
in Paccept or Pi,j for some i 6= j then with equal positive probability one of the
subautomaton Pj or Pj,k is entered. Hence, if infinitely often a Kj-state is visited
and the process does not stay forever in one of the subautomata Pi (for some i 6= j)
or Pk,` (where it cannot accept), then almost surely Pj is entered. But Pj can only
be left via a Hj-state. As π |= 32¬Hj this ensures that almost all liftings of π will
eventually stay in one of the subautomata Pi or Pi,k, hence they will almost surely
not be accepting. This shows that PrPS ,ω({π | π |= AccPS

Rabin}) = 1 ⇒ PrPBüchi(ω) = 0
and ω /∈ LStreett(PS) ⇒ ω /∈ LBüchi(P).

⊇: Let ω ∈ LStreett(PS), thus PrPS ,ω({π | π |= ∧1≤i≤m(23Ki ⇒ 23Hi)}) > 0. As

{π | π |= ∧1≤i≤m(23Ki ⇒ 23Hi)} =
.⋃

J⊆{1,...,m}

{
π | π |= AccPS

Streett ∧∧
j∈J

23Kj ∧
∧
j /∈J

32¬Kj

}
there exists J ⊆ {1, . . . ,m} such that

PrPS ,ω({π | π |= AccPs
Streett ∧ ∧j∈J23Kj ∧ ∧j /∈J32¬Kj}) > 0.

As 32¬Kj is the disjoint union of 3=`−1Kj ∧ 2≥`¬Kj , ` = 0, 1, 2, . . ., and as
{j | j /∈ J} is finite there exists r ∈ N≥0 such that

PrPS ,ω({π | π |= AccPs
Streett ∧ ∧j∈J23Kj ∧ ∧j /∈J2>r¬Kj}) > 0.

Let πS ∈ {π | π |= AccPs
Streett ∧ ∧j∈J23Kj ∧ ∧j /∈J2>r¬Kj} be a run in PS .

Then almost all liftings of πS to runs for ω in P that stay in Pinit for the first r input
symbols and eventually enter Paccept are accepting. (By a lifting of πS we mean any
run in P for ω whose projection to the QS-components agrees with πS .) This yields

PrPBüchi(ω) ≥ 1
2r+1

·PrPS ,ω({π | π |= AccPs
Streett ∧ ∧j∈J23Kj ∧ ∧j /∈J2>r¬Kj}) > 0

and ω ∈ LBüchi(P).

85

4.3. Composition operators for PBA Chapter 4. Probabilistic ω-Automata

This completes the proof of Theorem 4.3.1 which states that the class of PBA-definable
languages is closed under complementation. The main ingredients for the proof are a trans-
formation from PBA to equivalent 0/1 PRA (Theorem 4.3.2) and a polynomial transfor-
mation from PSA to PBA (Theorem 4.3.4). The complexity of the latter transformation is
worth noting, as in the nondeterministic case the switch from Streett to Büchi acceptance
can cause an exponential blow-up [SV89]. To conclude this section, we want to examine
the construction from a given PBA to an equivalent 0/1 PRA for a simple example.

4.3.2.1. Example for the transformation from PBA to 0/1 PRA

We consider again the automaton Pλ from Figure 4.3, page 68. This automaton has two
remarking properties, namely it accepts a non-ω-regular language and its accepted language
depends on the precise transition probabilities. In Figure 4.8 we depict the automaton P
which basically is P 3

4
, but P is also total. Given a word ω = ak1bak2bak3b . . . ∈ L(P),

p qu
a, 3

4

a, 1
4

a, 1

b, 1
b, 1a, 1

1

b, 1

Figure 4.8: Example for the transformation from PBA to 0/1 PRA

it holds that PrP(ω) =
∏∞

i=1(1 − (1
4)ki) > 0. Applying the transformation described in

the proof of Theorem 4.3.2 yields the 0/1 PRA PR depicted in Figure 4.9. For the sake of
readability we denote the states in PR (which consist of a sequence of states of P , each
with an associated bit, and a subset of the states of P) by e.g. 〈u0, p1, {p, u}〉 instead
of 〈u, 0, p, 1, {p, u}〉. That is, the associated bit is subscripted. The crucial parts of the
automaton PR are two very similar subautomata that we denote by Pleft and Pright. Pleft

consists of the states in the left dashed rectangular box and the left dotted parallelogram
and Pright consists of the states in the right dashed rectangular box and the right dotted
parallelogram. Both Pleft and Pright simulate P , the two states in the corresponding dashed
box simulate the state q of P and the two states in the corresponding dotted parallelogram
simulate the state p. Note that the automaton P basically rejects if it reads the letter b
in state p. This is simulated in PR as follows. If two consecutive b’s are read then PR

moves with the first b from the dashed box to the lower state of the dotted parallelogram.
With the second b, it moves to state 〈u0, {u}〉 from which it can never accept. If a word
akb is read, then P’s behavior is simulated, but instead of rejecting with probability (1

4)k,
PR moves to the state 〈u0, p1, {p, u}〉 from where the process of P is simulated in the
subautomaton Pleft for the remaining suffix of the input word. Note that for an input word
akjbakj+1b . . ., the probability that the occurring b’s are not read in the parallelogram but in
the box is

∏∞
i=j(1 − (1

4)ki) >
∏∞

i=1(1 − (1
4)ki) > 0 if ak1bak2b . . . ∈ L(P). Thus with

86

Chapter 4. Probabilistic ω-Automata 4.4. Decidability Questions

〈p0, {p}〉

〈p0, {p, q}〉 〈q0, p1, {p, q}〉 〈q0, p0, {p, q}〉

〈u0, p1, {p, u}〉

〈u0, q0, p1, {p, q, u}〉 〈u0, p0, {p, q, u}〉

〈u0, q0, p0, {p, q, u}〉

〈u0, p0, {p, u}〉 〈p0, u0, {p, u}〉

〈p0, u0, {p, q, u}〉

〈q0, u0, p0, {p, q, u}〉

〈q0, u0, p1, {p, q, u}〉

b, 1

a
1
4

3
4

b, 1

b, 1
b, 1

a, 1
4 a, 3

4

1

〈u0, {u}〉

a, 1
b, 1

a, 1
4

a, 3
4

a, 3
4

a, 1
4

a, 3
4

a, 1
4

b, 1

b, 1

b, 1 b, 1

a, 3
4 a, 1

4

b, 1

a 3
4

1
4

a

1
4

3
4

a

3
4

1
4

a, 3
4

a, 1
4

b, 1

a, 3
4

a, 1
4

a 3
4

1
4

b, 1

a
3
4

1
4

b, 1

b, 1

Figure 4.9: The resulting 0/1 PRA PR

positive probability (bounded from below), the process stays in one of the subautomata Pleft

or Pright where it accepts (in the second component for the automaton Pleft and in the first
component for the automaton Pright). This ensures that it accept the words in L(P) with
probability 1.

Note that a word with only finitely many b’s will not be accepted as almost all runs are not
accepting. If the automaton enters a dashed box (after reading the last b), it will almost
surely reject, as it will visit both states in the box almost surely. But such a run does not
satisfy the Rabin acceptance condition as there is only an accepting state of P (namely p)
in the third component, but one of the states in the box has the p in the third component
associated with the bit 1. If the input word contains no b the same reasoning applies to the
two states in the oval.

This examples concludes the discussion of the complementation and we will have a look at
decidability issues in the next section.

4.4. Decidability Questions

For finite probabilistic automata (PFA) it has been shown that the emptiness problem is
undecidable. Recall that a PFA Pfin is equipped with a threshold 0 < λ < 1 and that the
accepted language L(Pfin, λ) consists of all input words for which the set of runs that end
in an accepting state has a probability greater than λ. From this it easily follows that the
emptiness problem for PBA under such a threshold semantics (see Subsection 4.4.1.4) is
undecidable. This can be seen as a given PFA Pfin over the alphabet Σ can be transformed

87

4.4. Decidability Questions Chapter 4. Probabilistic ω-Automata

into a PBA P such that for each finite word ρ ∈ Σ∗ it holds that PrPfin(ρ) = PrP(ρcω),
where c is an additional letter which is not in Σ. Moreover the automaton P can only
produce (Büchi) accepting runs for input words that are of the form ρcω, where ρ is in Σ∗

(for each accepting state of the PFA Pfin add a c-transition with probability one to a new
state qF which then is the only accepting state of the PBA P and has a c-loop attached to it
with probability one).

In this section we will show some undecidability results for PBA that have an immediate
consequence for related problems of POMDPs (as PBA can be seen as a special instance
of POMDPs). We will moreover proof the almost-sure Büchi objective to be decidable for
POMDPs which then implies the decidability of the emptiness problem for PBA under an
almost-sure semantics.

4.4.1. Undecidability results

In contrast to finite probabilistic automata where the threshold λ = 0 makes the emptiness
problem trivially decidable as a PFA with that threshold accepts the same language as its
underlying deterministic finite automaton, we will show in this subsection that the emptiness
problem for PBA (and threshold 0) is undecidable. We also discuss the consequences of this
result for other problems for PBA and POMDPs.

4.4.1.1. Emptiness problem for PBA

The proof for the undecidability of the emptiness problem for PBA relies on a reduction
from a variant of the emptiness problem for PFA, using the fact that modifying the transition
probabilities can affect the accepted language of a PBA (Theorem 4.2.6). The emptiness
problem for PFA is known to be undecidable [Paz71]. Here we use the following variant of
this result, due to Madani, Hanks and Condon [MHC03].

Theorem 4.4.1 (Undecidability result for PFA, cf. [MHC03]).
The following problem is undecidable: Given a constant 0 < ε < 1 and a PFA that either

accepts some string with probability at least 1 − ε or accepts all strings with probability at
most ε, decide which is the case.

Using this result we are able to show

Theorem 4.4.2 (Undecidability of the emptiness problem for PBA).
Checking emptiness is undecidable for PBA.

Proof. To provide an undecidability proof of the emptiness problem for PBA, we reduce
the variant of the emptiness problem for PFA recalled in Theorem 4.4.1 to the intersection
problem for PBA which takes as input two PBA P1 and P2 and asks whether L(P1)∩L(P2)
is empty. As PBA are closed under intersection (see subsection 4.3.1), this will complete
the proof for Theorem 4.4.2.

Let R be a PFA over some alphabet Σ and 0 < ε < 1
2 as in Theorem 4.4.1, i.e. such

that either there exists some word ρ accepted by R with probability strictly greater than

88

Chapter 4. Probabilistic ω-Automata 4.4. Decidability Questions

1− ε, or all words are accepted with probability less than ε. For ρ ∈ Σ∗, let PrR(ρ) denote
the probability that the word ρ is accepted by R. From the PFA R and the constant ε we
construct two PBA P1 and P2 such that

L>ε(R) = ∅ if and only if L(P1) ∩ L(P2) = ∅,

where L>ε(R) = {ρ ∈ Σ∗ | PrR(ρ) > ε}. The alphabet for both P1 and P2 arise
from the alphabet Σ of R by adding two new symbols] and $, that is, P1 and P2 are
PBA over the alphabet Σ′ = Σ ∪ {], $}. The rough idea is to use the somehow com-
plementary acceptance behavior of the automata Pλ and P̃λ (see Figure 4.3 and 4.4 on
page 68, resp. 69). The automata P1 and P2 are designed to read words of the form
ρ1
1]ρ

1
2] · · · ρ1

k1
$$ρ2

1]ρ
2
2] · · · ρ2

k2
$$ · · · where ρj

i ∈ Σ∗. Roughly speaking, P1 will mimick
the automaton Pλ and P2 will mimick P̃λ, where reading a word ρj

i] in P1 (resp. P2) cor-
responds to reading a single letter a in Pλ (resp. P̃λ). Recall that Pλ and P̃λ accept infinite
words of the form ak1bak2b . . . (depending on the ki). The two $-symbols serve as a separa-
tor for P1 and P2, just like the letter b does for Pλ and P̃λ. Thus, the number of]-symbols
between the (j − 1)st and the jth occurence of $$ (and therefore the number of words ρj

i)
corresponds to the value of kj . Automaton P1 evolves from the automaton Pλ by replacing
each of its two states p0, p1 by a copy of the PFAR. The transitions for the]-symbol will be
defined, such that after reading a word ρj

i] in the copy of R that corresponds to the state p0

(recall that this corresponds to reading a single letter a in state p0 of in Pλ) the automaton
P1 is still in this copy of R with probability 1− PrR(ρj

i) and has moved to the other copy
with probability PrR(ρj

i), similar to the behavior of automaton Pλ upon reading the letter
a in state p0 (it stays in p0 with probability 1− λ and moves to p1 with probability λ). The
structure of P1 and P2 is shown in Figure 4.10 and 4.11, respectively. The PBA P1 is com-

p0

p f

F

R
$, 1

$, µR0

#, µR0

p0

p fR

#, µR0

#, µR0
#, µR0

$, 1 $, 1

µR0

Figure 4.10: PBA P1

posed of two copies of the PFAR (respresented in dashed lines) augmented with new edges
using the additional symbols] and $. The initial states of P1 are the initial states of the
first copy of R according to the initial distribution of R. Reading the symbol] in any final
state of the first copy of R, the PBA P1 proceeds to the initial state of R in the second copy
according to the initial distribution of R. Reading the symbol] in any non-final state of the
first copy of R, the PBA P1 proceeds to the initial state of R in the first copy according
to the initial distribution of R. Consuming the symbol $ in some (final or non-final) state
of the second copy of R, P1 moves with probability 1 to the special state F , which is the

89

4.4. Decidability Questions Chapter 4. Probabilistic ω-Automata

unique accepting state of P1. Reading the second $ symbol, P1 proceeds on to an initial
state according to the initial distribution of R.

The accepted language of this PBA is (see end of this section (page 94))

L1 =
{

ρ1
1]ρ

1
2] . . . ρ1

k1
$$ ρ2

1]ρ
2
2] . . . ρ2

k2
$$. . . | ρj

i ∈ Σ∗

and
∏
j≥1

(
1−

(kj−1∏
i=1

(1− PrR(ρj
i))

))
> 0

}
.

PBA P2 (Fig. 4.11) does not depend on the structure of the given PFA R, but only on ε and
the alphabet Σ.

p′
2

p′
1p′

0

F ′

#, ε

$, 1 $, 1

a ∈ Σ, 1
#, 1−ε

u′
1 u′

2

$, 1 $, 1

a ∈ Σ, 1
#, 1

a ∈ Σ, 1

a ∈ Σ, 1

Figure 4.11: PBA P2

Its accepted language is (see end of this section (page 94))

L2 =
{

v1$$ v2$$. . . | vi ∈ (Σ ∪ {]})∗ and
∏
i≥1

(
1− (1− ε)|vi|]

)
= 0

}
,

where |v|] is the number of] symbols in the word v ∈ (Σ ∪ {]})∗.

We now show that the language L>ε(R) = {ρ ∈ Σ∗ | PrR(ρ) > ε} of R for the threshold
ε is empty if and only if L1 ∩ L2 = ∅.

“=⇒”: Assume that L>ε(R) is empty, i.e. for all finite words ρ ∈ Σ∗ it holds that
PrR(ρ) ≤ ε. Let ω̃ ∈ L2. The goal is to prove that ω̃ /∈ L1. Since ω̃ ∈ L2, ω̃
can be written as

ω̃ = v1$$ v2$$. . . with vi ∈ (Σ ∪ {]})∗ and
∏

i

(
1− (1− ε)|vi|]

)
= 0.

The subwords vi can be decomposed according to the occurrences of the symbol].
That is,

ω̃ = ρ1
1]ρ

1
2] . . . ρ1

k1
$$ ρ2

1]ρ
2
2] . . . ρ2

k2
$$. . . with |vi|] = ki − 1.

90

Chapter 4. Probabilistic ω-Automata 4.4. Decidability Questions

Hence ω̃ ∈ L2 implies
∏

i

(
1− (1− ε)ki−1

)
= 0. However:

∏
j

(
1−

kj−1∏
i=1

(
1− PrR(ρj

i)
))
≤

∏
j

(
1−

kj−1∏
i=1

(
1− ε

))
since L>ε(R) = ∅

=
∏
j

(
1− (1− ε)kj−1

)
= 0 since ω̃ ∈ L2.

Hence, ω̃ /∈ L1. Since this holds for any ω̃ ∈ L2, we conclude that L1 ∩ L2 = ∅.

“⇐=”: Assume now that L>ε(R) 6= ∅. By assumption on the PFA R, this means that
there exists a finite word ρ ∈ Σ∗ such that PrR(ρ) > 1− ε. We define

ω̃k1,k2,... = (ρ])k1ρ$$ (ρ])k2ρ$$. . .,

and prove that there exists a sequence k1, k2, . . ., such that ω̃k1,k2,... ∈ L1 ∩ L2. The
acceptance probability of ω̃k1,k2,... in P1 is

∏
j

(
1−

kj∏
i=1

(
1− PrR(ρ)

))
=

∏
j

(
1−

(
1− PrR(ρ)

)kj
)

>
∏
j

(
1−

(
1− (1− ε)

)kj
)

=
∏
j

(
1− εkj

)
On the other hand, the word ω̃k1,k2,... can be written as v1$$v2$$. . . with vi ∈ (Σ ∪
{]})∗ and |vi|] = ki. Hence,

∏
i

(
1− (1− ε)|vi|]

)
=

∏
i

(
1− (1− ε)ki

)
. We finally

apply Lemma 4.2.7 (with n = 2) which yields the existence of a sequence (k′i)i≥1

that will ensure at the same time (recall that 0 < ε < 1
2)

∏
j≥1

(
1− εk′j

)
> 0 and

∏
i≥1

(
1− (1− ε)k′i

)
= 0.

Hence, ω̃k′1,k′2,... ∈ L1 ∩ L2 and L(P1) ∩ L(P2) 6= ∅.

This completes the proof of Theorem 4.4.2.

4.4.1.2. Consequences of the undecidability of the emptiness problem

Since complementation is effective for PBA, the undecidability of the emptiness problem
yields immediately that many other interesting algorithmic problems for PBA are undecid-
able too.

91

4.4. Decidability Questions Chapter 4. Probabilistic ω-Automata

Corollary 4.4.3 (Other undecidability results for PBA). Given two PBA P1 and P2, the
following problems are undecidable.

universality: L(P1) = Σω?
equivalence: L(P1) = L(P2)?

inclusion: L(P1) ⊆ L(P2)?

Another immediate consequence of Theorem 4.4.2 is that the verification problem for finite
nondeterministic transition systems T and PBA-specifications is undecidable. Here we
assume that the states in T are labeled with sets of atomic propositions of some finite set
AP and consider the traces of the paths in T that arise by the projection to the labels of the
states. Furthermore, we assume that the given PBA has the alphabet 2AP.

Corollary 4.4.4 (Verification against PBA-specifications (i)). The following problems are
undecidable.

(a) Given a finite transition system T and a PBA P , is there a path in T whose trace is in
L(P)?

(b) Given a finite transition system T and a PBA P , do the traces of all paths in T belong
to L(P)?

Proof. Consider a transition system T such that each infinite word over the alphabet of P
is a trace of T and vice versa. Then the emptiness problem for PBA reduces to (a) and the
universality problem for PBA reduces to (b). We define T as follows. Given a PBA with the
alphabet Σ = 2AP = {a1, . . . , an}, we define the state set of T to be S = {s1, . . . , sn} and
the set of actions to be Act = {α1, . . . , αn}. Each state si is labeled with the set of atomic
propositions ai. There is a transition from each si to each sj , 1 ≤ i, j ≤ n via action αj and
every state is an initial state of T . Thus Σω = {trace(π) | π is an infinite path in T }.

As transition systems are special instances of state-labeled Markov decision processes, the
following four cases of the qualitative verification problem for finite state-labeled Markov
decision processes M and PBA-specifications P are undecidable too.

Corollary 4.4.5 (Verification against PBA-specifications (ii)). The following problems
are undecidable. Given a finite state-labeled Markov decision process M and a PBA-
specification P , is there a scheduler U for M such that

(i) PrM,U (L(P)) > 0? (ii) PrM,U (L(P)) = 1?
(iii) PrM,U (L(P)) < 1? (iv) PrM,U (L(P)) = 0?

Proof. Indeed, problem (a) of Corollary 4.4.4 reduces to (i) and problem (b) reduces to
(iii) when T is viewed as an MDP MT , where we assume the initial distribution to be
uniform over the initial states of T . To reduce problem (a) of Corollary 4.4.4 to (ii) and
problem (b) to (iv) we have to use a little trick, as there is no proper nondeterminism in
the initial states of an MDP (but only probabilistic choice). Consider a PBA P over Σ =
{a, b}, such that L(P) = {aω} and the following transition system T where the state
names are associated with their labels. Then there is a path in T whose trace is in L(P),

92

Chapter 4. Probabilistic ω-Automata 4.4. Decidability Questions

T : MT :

b

1

1
2

1
2

1

baa

Figure 4.12: From T to MT

but there is no scheduler in the MDP MT such that (ii) holds. Similarly, not all traces
of T belong to P , but there is no scheduler in MT such that (iv) holds. If a scheduler
could also choose an initial distribution then we would be fine. We find a remedy for this
situation by adjusting the given automaton and the MDP such that one irrelevant step is
prepended. This yields the possibility to have a nondeterministic choice for the initial states
of T in the MDP after the first irrelevant step. More precisely, let a labeled transition
system T = (S, Act, δT , S0,AP, LT) and a PBA P = (Q,Σ, δP , µP , F) be given. Let
the set of initial states of T be S0 = {s1, . . . , sn}. We define the labeled MDP M′ =
(S

.
∪ {sstart},Act

.
∪ {α1, . . . , αn}, δM′ , µM′ ,AP

.
∪ {astart}, LM′) with µM′(sstart) = 1,

δM′(sstart, αi, si) = 1, 1 ≤ i ≤ n and δM′(s, α, t) = 1 if t = δT (s, α) for s, t ∈ S
and α ∈ Act. Moreover LM′(sstart) = {astart} and LM′(s) = LT (s) for s ∈ S. Thus
M′ does an auxiliary first step and then mimics T (choosing an initial state of T with a
nondeterministic choice). We therefore have to adjust the automaton as well and define
P ′ = (Q

.
∪ {qstart},Σ

.
∪ {astart}, δP ′ , µP ′ , F) with µP ′(qstart) = 1, δP ′(qstart, astart, p) =

µP(p) and δP ′(q, a, p) = δP(q, a, p) for q, p ∈ Q and a ∈ Σ.

Now, problem (a) of Corollary 4.4.4 for T and P reduces to problem (ii) forM′ and P ′ and
problem (b) for T and P reduces to (iv) for M′ and P ′ .

Since PBA are a special case of partially observable Markov decision processes (POMDPs,
see Definition 2.2.14 on page 13) our results immediately imply undecidability results
for POMDPs and qualitative properties. In the literature, some undecidability results for
POMDPs (or similar models) and quantitative properties (e.g. expected rewards, approxi-
mation of the maximal reachability problem) can be found [MHC03, GD07]. However, as
far as we know, the undecidability of qualitative ω-regular properties for POMDPs is a new
result. As POMDPs are 11

2 -player games, the following results also apply to the setting of
stochastic multi-player games with incomplete information.

Corollary 4.4.6 (Undecidability results for POMDPs). The following problems are un-
decidable:

(a) Given (M,∼) a finite POMDP and F a set of states in M, is there a deterministic
observation-based scheduler U for (M,∼) such that PrM,U (23F) > 0?

(b) Given (M,∼) a finite POMDP and F a set of states in M, is there a deterministic
observation-based scheduler U for (M,∼) such that PrM,U (32F) = 1?

Proof. Given a total PBA P (i.e. a PBA that has transitions for each pair of a state and input
letter) we define the equivalence relation ∼ = Q×Q. Note that each PBA can be trivially

93

4.4. Decidability Questions Chapter 4. Probabilistic ω-Automata

transformed into an equivalent total PBA. The pair (P , ∼) forms a POMDP with the action
set Σ where a deterministic observation-based scheduler U represents an input word ωU for
the PBA P (and vice versa). Consider F to be the set of accepting states of P .

The undecidability of (a) is an immediate consequence of the undecidability of the empti-
ness problem for PBA as PrP,U (23F) = PrP(ωU).

The undecidability of (b) follows from the undecidability of the universality problem for
PBA.

PrP(ωU) = PrP,U (23F) = 1− PrP,U (32(Q \ F)).

With (P,∼) and the state set Q \ F the answer to (b) is “yes” if and only if L(P) 6= Σω.
As the universality problem for PBA is undecidable, this shows the claim.

4.4.1.3. Skipped proofs: accepted languages of P1 and P2

We now prove that L(Pi) = Li, i = 1, 2 (see Figure 4.10, page 89, resp. Figure 4.11,
page 90 for the automaton P1, resp. P2). Although the computations are analog to the
computations for the accepted languages of the automata Pλ and P̃λ, we provide them here
for the sake of completeness.

L(P1) =
{

ρ1
1]ρ

1
2] . . . ρ1

k1
$$ ρ2

1]ρ
2
2] . . . ρ2

k2
$$. . . | ρj

i ∈ Σ∗

and
∏
j≥1

(
1−

(kj−1∏
i=1

(1− PrR(ρj
i))

))
> 0

}
.

Proof. Starting in the first copy of R, 1 − PrR(ρ) is the probability for reading the word
ρ and ending in some non-final state p. Hence,

∏kj−1
i=1 (1 − PrP (ρj

i)) represents the prob-
ability to stay in the first copy of R after having read the finite word ρj

1]ρ
j
2] · · · ρ

j
kj−1].

The complement of this probability is then exactly the probability to jump to the sec-
ond copy at some point before reading ρj

kj
. This corresponds to the probability to be

able to read the symbol $ after the prefix ρj
1]ρ

j
2] · · · ρ

j
kj−1]ρ

j
kj

. Thus, the infinite prod-

uct
∏

j

(
1−

(∏kj−1
i=1 (1−PrR(ρj

i))
))

is the probability to be able to read the two $ symbols
each time they appear in the input word. This agrees with the probability to visit infinitely
often the final state F . This shows that the given expression for L(P1) is correct.

L(P2) =
{

v1$$ v2$$. . . | vi ∈ (Σ ∪ {]})∗ and
∏
i≥1

(
1− (1− ε)|vi|]

)
= 0

}
,

where |v|] is the number of] symbols in word v ∈ (Σ ∪ {]})∗.

Proof. Starting in p′0, (1 − ε)|vi|] is the probability to stay in p′0 while reading the word
vi. Hence, 1 − (1 − ε)|vi|] represents the probability to be in state p′1 after the input word
vi. As a consequence

∏
i

(
1− (1− ε)|vi|]

)
is the probability to avoid forever the final state

94

Chapter 4. Probabilistic ω-Automata 4.4. Decidability Questions

F ′. The probability to visit F ′ after reading the word v1$$v2$$ · · · vN−1$$ and to avoid F ′

from then on is therefore

(1− ε)|vN−1|]
∏
i≥N

(
1− (1− ε)|vi|]

)
with the convention |v0|] = 0. Hence, the probability to avoid F ′ from some point on is∑

N

(
(1− ε)|vN−1|]

∏
i≥N

(
1− (1− ε)|vi|]

))
.

To prove that L(P2) is as indicated above, we need to show that:

1−
∑
N

(
(1− ε)|vN−1|]

∏
i≥N

(
1− (1− ε)|vi|]

))
> 0 ⇐⇒

∏
i

(
1− (1− ε)|vi|]

)
= 0

⇐: First assume that
∏

i

(
1− (1− ε)|vi|]

)
= 0. Then, for all N ∈ N,

∏
i≥N

(
1− (1− ε)|vi|]

)
= 0,

and thus
∑

N

(
(1− ε)|vN−1|]

∏
i≥N

(
1− (1− ε)|vi|]

))
= 0.

⇒: The other implication is more involved. Assume that
∏

i

(
1− (1− ε)|vi|]

)
> 0. We

have to show that ∑
N

(
(1− ε)|vN−1|]

∏
i≥N

(
1− (1− ε)|vi|]

))
= 1.

With θi = 1− (1− ε)|vi|] we obtain:∑
N

(
(1− ε)|vN−1|]

∏
i≥N

(
1− (1− ε)|vi|]

))
=

∑
N

(
(1− θN−1)

∏
i≥N

θi

)
=

∑
N

(∏
i≥N

θi − θN−1

∏
i≥N

θi

)
=

∑
N

(∏
i≥N

θi −
∏

i≥N−1

θi

)
= lim

N→∞

∏
i≥N

θi since θ0 = 0

To conclude, we show that limN→∞
∏

i≥N θi = 1, using the assumption
∏

i θi > 0.∏
i

θi > 0 ⇒ log(
∏

i

θi) < ∞⇒
∑

i

log(θi) < ∞⇒ lim
N→∞

∑
i≥N

log(θi) = 0

⇒ lim
N→∞

log(
∏
i≥N

θi) = 0 ⇒ lim
N→∞

∏
i≥N

θi = 1.

This completes the proof that

95

4.4. Decidability Questions Chapter 4. Probabilistic ω-Automata

L(P2) =
{

v1$$ v2$$. . . | vi ∈ (Σ ∪ {]})∗ and
∏
i≥1

(
1− (1− ε)|vi|]

)
= 0

}
.

4.4.1.4. The threshold semantics

Another immediate implication of Theorem 4.4.2 is the undecidability of the emptiness
problem when using a threshold semantics for PBA. For the variants of probabilistic ω-
automata we studied so far, the accepted language has been defined as the set of infinite
words over the input alphabet such that the probability measure of the set of accepting
runs is nonzero. However, we did not require any positive lower bound for the acceptance
probabilities. Following the concept of PFA [Rab63], PBA can also be equipped with a
threshold γ ∈ [0, 1[for the accepted words. Given a PBA P and a threshold 0 ≤ γ < 1, we
define the threshold language L>γ(P) of P with respect to γ as

L>γ(P) =
{
ω ∈ Σω | PrP(ω) > γ

}
.

Note that with γ = 0 we obtain the standard semantics of PBA, i.e. L(P) = L>0(P).

Theorem 4.4.7 (Undecidability of the emptiness problem for PBA under the threshold
semantics).
Checking emptiness is undecidable for PBA under the threshold semantics.

Proof. We reduce the standard emptiness problem for PBA to the emptiness problem under
the threshold semantics. Let a PBA P = (Q,Σ, δ, µ0, F) and a threshold γ < 1 be given.
We define P ′ = (Q′,Σ′, δ′, µ′0, F

′) as follows. Q′ = Q
.
∪ {qF }, Σ′ = Σ and F ′ = F

.
∪

{qF }. Moreover µ′0(qF) = γ and µ′0(p) = (1− γ) · µ0(p), p ∈ Q. We define δ′ as follows.
δ′|Q×Σ×Q = δ, δ′(qF , a, qF) = 1 and δ′(qF , a, p) = δ′(p, a, qF) = 0 for all a ∈ Σ and
p ∈ Q. Obviously, L(P) = L>γ(P ′) which shows the claim.

The proof of the above Theorem shows, that given any PBA P and any threshold γ, we can
construct another PBA P ′ such that L>γ(P ′) = L(P), that is IL(PBA) ⊆ IL(PBA>γ) for
any threshold γ. This raises the question whether PBA with the standard semantics are as
expressive as PBA with the threshold semantics. This is not the case and we show

Theorem 4.4.8 (Existence of threshold-languages that are not PBA-recognizable).
There exists a real number γ ∈]0, 1[such that IL(PBA>γ) 6⊆ IL(PBA).

Proof. The proof is based on an adaption of arguments provided by Paz [Paz71] for proba-
bilistic finite automata (PFA). We identify any real number γ ∈]0, 1[with the infinite word

a1a2a3 . . . ∈ {0, 1}ω obtained by its binary representation γ =
∞∑
i=1

ai2−i = 0.a1a2a3 . . .

(where we assume that ai 6= 0 for infinitely many indices i). We now consider the following
languages Kγ ⊆ {0, 1}∗:

96

Chapter 4. Probabilistic ω-Automata 4.4. Decidability Questions

Kγ =
{

b1 . . . bn : b1, . . . , bn ∈ {0, 1},
n∑

i=1
bi2−i > γ

}
Paz [Paz71] has shown that Kγ is regular if and only if γ is rational. Rabin [Rab63] provided
a PFA R such that, for all finite words ρ ∈ {0, 1}∗, PrR(ρ) > γ if and only if ρ ∈ Kγ . We
modify this PFA R to a PBA P over the alphabet Σ = {0, 1, c} that under the threshold
semantics accepts the language

Lγ = Kγcω = {ρcω | ρ ∈ Kγ}

when dealing with the threshold γ.

For this, we add a new accepting state qacc with a c-self-loop and no other transitions (i.e.
we set δP(qacc, c, qacc) = 1 and δP(qacc, b, ·) = 0 for b ∈ {0, 1}) and c-transitions from
each final state p in R to qacc (i.e. we set δP(p, c, qacc) = 1 for all final states p of R). The
remaining transitions are as in R. Finally the acceptance set of P is defined as F = {qacc}
and the initial distribution of P is the same as in R. It then holds for all words ρ ∈ {0, 1}∗
that PrP(ρcω) = PrR(ρ). Furthermore, PrP(ω) = 0 if ω contains infinitely many 0’s or
1’s. Thus:

L>γ(P) = { ρcω : PrR(ρ) > γ} = Kγcω = Lγ .

Now fix an arbitrary irrational number γ ∈]0, 1[. Thus, by Paz [Paz71], Kγ non-regular. It
remains to show that there is no PBA P ′ such that L(P ′) = Lγ . The intuitive argument will
be the following. Suppose by contradiction that P ′ is a PBA with L(P ′) = Lγ ⊆ {0, 1}∗cω.
Thus each word that will be accepted with a positive probability has a suffix consisting only
of c’s. But then, there is some “kind of underlying (finite word) automaton” in P ′, that
decides which of the prefixes “to accept”. Although this is a probabilistic automaton, as
the acceptance threshold in P ′ is 0, this “underlying (finite word) automaton” will accept a
regular language, which will contradict the assumption that γ is irrational.

More formally, we first observe that whenever (T,A) is an accepting end component of P ′
with PrP

′,ω((T,A)) > 0 for some word ω ∈ Σω then A(p) = {c} for all states p ∈ T .
(Otherwise P ′ would accept some words that do not have a suffix consisting of c’s.) Let T0

be the set of states p in P ′ such that p ∈ T for some accepting end component (T,A) of
P ′ with PrP

′,ω((T,A)) > 0 for some word ω ∈ Σω. Furthermore, let T+
0 be the set of all

states q in P ′ such that p ∈ δP ′(q, cn) for some n ≥ 0 and p ∈ T0. That is T+
0 consists of all

states from which a relevant accepting end component can be reached via a finite sequence
of c’s. Whenever ρ ∈ {0, 1}∗ such that PrP

′
(q0

ρ−→ q) > 0 for some initial state q0 and
some state q ∈ T+

0 then

PrP
′
(ρcω) ≥ PrP

′
(q0

ρ−→ q) · PrP
′

q (q cn

−→ p) > 0

for some n ∈ N≥0, some state q ∈ T+
0 and some state p ∈ δP ′(q, cn), where p is in a

relevant accepting end component. This yields

ρcω ∈ L(P ′) = Lγ = Kγcω,

and therefore ρ ∈ Kγ . Vice versa, if ρ ∈ Kγ then ρcω ∈ Lγ = L(P ′). Hence, there exists
a state q ∈ T+

0 such that q ∈ δP ′(q0, ρ) for some initial state q0.

97

4.4. Decidability Questions Chapter 4. Probabilistic ω-Automata

This shows that Kγ agrees with the set of finite words ρ ∈ {0, 1}∗ such that δP ′(q0, ρ) ∩
P+

0 6= ∅. But then, Kγ agrees with the language of the NFA resulting from P ′ by discarding
all c-transitions, interpreting the probabilistic branches by nondeterministic choices and
declaring the states in P+

0 to be final. Thus, Kγ is regular. This contradicts the assumption
that γ is irrational in which case Kγ is not regular, as shown by Paz [Paz71].

It remains to investigate PBA under a semantics that requires a word to generate accepting
runs with probability 1 in order to be accepted by the automaton.

4.4.2. Decidability results for an almost-sure semantics

So far, we discussed PBA with a threshold semantics for thresholds 0 ≤ γ < 1. In this
section we study PBA under the almost-sure semantics, where a word is accepted by a PBA
P , if it generates an almost-sure set of accepting runs, that is

L=1(P) =
{
ω ∈ Σω | PrP(ω) = 1

}
.

4.4.2.1. Expressiveness of PBA under the almost-sure semantics

We first observe that for probabilistic Büchi automata, the switch from the standard seman-
tics (which requires positive acceptance probability) to the almost-sure semantics leads to a
loss of expressiveness, and that the class of probabilistic Büchi automata under the almost-
sure semantics is not closed under complementation. Nevertheless, the class of languages
definable by PBA under the almost-sure semantics is not included in the class of ω-regular
languages.

Theorem 4.4.9 (Expressiveness of PBA under the almost-sure semantics).

(a) IL(PBA=1) (IL(PBA)

(b) IL(ω-reg) * IL(PBA=1)

(c) IL(PBA=1) * IL(ω-reg)

(d) IL(PBA=1) is not closed under complementation.

(e) IL(PBA=1) (IL(PBA)

(f) IL(ω-reg) * IL(PBA=1)

(g) IL(PBA=1) * IL(ω-reg)

Proof.

98

Chapter 4. Probabilistic ω-Automata 4.4. Decidability Questions

(a) Let P = (Q,Σ, δ, µ0, F) be a PBA and L = L=1(P) = {ω ∈ Σω : PrP(ω) = 1}
the language of P under the almost sure semantics. We will transform P into an
equivalent 0/1 PBA P ′. The idea to define P ′ is to pick at random some word position
i where P could be in a state p ∈ Q \ F and to check whether from this position i
on, the probability in P for the event 2¬F is positive. If so, then the input word
is rejected by P with positive probability, and therefore, it does not belong to L.
Formally, we define the PBA P ′ as (Q′,Σ′, δ′, µ′0, F

′) where

Q′ = 2Q ∪ Q× 2Q, F ′ = 2Q

and µ′0(Qinit) = 1 where Qinit = {q ∈ Q : µ0(q) > 0}. The transition probabilities
in P ′ are defined as follows. If R ⊆ Q and a ∈ Σ then δ′(R, a, S) = 1 if S =
δ(R, a) ⊆ F . For S = δ(R, a) and S \ F 6= ∅ we define

δ′(R, a, S) = 1
2 , δ′(R, a, (p, S)) = 1

2·|S\F | for all p ∈ S \ F .

For p ∈ R \F , q ∈ Q and S = δ(R, a) we set δ′((p, R), a, (q, S)) = δ(p, a, q). For
p ∈ R ∩ F and S = δ(R, a) we set δ′((p, R), a, S) = 1. In all remaining cases, we
set δ′(·) = 0.

Now assume ω ∈ L=1(P), thus PrP,ω(23F) = 1. This implies PrP,ω↑i
t (23F) = 1

for all i ∈ N≥1 and all states t ∈ δ(s, ω↑i−1), where µ0(s) > 0. Thus whenever
P ′ enters its Q × 2Q part while reading ω, it will afterwards reach a state (p, R)
where p is an accepting state of P with probability one. As from such states δ′(.)
leads to an accepting state of P ′ with probability 1 (in one step), this shows that
PrP

′,ω(23F ′) = 1, so ω ∈ L(P ′).
Assume ω /∈ L=1(P), thus PrP,ω(32¬F) > 0. Then there exists an i ∈ N≥1 such
that PrP,ω(3=i2¬F) > 0, where 3=i2¬F denotes the event that after the (i− 1)st
step only states of ¬F will be visited. Obviously

(i) PrP,ω(3=j2¬F) ≥ PrP,ω(3=i2¬F) > 0 for all j > i.

Let θ := PrP,ω(3=i2¬F). As θ > 0 it holds that

(ii) for all j > i and all runs q′0, q
′
1, q

′
2, . . . of ω in P ′ : q′j |2Q ∩ ¬F 6= ∅,

where q′j |2Q = Rj if q′j = Rj is a state in the 2Q part of P ′ and q′j |2Q = Rj if
q′j = (rj , Rj) is a state in the Q×2Q part ofP ′. Note that for the second statement (ii)
the existence of a single run of ω in P satisfying 3=i2¬F suffices as the automaton
P ′ performs a standard powerset construction on the 2Q component in all its states.
Examining the construction of P ′ shows that after reading the first i letters of ω,
whenever P ′ is in its accepting 2Q part, it will move with probability 1

2 to its non-
accepting Q × 2Q part (because of (ii)) where it will stay forever with probability at
least θ (because of (i) and the fact that the non-accepting Q× 2Q part can only be left
via a state (r, R) where r ∈ F). But this means that after the ith step (after reading
ω↑i), the automaton P ′ will almost surely reach its nonaccepting part and stay there
forever which shows PrP

′,ω(23F ′) = 0, thus ω /∈ L(P ′).
This shows that L(P ′) = L=1(P). The strictness of the inclusion in (a) follows from
(b) and the fact that IL(ω-reg) ⊆ IL(PBA).

99

4.4. Decidability Questions Chapter 4. Probabilistic ω-Automata

(b) Let L be the language defined by the ω-regular expression (a + b)∗aω. Suppose by
contradiction that there is a PBA P = (Q, {a, b}, δ, µ0, F) such that L=1(P) = L.
Without loss of generality we may assume that all states p ∈ Q are reachable from
some initial state. Let ρp ∈ {a, b}∗ be a finite word such that p ∈ δ(qinit, ρp) where
qinit is an initial state, i.e. qinit ∈ Qinit = {q0 ∈ Q : µ0(q0) > 0}. Since the word
ρpa

ω belongs to L, it holds that PrP(ρpa
ω) = 1. But then the set of accepting runs

for aω starting in p must have probability measure 1, i.e. PrPp (aω) = 1. Thus, there
exists np ∈ N≥1 such that δ(p, anp) ∩ F 6= ∅. Let n = max

p∈Q
np and ω̃ = (anb)ω.

Then, ω̃ /∈ L and therefore PrP(ω̃) < 1. For p ∈ Q, let θp be the probability to visit
at least once an accepting state q ∈ F when scanning the word an from p. Note that
θp > 0 since np ≤ n and δ(p, anp) ∩ F 6= ∅. Let

θ = minp∈Q θp

Then, θ > 0 and for each k ≥ 0 and each state p ∈ δ(Qinit, (anb)k), the probability
to enter F at least once while reading an from p is at least θ. But then almost all runs
for ω̃ visit F infinitely often. That is, PrP(ω̃) = 1, which contradicts the assumption
that L=1(P) = (a + b)∗aω.

(c) The PBA P̃λ of Figure 4.4 recognizes a non-ω-regular language and enjoys the prop-
erty that each word is either accepted with probability 0 or 1 (see Remark 4.2.5 on
page 70), thus L=1(P̃λ) = L(P̃λ). This shows that P̃λ with the almost-sure seman-
tics accepts a non-ω-regular language.

(d) It is evident that each DBA P can be viewed as a PBA and that L(P) = L=1(P).
Consider the language (a∗b)ω. It can be recognized by a DBA and hence by a PBA
under the almost-sure semantics. However, its complement (a + b)∗aω cannot be
recognized by a PBA with the almost-sure semantics (see part (b)). Hence the class
of languages L=1(P), P a PBA is not closed under complementation.

(e) The inclusion follows immediately from (a) and the fact that PBA are closed under
complementation. Note that the construction in (a) as well as the complementation
each impose an exponential blow-up. However given a PBA P = (Q,Σ, δ, µ0, F) we
can trivially construct a PBA P ′ = (Q′,Σ, δ′, µ′0, F

′) of the same size such that the
complement of the language L=1(P) = {ω ∈ Σω : PrP(ω) = 1} is accepted by P ′
under the standard semantics. We define P ′ as indicated in the following picture.

∈F s′P
a, p a, p

2

a, 1
2

P ′

∈F s′P
Σ, 1

{ F ′

p

100

Chapter 4. Probabilistic ω-Automata 4.4. Decidability Questions

Q′ = Q ∪ {p}, where p /∈ Q. For q2 ∈ Q, we set δ′(q1, a, q2) = δ(q1, a, q2) if
q1 ∈ Q \ F and δ′(q1, a, q2) = 1

2 · δ(q1, a, q2) if q1 ∈ F . For q1 ∈ F we set
δ′(q1, a, p) = 1

2 . Moreover δ′(p, a, p) = 1 for all a ∈ Σ, µ′0(q) = µ0(q) for q ∈ Q
(thus µ′0(p) = 0) and F ′ = Q.

Now assume ω ∈ L=1(P), thus PrP,ω(23F) = 1. Thus reading ω, the automaton
P ′ will almost surely reach the non-accepting state p and will then loop in p forever.
So PrP

′,ω(23F ′) = 0 and ω /∈ L(P ′).
Assume ω /∈ L=1(P), thus PrP,ω(32¬F) > 0. Then there exists an i ∈ N≥1 such
that PrP,ω(3=i2¬F) > 0, where 3=i2¬F denotes the event that after the (i− 1)st
step only states of ¬F will be visited. But PrP

′,ω(23F ′) ≥ PrP
′,ω(3=i2F ′) ≥

(1
2)i · PrP,ω(3=i2¬F) > 0, so ω ∈ L(P ′).

This shows that L(P ′) =L=1(P). The strictness of the inclusion in (e) follows from
(a) and the example in the reasoning for (b).

(f) Consider the ω-regular language (a∗b)ω. Its complement (a + b)∗aω cannot be rec-
ognized by a PBA with the almost-sure semantics (see part (b)).

(g) The PBA P̃λ of Figure 4.3 recognizes a non-ω-regular language and enjoys the prop-
erty that each word is either accepted with probability 0 or 1 (see Remark 4.2.5 on

page 70), so L=1(P̃λ) = L(P̃λ). Thus the complement language L=1(P̃λ) is also
non-ω-regular which shows the claim.

Remark 4.4.10. It is worth noting that the almost-sure semantics does not lead to a loss of
expressiveness if Streett or Rabin acceptance is considered. That is

IL(PSA) = IL(PSA=1) = IL(PRA=1) = IL(PRA).

This follows from the duality of the Streett and Rabin acceptance conditions and the results
presented in section 4.3.2 as every PRA (resp. PSA) can be transformed into an equivalent
PBA ([BG05]). More precisely, we show a ring of inclusions (i) IL(PSA) ⊆ IL(PSA=1),
(ii) IL(PSA=1) ⊆ IL(PRA=1), (iii) IL(PRA=1) ⊆ IL(PRA) and (iv) IL(PRA) ⊆ IL(PSA).

(i) Let a PSA PS be given. By Theorem 4.3.4 there exists a PBA PB such that L(PS) =
L(PB). By Theorem 4.3.1 there exists a PBA PB such that L(PB) = L(PB). This
PBA can be transformed into an equivalent PRA PR (Remark 2.2.16). Thus

LStreett(PS) = LBüchi(PB) = LBüchi(PB) = LRabin(PR) = L=1
Streett(PR).

Note that LRabin(P) = L=1
Streett(P) holds for any given Rabin or Streett automaton as

PrPRabin(ω) = 1− PrPStreett(ω).

(ii) Let a PSA PS be given. Then L=1
Streett(PS) = LRabin(PS). Interpreting PS as a Rabin

automaton, there exists an equivalent Büchi automaton PB (see [BG05]) which can

101

4.4. Decidability Questions Chapter 4. Probabilistic ω-Automata

be complemented into PB (Theorem 4.3.1). Theorem 4.3.2 proposes an equivalent
0/1-Rabin automaton PR which yields

L=1
Streett(PS) = LRabin(PS) = LBüchi(PB) = LBüchi(PB) = LRabin(PR) = L=1

Rabin(PR).

Note that the last equation holds, because PR is a 0/1-automaton, i.e. each input word
is either accepted with probability 0 or 1.

(iii) Let a PRA PR be given. Then L=1
Rabin(PR) = LStreett(PR). Interpreting PR as a Streett

automaton, there exists an equivalent Büchi automaton PB (Theorem 4.3.4) which
can be complemented into PB (Theorem 4.3.1). Remark 2.2.16 proposes an equiva-
lent automaton P ′R which yields

L=1
Rabin(PR) = LStreett(PR) = LBüchi(PB) = LBüchi(PB) = LRabin(P ′R).

(iv) Let a PRA PR be given. PR can be transformed into an equivalent Büchi automaton
PB (see [BG05]) which can be seen as a PSA PS (Remark 2.2.16). This yields

LRabin(PR) = LBüchi(PB) = LStreett(PS).

Note how the result

IL(PSA) = IL(PSA=1) = IL(PRA=1) = IL(PRA) = IL(PBA) ⊃ IL(PBA=1)

compares to the non-probabilistic setting of deterministic and nondeterministic ω-automata
where

IL(NSA) = IL(DSA) = IL(DRA) = IL(NRA) = IL(NBA) ⊃ IL(DBA).

The previous theorem shows that PBA under the almost-sure semantics are less expressive
then standard PBA. One benefit that we will draw out of this is the decidability of the
emptiness problem for PBA under the almost-sure semantics. Nevertheless alike in the
setting of standard PBA, the precise probability also matter for PBA under the almost-sure
semantics.

Theorem 4.4.11 (The precise probabilities matter under the almost-sure semantics).
For 0 < λ < 1

2 < η < 1, L=1(P̃λ) 6= L=1(P̃η). (see Figure 4.4 for P̃λ)

Proof. As L=1(P̃λ) = L(P̃λ) (see Remark 4.2.5 on page 70), the claim follows immedi-
ately from Lemma 4.2.7 (for n=2).

Thus modifying the transition probabilities can affect the accepted language of a PBA
under the almost-sure semantics. However the emptiness problem “Given a PBA, does
L=1(P) = ∅?” for PBA under the almost-sure semantics is decidable. We will show a
more general result, namely the decidability of the almost-sure repeated reachability prob-
lem for POMDPs (which asks whether, for a given POMDP (M,∼) and a state set F , there
exists an observation-based scheduler U such that PrM,U (23F) = 1).

102

Chapter 4. Probabilistic ω-Automata 4.4. Decidability Questions

4.4.2.2. Decidability results in the general framework of POMDPs

Theorem 4.4.12 (Decidability results for POMDP).
Let a POMDP (M,∼) and a state set F ⊆ S be given. It is decidable,

(a) whether there exists an observation-based scheduler U for (M,∼) such that

PrM,U (23F) = 1.

(b) whether there exists an observation-based scheduler U for (M,∼) such that

PrM,U (32F) > 0.

Proof.

(a) The proof of (a) splits into two steps. We first show (Lemma 4.4.13) that the almost-
sure repeated reachability problem for POMDPs reduces to the almost-sure reacha-
bility problem for POMDPs (and vice versa) and then we proof the decidability of the
latter problem (Theorem 4.4.15).

(b) It holds that

∃U ∈ Sched(M,∼) s.th. PrM,U (32F) > 0 ⇔

¬
(
∀U ∈ Sched(M,∼). PrM,U (32F) = 0

)
⇔

¬
(
∀U ∈ Sched(M,∼). PrM,U (23¬F) = 1

) (see Remark 4.4.14)⇔

¬
(
∀U ′ ∈ Sched(M′,∼′). PrM

′,U ′(3F ′) = 1
)

⇔

∃U ′ ∈ Sched(M′,∼′) s.th. PrM
′,U ′(3F ′) < 1 ⇔

∃U ′ ∈ Sched(M′,∼′) s.th. PrM
′,U ′(2¬F ′) > 0

The latter problem (confinement with positive probability: PrU (2F) > 0) has been
proven to be EXPTIME-complete by de Alfaro [dA99].

Lemma 4.4.13. The two following problems are reducible to each other:

(i) Given a POMDP (M,∼) and a set of states F , is there an observation-based scheduler
U with PrM,U (23F) = 1?

(ii) Given a POMPD (M,∼) and a set of states F , is there an observation-based scheduler
U with PrM,U (3F) = 1?

Proof.

• Problem (ii) reduces to (i) in a straightforward manner: given an instance for (ii)
we transform it into an instance for (i) by making all F -states absorbing, i.e. by
removing all outgoing edges from states in F , and adding self loops for all actions
with probability one (to the states of F).

103

4.4. Decidability Questions Chapter 4. Probabilistic ω-Automata

∈F s′M

f

α, p α, p
2

α, 1
2

M′

∈F s′M
Act, 1

Figure 4.13: Transformation from M to M′

• We now show that problem (i) is reducible to problem (ii). Let (M,∼), F be an
instance for (i). We define M′ as follows: M′ consists of a copy of M and some
additional state f . All transitions (s, α, s′) in M with s /∈ F are left unchanged. The
transitions (s, α, s′) in M with s ∈ F are kept, but their probabilities are divided
by 2 in M′. In M′, we add a self-loop with probability 1 to state f for all action
α ∈ Act. Finally, for all s ∈ F and α ∈ Act, we add a new transition (s, α, f)
with probability 1

2 . The transformation is depicted in Figure 4.13. The equivalence
relation ∼′ on S

.
∪ {f} agrees with ∼ on S and {f} forms its own equivalence class,

i.e. [s]∼′ = [s]∼ for s ∈ S and [f]∼′ = {f}. With F ′ = {f}, (M′,∼′), F ′ is an
instance for problem (ii) satisfying the equivalence:

∃U ∈ Sched(M,∼).PrM,U (23F) = 1 ⇔ ∃U ′ ∈ Sched(M′,∼′).PrM
′,U ′(3F ′) = 1.

Indeed if F is visited almost surely infinitely often in M under the scheduler U , F ′

will be almost surely visited in M′ under the scheduler U ′ that mimics U . That is
U ′(π′) = U(π′), if π′ is not only a finite path in M′ but also in M and U(π′) = α if
last(π′) = f (where α ∈ Act is arbitrary). Note that all other cases (π′ does not end
in f and is not a path in M) are irrelevant.

Conversely, given U ′ ∈ Sched(M′,∼′) with PrM
′,U ′(3F ′) = 1, we define U ∈

Sched(M,∼) to be the restriction of U ′ on the set of path of M, that is U(π) = U ′(π)
for all π ∈ PathMfin . Then PrM,U (23F) = 1, since PrM,U (32¬F) > 0 implies
PrM

′,U ′(2¬F ′) > 0. The last claim is easy to see. We denote by [(F)=j(¬F)>j] the
set of infinite paths π such that πj ∈ F and πk /∈ F, k > j. But then it holds that

PrM
′,U ′(2¬F ′) ≥ 1

2 ·PrM
′,U ′([(F)=j(¬F)>j]) ≥ 1

2j+1 ·PrM,U ([(F)=j(¬F)>j]).

As {π | π |= 32¬F} =
.
∪j≥−1 [(F)=j(¬F)>j], assuming PrM,U (32¬F) > 0

yields the existence of an index k, such that PrM,U ([(F)=k(¬F)>k]) > 0 which,
together with the above chain of inequalities (for j=k), shows the claim.

Note, that U and U ′ are of the same type, i.e. either both are deterministic, resp.
memoryless or they are not.

104

Chapter 4. Probabilistic ω-Automata 4.4. Decidability Questions

Remark 4.4.14. Note that the construction in Figure 4.13 also ensures that

∀U ∈ Sched(M,∼).PrM,U (23F) = 1 ⇔ ∀U ′ ∈ Sched(M′,∼′).PrM
′,U ′(3F ′) = 1.

Indeed, let us assume that there exists an observation-based scheduler U of M such that
PrM,U (23F) < 1. By Lemma 2.2.13 it follows that there exists an end component (T,A)
of M with T ∩ F = ∅ such that PrM,U ({π ∈ PathMinf | Lim(π) = (T,A)}) > 0. This
immediately shows that PrM

′,U ′({π ∈ PathM
′

inf | Lim(π) = (T,A)}) > 0 and therefore
PrM

′,U ′(3F ′) < 1. Here U ′ is the scheduler of M′ that mimics U (as in the proof of
Lemma 4.4.13). On the other hand assume that there exists an observation-based scheduler
U ′ of M′ such that PrM

′,U ′(3F ′) < 1. Note that for each end component (T,A) of M′,
either T = F ′ or T∩F = ∅. By Lemma 2.2.13 it follows that there exists an end component
(T,A) of M′ with F ′ 6= T and T ∩ F = ∅ such that PrM

′,U ′({π ∈ PathM
′

inf | Lim(π) =
(T,A)}) > 0. Thus for the restriction U of U ′ to M we derive that PrM,U ({π ∈ PathMinf |
Lim(π) = (T,A)}) > PrM

′,U ′({π ∈ PathM
′

inf | Lim(π) = (T,A)}) > 0 and therefore
PrM,U (23F) < 1 which was to show.

By Lemma 4.4.13 we can reduce the almost-sure repeated reachability problem for POMDPs
to the almost-sure reachability problem for POMDPs for which we now show decidability
(see [ACY95, Lit96] for related results). The related problem (invariant with positive prob-
ability: PrU (2F) > 0) has been proven to be EXPTIME-complete by de Alfaro [dA99].

Theorem 4.4.15 (Decidability of the almost-sure reachability problem for POMDP).
Let a POMDP (M,∼) and a state set F ⊆ S be given. It is decidable, whether there exists
an observation-based scheduler U ∈ Sched(M,∼) such that PrM,U (3F) = 1.

Proof. We reduce the almost-sure reachability problem for POMDPs to the almost-sure
reachability problem for (fully observable) MDPs, which is known to be solvable by means
of graph-algorithms. Let M = ((S, Act, δ, µ),∼) be a (w.l.o.g. total) POMDP and F ⊆ S.
W.l.o.g. we assume that the states in F are absorbing, i.e. for all states q ∈ F , δ(q, α, q) = 1
for all α ∈ Act. We define an MDP M′ = (S′,Act, δ′, µ′) as follows. The set of states S′

of M consists of pairs (r, R) with r ∈ R ⊆ [r]∼ and an extra state qF that has a self-loop
with probability one for all α ∈ Act. Given α ∈ Act and R ⊆ S, let R′ = δ(R\F, α).

If δ(r, α) ∩ F = ∅ then δ′((r, R), α, (r′, R′ ∩ [r′]∼) = δ(r, α, r′) for each r′ ∈ S.

If δ(r, α) ∩ F 6= ∅ then δ′((r, R), α, (r′, R′ ∩ [r′]∼)) = 1
2·|R′\F | for all r′ ∈ R′ \F and

δ′((r, R), α, qF) = 1
2 (in case R′\F = ∅, δ′((r, R), α, qF) = 1).

Moreover µ′(q, [q]∼) = µ(q) for all q 6∈ F and µ′(qF) = Σr∈F µ(r). We set F ′ = {qF }.

Before we show that this construction ensures that there exists an observation-based sched-
uler U of M with PrM,U (3F) = 1 if and only if there exists a scheduler U ′ of M′ such
that PrM

′,U ′(3F ′) = 1, we fix some notation. For each action α we define the set of
pre-final states of M′ as F ′

pre(α) = {(r, R) | δ(r, α) ∩ F 6= ∅}. So F ′
pre(α) is the set of

states (6= qF) from which M′ reaches its accepting state via the action α. Given a position
in some path π we denote by NextAct the action that occurs after this position in π. So
PrM

′,U ′
(
23

(
∨α(F ′

pre(α) ∧ NextAct = α)
))

denotes the probability under the scheduler

105

4.4. Decidability Questions Chapter 4. Probabilistic ω-Automata

U ′ of the set of paths in which infinitely often a pre-final state for some action α appears
and is followed by the action α, i.e. it denotes the value

PrM
′,U ′({π′ | ∞∃ i : ∨α(π′i ∈ F ′

pre(α) ∧ Acti+1(π′) = α)}
)
.

Similarly PrM
′,U ′

(
32

(
∧α(¬F ′

pre(α) ∨ NextAct 6= α)
))

denotes the probability under the

scheduler U ′ of the set of paths for which from some point it holds that whenever a pre-final
state for some action α appears then the following action is not α.

Now assume that there exists an observation-based scheduler U ∈ Sched(M,∼) such that
PrM,U (3F) = 1. We define U ′ ∈ SchedM

′
as follows:

U ′((r0, R0)
α1−→ (r1, R1) . . .

αn−→ (rn, Rn)) = U([r0]∼
α1−→ [r1]∼ . . .

αn−→ [rn]∼)

We claim that PrM
′,U ′

(
23

(
∨α(F ′

pre(α) ∧ NextAct = α)
)
∨ 32qF

)
= 1. Assume the

contrary. So PrM
′,U ′

(
32

(
∧α(¬F ′

pre(α) ∨ NextAct 6= α)
)
∧ 23¬qF

)
> 0 . As qF is

absorbing this implies PrM
′,U ′

(
32

(
∧α(¬F ′

pre(α)∨NextAct 6= α)
)
∧ 2¬qF

)
> 0. Since

M′ is a finite state system there exists a finite path π̃′ = (r0, R0), (r1, R1), . . . , (rn, Rn) of
M′ such that

PrM
′,U ′

({
π′ | π′↑n = π̃′ ∧ π′ |= 3=n2

(
∧α(¬F ′

pre(α)∨NextAct 6= α)
)
∧ 2¬qF

})
> 0.

Then
Pr
M′,U ′

π̃′
(rn,Rn)

(
2

(
∧α(¬F ′

pre(α) ∨ NextAct 6= α)
)
∧ 2¬qF

)
> 0,

where U ′π̃′(π̂′) = U ′(π̃′π̂′) for all finite paths π̂′ with first(π̂′) = last(π̃′). For all other
paths π̂′ with first(π̂′) 6= last(π̃′) let U ′π̃′(π̂′) be defined arbitrarily. Note that

PrM,Uπ̃
rn

(2¬F) ≥ Pr
M′,U ′

π̃′
(rn,Rn)

(
2

(
∧α(¬F ′

pre(α) ∨ NextAct 6= α)
)
∧ 2¬qF

)
> 0 (+)

where π̃ is the state-wise projection of π̃′ to its first component, i.e. π̃ = r0, r1, . . . , rn.
This implies

PrM,U (2¬F) ≥ PrM,U ({π | π↑n = π̃})︸ ︷︷ ︸
>0

· PrM,Uπ̃
rn

(2¬F)︸ ︷︷ ︸
>0

> 0

which is a contradiction as we assumed PrM,U (3F) = 1. This shows our claim that
PrM

′,U ′
(
23

(
∨α(F ′

pre(α)∧NextAct = α)
)
∨ 32qF

)
= 1. Inspecting the construction of

M′ it easily follows that PrM
′,U ′(32qF) = 1, so PrM

′,U ′(3qF) = 1, which we wanted
to show. It remains to show (+), that is

PrM,Uπ̃
rn

(2¬F) ≥ Pr
M′,U ′

π̃′
(rn,Rn)

(
2

(
∧α(¬F ′

pre(α) ∨ NextAct 6= α)
)
∧ 2¬qF

)
Indeed, consider the infinite Markov chains M′

U ′
π̃′

and MUπ̃ that evolve when applying the

scheduler U ′π̃′ to M′ and the scheduler Uπ̃ to M. Then the state-wise projection on the

106

Chapter 4. Probabilistic ω-Automata 4.4. Decidability Questions

first component of each path π′ of M′
U ′

π̃′
is also a path of MUπ̃ . Moreover the construction

of M′ ensures that if π′ satisfies 2
(
∧α(¬F ′

pre(α) ∨ NextAct 6= α)
)
∧ 2¬qF

2 then the
transition probabilities of π′ inM′

U ′
π̃′

agree with the transition probabilities of its projection
in MUπ̃ . As the projection of each such path satisfies 2¬F , this shows (+).

We now show the other direction. So we assume that there exists a scheduler U ′ of M′

such that PrM
′,U ′(3F ′) = 1. We have to construct an observation-based scheduler U ∈

Sched(M,∼) such that PrM,U (3F) = 1. Note that given a standard MDP M̃ and a state set
F̃ , the existence of a scheduler under which M̃ reaches F̃ almost-surely also ensures the
existence of a memoryless deterministic scheduler under which M̃ reaches F̃ almost-surely
([HSP83, BdA95]). So w.l.o.g. we assume that U ′ is memoryless and deterministic.

Let S = S1
.
∪ . . .

.
∪ Sn be the partition of the state set of M with respect to ∼, i.e. for

all p ∈ Si it holds that [p]∼ = Si. For each equivalence class Si and each set R ⊆ Si we
define a representative pR

i ∈ Si such that the state (pR
i , R) is reachable in M′ (if possible).

If no such state exists, the representative is undefined (R is then of no importance w.r.t.
to the equivalence class Si). First we define a new scheduler U ′′ of M′ that makes the
same decision for states of M′ that have a state of the same equivalence class in their first
component and have the same second component. That is

U ′′((p, R)) := U ′((pR
i , R)),

where the index i is such that p ∈ Si. Note that R ⊆ [p]∼ = [pR
i]∼ and that the scheduler U ′′

is memoryless and deterministic. The construction of M′ ensures that PrM
′,U ′′(3F ′) = 1.

Now we define a scheduler U forM for all finite paths p0
α1−→ p1

α2−→ . . .
αn−→ pn of M with

p1, . . . , pn /∈ F (recall that the states in F are absorbing). For such a path there is a unique
corresponding run

(p0, [p0]∼) α1−→ (p1, R1)
α2−→ . . .

αn−→ (pn, Rn)

in M′. We define the scheduler U of M as

U(p0
α1−→ p1

α2−→ . . .
αn−→ pn) := U ′′((pn, Rn)).

Note that U is not only an observation-based scheduler, but also PrM,U (3F) = 1. This can
be seen as follows. Any infinite path of M that never visits the set F has a corresponding
path in M′. As PrM

′,U ′′(3F ′) = 1, such a path almost-surely satisfies the condition that
under the scheduler U ′′ at infinitely many indices, the next action had the state qF as a suc-
cessor (since PrM

′,U ′′(23
(
∨α(F ′

pre(α) ∧NextAct = α)
)
∨ 32qF

)
= 1). But this means

that the original path in M (which never visits F) almost-surely satisfies the condition that
under the scheduler U at infinitely many indices the next action had a successor in F . Since
M is finite all the transition probabilities are bounded below by some ε > 0. This then
ensures that the set of infinite paths never visiting F has measure zero under the scheduler
U .

2Note that the states ofM′
U′

π̃′
are finite paths ofM′. A state x1, x2, . . . , xn ofM′

U′
π̃′

is said to satisfy a

property, if the lastM′-state of its sequence, namely xn, satisfies the property.

107

4.4. Decidability Questions Chapter 4. Probabilistic ω-Automata

Our algorithm uses a powerset construction and hence runs in time exponential in the size
of the given POMDP. However, given the EXPTIME-hardness results established by Reif
[Rei84] and by [CDHR06] for 2-player games with incomplete information and by de Al-
faro [dA99] for POMDPs, we do not expect more efficient algorithms.

Remark 4.4.16. Inspecting the proof of Theorem 4.4.15, we see that given a POMDP
(M′,∼′) and a state set F ′, the existence of a scheduler under whichM′ reaches F ′ almost-
surely also ensures the existence of a finite-memory deterministic scheduler under which
M′ reaches F ′ almost-surely. But then the construction used in the proof of Lemma 4.4.13
ensures that given a POMDP (M′′,∼′′) and a state set F ′′, the existence of a scheduler
under whichM′′ repeatedly reaches F ′′ almost-surely also ensures the existence of a finite-
memory deterministic scheduler under which M′′ repeatedly reaches F ′′ almost-surely.

Theorem 4.4.17 (Decidability of the emptiness problem for PBA under the almost-sure
semantics).
Checking emptiness is decidable for PBA under the almost-sure semantics.

Proof. As PBA are a special case of POMDPs (∼= Q × Q), the claim is an immediate
consequence of Theorem 4.4.12 and Remark 4.4.16 (since each deterministic scheduler can
be seen as an input word).

Remark 4.4.18. Solving the almost-sure reachability problem for standard MDPs is done
by means of graph algorithms [HSP83, Var85, CY95] that do not take into account the
precise transition probabilities (just, whether they are 6= 0). Thus ignoring the precise tran-
sition probabilities in the construction in the proof of Theorem 4.4.15 is legal. Moreover
this shows that the almost-sure repeated reachability problem for POMDPs and therefore
the emptiness problem for PBA under the almost-sure semantics do not depend on the pre-
cise transition probabilities. That means that although the accepted language of a PBA P
under the almost-sure semantics depends on the precise transition probabilities, it holds that
L=1(P) 6= ∅ ⇔ L=1(P ′) 6= ∅ for each PBA P ′ that evolves from P by altering the transi-
tion probabilities in a legal way, that is δ(s, α, t) > 0 if and only if δ′(s, α, t) > 0. It even
holds that if L=1(P) 6= ∅, then there exists a word in L=1(P) that is contained in L=1(P ′)
for all such PBA P ′, i.e.

L=1(P) 6= ∅ =⇒
⋂

P′:P′ evolves fromP
by legally altering the trans. prob.

L=1(P ′) 6= ∅.

This follows immediately from Remark 4.4.16, as L=1(P) 6= ∅ ensures the existence of a
finite-memory word ω, such that PrP(ω) = 1. The behavior of P under this finite-memory
word can be described by a finite Markov chain Pω and the almost-sure acceptance of the
word in P is equivalent to the almost-sure repeated reachability of a set F ′ in Pω. As the
latter does not depend on the exact transition probabilities of Pω, but only on its underlying
graph [HSP83], this shows the claim.

108

Chapter 4. Probabilistic ω-Automata 4.5. Conclusion

4.5. Conclusion

We introduced and studied probabilistic ω-automata, particularly probabilistic Büchi au-
tomata. We investigated different acceptance semantics, namely positive acceptance, almost-
sure acceptance and threshold acceptance. Before we summarize our results, Figure 4.14
shows an overview of the expressiveness that the different semantics apply to PBA (and
Rabin, resp. Streett automata).

IL(PBA=1)

IL(PSA) = IL(PSA=1) = IL(PRA) = IL(PRA=1) = IL(PBA) =IL(PBA)

IL(DBA)

IL(ω-reg)

IL(PBA>λ)

IL(DBA) IL(PBA=1)

Figure 4.14: Overview of expressiveness of variants of probabilistic ω-automata

We moreover showed the following results.

• We showed that probabilistic Büchi automata with the acceptance criterion “the ac-
cepting runs have a positive probability measure” are more powerful than ω-regular
languages. This stands in contrast to the facts that (1) deterministic Büchi automata
do not have the full power of ω-regular languages and (2) PFA with the acceptance
criterion “the accepting runs have a positive probability measure” can be viewed as
nondeterministic finite automata, and hence, have exactly the power of regular lan-
guages.

• The intersection and union of PBA can be realized as in the nondeterministic case.
For the complementation of PBA, we proposed a technique that relies on the switch to
an equivalent probabilistic Rabin automaton that accepts all words either with prob-
ability 0 or 1 and whose size is exponential in the size of the original PBA. For this
switch we used an advanced powerset construction that shares its basic ideas with
Safra’s determinization procedure [Saf88]. Using the duality of Rabin and Streett
acceptance and a polynomial transformation from probabilistic Streett automata to
PBA this yields a method for the complementation of PBA with a possible exponen-
tial blow-up. The complexity of the latter transformation might be surprising, as in
the nondeterministic case the switch from Streett to Büchi acceptance can cause an
exponential blow-up [SV89].

109

4.5. Conclusion Chapter 4. Probabilistic ω-Automata

• We showed the undecidability of the emptiness problem for PBA and of related prob-
lems using the fact that the accepted language of a PBA does not only depend on the
topological structure of the automaton, but also on the precise transition probabilities.

• We considered PBA under a threshold semantics and showed that the class of rec-
ognizable languages might be (depending on the threshold) a proper superset of the
class of languages that are recognizable by PBA with the standard semantics (i.e. the
threshold equals zero).

• We also investigated the so-called almost-sure semantics which requires that “the ac-
cepting runs have measure one”. Switching to the almost sure semantics, the Büchi
acceptance criterion is no longer powerful enough for the full class of ω-regular lan-
guages. However, for the Rabin and Streett acceptance criterion the class of rec-
ognizable languages agrees with the class of PBA-recognizable languages under the
standard semantics.

• Although the accepted language of an almost-sure PBA does not only depend on the
topological structure of the automaton, but also on the precise transition probabilities,
we established the decidability of the emptiness problem for PBA with the almost-
sure semantics. We moreover showed that a nonempty almost-sure PBA recognizable
language contains a finite-memory word.

• In the more general framework of POMDPs we showed that

– the positive Büchi objective is undecidable (concerning deterministic sched-
ulers).

– the almost-sure co-Büchi objective is undecidable (concerning deterministic
schedulers).

– the almost-sure Büchi objective is decidable.

– the positive co-Büchi objective is decidable.

Although PBA cannot be used for the qualitative verification of MDPs, they do apply to
the qualitative verification of Markov chains [BG05]. Moreover, as PBA are a special case
of POMDPs, the established undecidability results have a relevance for partial information
games with ω-regular winning objectives [CDHR06] as well as POMDPs [Son71, Mon82,
PT87, Lov91, BdRS96], which are used to model a wide range of applications, such as
mobile robot navigation, probabilistic planning task, elevator control, etc. PBA also find an
application in randomized monitoring [CSV08].

But there are also many open questions. For example, we would like to have a different
characterization of the class of PBA-acceptable languages. That could be a logical char-
acterization by means of a probabilistic variant of MSO or an algebraic characterization,
e.g. an extension of ω-regular expressions as in [BC06b]. One can also add the concept of
nondeterminism to probabilistic ω-automata, i.e. being in a state of the automaton, a letter
of the alphabet does not impose a certain probability distribution over the successor states,
but leads to a nondeterministic choice over several such distributions. We claim that such

110

Chapter 4. Probabilistic ω-Automata 4.5. Conclusion

non-probabilistic PBAs under the semantics that a word is accepted if there exists a sched-
uler compliant to the word such that the set of accepting runs has positive measure are more
expressive than standard PBA.

111

112

Bibliography

[ACY95] R. Alur, C. Courcoubetis, and M. Yannakakis. Distinguishing tests for non-
deterministic and probabilistic machines. In Proc. of the 27th ACM Sympo-
sium on Theory of Computing (STOC ’95), pages 363–372. ACM, 1995.

[AF98] A. Ambainis and R. Freivalds. 1-way quantum finite automata: strengths,
weaknesses and generalizations. In Proc. of the 39th Symposium on Foun-
dations of Computer Science (FOCS ’98). IEEE Computer Society Press,
1998.

[ASBB95] A. Aziz, V. Singhal, F. Balarin, and R.K. Brayton. It usually works: The
temporal logic of stochastic systems. In Proc. of the 7th International Con-
ference on Computer Aided Verification (CAV ’95), volume 939 of Lecture
Notes in Computer Science, pages 155–165. Springer, 1995.

[Bai98] C. Baier. On the algorithmic verification of probabilistic systems. Univer-
sität Mannheim, 1998. Habilitation Thesis.

[Bau78] H. Bauer. Wahrscheinlichkeitstheorie und Grundzüge der Maßtheorie. de
Gruyter, 1978.

[BBG08] C. Baier, N. Bertrand, and M. Grösser. On decision problems for proba-
bilistic Büchi automata. In Proc. of the 11th International Conference on
Foundations of Software Science and Computation Structures (FOSSACS
’08), volume 4962 of Lecture Notes in Computer Science, pages 287–301.
Springer, 2008.

[BC03] V. Blondel and V. Canterini. Undecidable problems for probabilistic finite
automata. Theory of Computer Systems, 36:231–245, 2003.

[BC06a] C. Baier and F. Ciesinski. LiQuor: A tool for qualitative and quantitative
linear time analysis of reactive systems. In QEST 2006 [QES06].

[BC06b] M. Bojanczyk and T. Colcombet. Bounds in omega-regularity. In Proc. of
the 21st IEEE Symposium on Logic in Computer Science (LICS ’06), pages
285–296. IEEE Computer Society Press, 2006.

[BCG05] C. Baier, F. Ciesinski, and M. Grösser. Quantitative analysis of distributed
randomized protocols. In Proc. of the 10th International Workshop on For-
mal Methods for Industrial Critical Systems (FMICS 2005). ACM Press,
2005.

[BCHG+97] C. Baier, E. Clarke, V. Hartonas-Garmhausen, M. Kwiatkowska, and
M. Ryan. Symbolic model checking for probabilistic processes. In Proc. of
the 24th International Colloqium on Automata, Languages and Program-
ming (ICALP ’97), volume 1256 of Lecture Notes in Computer Science,
pages 430–440. Springer, 1997.

113

BIBLIOGRAPHY BIBLIOGRAPHY

[BCM+92] J. Burch, E. Clarke, K. McMillan, D. Dill, and L. Hwang. Symbolic model
checking: 1020 states and beyond. Information and Computing, 98(2):142–
170, 1992.

[BdA95] A. Bianco and L. de Alfaro. Model checking of probabilistic and non-
deterministic systems. In Proc. of the 15th Conference on Foundations of
Software Technology and Theoretical Computer Science (FSTTCS ’95), vol-
ume 1026 of Lecture Notes in Computer Science, pages 499–513. Springer,
1995.

[BDG06] C. Baier, P.R. D’Argenio, and M. Grösser. Partial order reduction for prob-
abilistic branching time. In Proc. of the 3rd Workshop on Quantitative As-
pects of Programming Languages (QAPL ’05), volume 153(2) of Electronic
Notes in Theoretical Computer Science, pages 97–116. Elsevier, 2006.

[BdRS96] D. Burago, M. de Rougemont, and A. Slissenko. On the complexity of par-
tially observed markov decision processes. Theoretical Computer Science,
157(2):161–183, 1996.

[Bea02] D. Beauquier. Markov decision processes and deterministic Büchi au-
tomata. Fundamenta Informaticae, 50(1):1–13, 2002.

[BEMC00] C. Baier, B. Engelen, and M. Majster-Cederbaum. Deciding bisimularity
and similarity for probabilistic processes. Jounal of Computer and System
Sciences, 60:187–231, 2000.

[BG05] C. Baier and M. Grösser. Recognizing ω-regular languages with probabilis-
tic automata. In Proc. of the 20th IEEE Symposium on Logic in Computer
Science (LICS ’05), pages 137–146. IEEE Computer Society Press, 2005.

[BGC04] C. Baier, M. Grösser, and F. Ciesinski. Partial order reduction for proba-
bilistic systems. In QEST 2004 [QES04], pages 230–239.

[BHH+03] C. Baier, B. Haverkort, H. Hermanns, J.-P. Katoen, and M. Siegle, editors.
Validation of Stochastic Systems, volume 2925 of Lecture Notes in Com-
puter Science. Springer, 2003.

[BK98] C. Baier and M. Kwiatkowska. Model checking for a probabilistic branch-
ing time logic with fairness. Distributed Computing, 11, 1998.

[BM88] L. Babai and S. Moran. Arthur-Merlin games: a randomized proof sys-
tem, and a hierarchy of complexity classes. Journal of Computer Science,
36:254–276, 1988.

[BM99] M. Bozga and O. Maler. On the Representation of Probabilities over Struc-
tured Domains. In Proc. of the 11th International Conference on Computer
Aided Verification (CAV ’99), volume 1633 of Lecture Notes in Computer
Science, pages 261–273. Springer, 1999.

114

BIBLIOGRAPHY BIBLIOGRAPHY

[BRV04] D. Bustan, S. Rubin, and M. Y. Vardi. Verifying ω-regular properties of
Markov chains. In Proc. of the 16th International Conference on Computer
Aided Verification (CAV ’04), volume 3114 of Lecture Notes in Computer
Science, pages 189–201. Springer, 2004.

[BS98] D. Beauquier and G. Slissenko. Polytime model checking for timed proba-
bilistic computation tree logic. Acta Informatica 35, pages 645–664, 1998.

[BT00] V. Blondel and J. Tsitsiklis. A survey of computational complexity results
in systems and control. Automatica, 36(9):1249–1274, 2000.

[CDHR06] K. Chatterjee, L. Doyen, T.A. Henzinger, and J.-F. Raskin. Algorithms for
ω-regular games with imperfect information. In Proc. of the 20th Interna-
tional Workshop on Computer Science Logic (CSL ’06), volume 4207 of
Lecture Notes in Computer Science, pages 287–302. Springer, 2006.

[CE81] E. Clarke and E. Emerson. Design and synthesis of synchronization skele-
tons using branching-time temporal logic. In Proc. of the Workshop on Log-
ics of Programs 1981, volume 131 of Lecture Notes in Computer Science,
pages 52–71. Springer, 1981.

[CGP99] E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.

[CS02] S. Cattani and R. Segala. Decision algorithms for probabilistic bisimula-
tion. In Proc. of the 13th International Conference on Concurrency Theory
(CONCUR ’02), volume 2421 of Lecture Notes in Computer Science, pages
371–385. Springer, 2002.

[CSS03] J.-M. Couvreur, N. Saheb, and G. Sutre. An optimal automata approach to
LTL model checking of probabilistic systems. In Proc. of the 10th Inter-
national Conference on Logic for Programming, Artificial Intelligence and
Reasoning (LPAR), volume 2850 of Lecture Notes in Artificial Intelligence,
pages 361–375, 2003.

[CSV08] R. Chadha, A.P. Sistla, and M. Viswanathan. On the expressiveness and
complexity of randomization in finite state monitors. In Proc. of the 23rd
IEEE Symposium on Logic in Computer Science (LICS ’08), pages 18–29.
IEEE Computer Society Press, 2008.

[CY90] C. Courcoubetis and M. Yannakakis. Markov decision processes and reg-
ular events. In Proc. of the 17th International Colloquium on Automata,
Languages and Programming (ICALP ’90), volume 443 of Lecture Notes in
Computer Science, pages 336–349. Springer, 1990.

[CY95] C. Courcoubetis and M. Yannakakis. The complexity of probabilistic veri-
fication. Journal of the ACM, 42(4):857–907, 1995.

[dA97a] L. de Alfaro. Formal Verification of Probabilistic Systems. PhD thesis,
Stanford University, Department of Computer Science, 1997.

115

BIBLIOGRAPHY BIBLIOGRAPHY

[dA97b] L. de Alfaro. Temporal logics for the specification of performance and
reliability. In Proc. of the 14th Annual Symposium on Theoretical Aspects of
Computer Science (STACS ’97), volume 1200 of Lecture Notes in Computer
Science, pages 165–176. Springer, 1997.

[dA98] L. de Alfaro. Stochastic transition systems. In Proc. of the 9th Interna-
tional Conference on Concurrency Theory (CONCUR ’98), volume 1466 of
Lecture Notes in Computer Science, pages 423–438. Springer, 1998.

[dA99] L. de Alfaro. The verification of probabilistic systems under memoryless
partial-information policies is hard. In Proc. of the 2nd International Work-
shop on Probabilistic Methods in Verification (ProbMiV ’99), pages 19–32.
Birmingham University, Research Report CSR-99-9, 1999.

[Des99] J. Desharnais. Labelled Markov Processes. PhD thesis, McGill University,
Montreal, 1999.

[DGJP02] J. Desharnais, V. Gupta, R. Jagadeesan, and P. Panangaden. Weak bisim-
ulation is sound and complete for pctl∗. In Proc. of the 13th International
Conference on Concurrency Theory (CONCUR ’02), volume 2421 of Lec-
ture Notes in Computer Science. Springer, 2002.

[DJJL01] P.R. D’Argenio, B. Jeannet, H. Jensen, and K. Larsen. Reachability analysis
of probabilistic systems by successive refinements. In Proc. of the 1st Joint
International Workshop on Process Algebra and Performance Modelling
and Probabilistic Methods in Verification (PAPM-PROBMIV ’01), volume
2399 of Lecture Notes in Computer Science, pages 57–76. Springer, 2001.

[DK03] M. Droste and D. Kuske. Skew and infinitary formal power serie. In Proc. of
the 30th International Colloquium on Automata, Languages and Program-
ming (ICALP ’03), volume 2719 of Lecture Notes in Computer Science,
pages 426–438. Springer, 2003.

[DN04] P.R. D’Argenio and P. Niebert. Partial order reduction on concurrent prob-
abilistic programs. In QEST 2004 [QES04], pages 240–249.

[DP04] M. Droste and U. Püschmann. Weighted Büchi automata. In Workshop on
Weighted Automata–Theory and Applications, page 56, Dresden, 2004.

[DS90] C. Dwork and L. Stockmeyer. A time-complexity gap for two-way proba-
bilistic finite state automata. SIAM Journal of Computing, 19:1011–1023,
1990.

[FOS03] R. Freund, M. Oswald, and L. Staiger. Omega-P automata with communica-
tion rules. In Workshop on Membrane Computing, volume 2933 of Lecture
Notes in Computer Science, pages 203–217. Springer, 2003.

[Fre81] R. Freivalds. Probabilistic two-way machines. In Proc. of the 10th In-
ternational Symposium on Mathematical Foundations of Computer Science
(MFCS ’81), volume 118 of Lecture Notes in Computer Science, pages 33–
45. Springer, 1981.

116

BIBLIOGRAPHY BIBLIOGRAPHY

[GD07] S. Giro and P.R. D’Argenio. Quantitative model checking revisited: neither
decidable nor approximable. In Proc. of the 5th International Conference
on Formal Modelling and Analysis of Timed Systems (FORMATS ’07), vol-
ume 4763 of Lecture Notes in Computer Science, pages 179–194. Springer,
2007.

[GKPP95] R. Gerth, R. Kuiper, D. Peled, and W. Penczek. A partial order approach to
branching time logic model checking. In Proc. of the 3rd Israel Symposium
on the Theory of Computing Systems (ISTCS ’95), pages 130–139. IEEE
Computer Society Press, 1995.

[GNB+06] M. Grösser, G. Norman, C. Baier, F. Ciesinski, M. Kwiatkowska, and
D. Parker. On reduction criteria for probabilistic reward models. In Proc.
of the 26th Conference on Foundations of Software Technology and Theo-
retical Computer Science (FSTTCS ’06), volume 4337 of Lecture Notes in
Computer Science, pages 309–320. Springer, 2006.

[GO01] P. Gastin and D. Oddoux. Fast LTL to Büchi automata translation. In Proc.
of the 13th International Conference on Computer Aided Verification (CAV
’01), volume 2102 of Lecture Notes in Computer Science, pages 53–65.
Springer, 2001.

[God96] P. Godefroid. Partial Order Methods for the Verification of Concurrent
Systems: An Approach to the State Explosion Problem, volume 1032 of
Lecture Notes in Computer Science. Springer, 1996.

[GPS96] P. Godefroid, D. Peled, and M. Staskauskas. Using partial-order methods in
the formal validation of industrial concurrent programs. In Proc. of the In-
ternational Symposium on Software Testing and Analysis (ISSTA ’96), pages
261–269. ACM Press, 1996.

[GPVW96] R. Gerth, D. Peled, M.Y. Vardi, and P. Wolper. Simple on-the-fly automatic
verification of linear temporal logic. In Proc. of the 15th IFIP WG6.1 Inter-
national Symposium on Protocol Specification, Testing and Verification XV,
pages 3–18. Chapman & Hall, Ltd., 1996.

[GTW02] E. Grädel, W. Thomas, and T. Wilke, editors. Automata, Logics, and Infinite
Games: A Guide to Current Research, volume 2500 of Lecture Notes in
Computer Science. Springer, 2002.

[Han94] H. A. Hansson. Time and probability in formal design of distributed sys-
tems. SICS Dissertation Series 05, Swedish Institute of Computer Science,
1994.

[HGCC99] V. Hartonas-Garmhausen, S. Campos, and E. Clarke. Probverus: Probabilis-
tic symbolic model checking. In Proc. of the 5th International AMAST on
Formal Methods for Real-Time and Probabilistic Systems (ARTS ’99), vol-
ume 1601 of Lecture Notes in Computer Science, pages 96–110. Springer,
1999.

117

BIBLIOGRAPHY BIBLIOGRAPHY

[HJ94] H. Hansson and B. Jonsson. A logic for reasoning about time and reliability.
Formal Aspects of Computing, 6(5):512–535, 1994.

[HKN+03] H. Hermanns, M. Kwiatkowska, G. Norman, D. Parker, and M. Siegle. On
the use of mtbdds for performability analysis and verification of stochastic
systems. Journal of Logic and Algebraic Programming: Special Issue on
Probabilistic Techniques for the Design and Analysis of Systems, 56:23–67,
2003.

[HMPS94] G. Hachtel, E. Macii, A. Pardo, and F. Somenzi. Probabilistic Analysis
of Large Finite State Machines. In Proc. of the 31st Design Automation
Conference (DAC ’94). ACM Press, 1994.

[Hol03] G. Holzmann. The SPIN Model Checker, Primer and Reference Manual.
Addison Wesley, 2003.

[HP94] G. Holzmann and D. Peled. An improvement in formal verification. In Proc.
of the 7th International Conference on Formal Description Techniques for
Distributed Systems and Communications Protocols (FORTE ’94), pages
197–211. Chapman & Hall, 1994.

[HS02] H. Hermanns and R. Segala, editors. Proc. of the 2nd Joint International
Workshop on Process Algebra and Performance Modelling and Probabilis-
tic Methods in Verification (PAPM-PROBMIV ’02), volume 2399 of Lecture
Notes in Computer Science. Springer, 2002.

[HSP83] S. Hart, M. Sharir, and A. Pnueli. Termination of probabilistic concurrent
programs. ACM Transactions on Programming Languages and Systems,
5(3):356–380, 1983.

[HT92] T. Huynh and L. Tian. On some equivalence relations for probabilistic pro-
cesses. Fundamenta Informaticae, 17:211–234, 1992.

[Hut02] M. Huth. Possibilistic and probabilistic abstraction-based model checking.
In [HS02], pages 115–134, 2002.

[Hut05] M. Huth. Abstraction and probabilities for hybrid logics. In Proc. of the 2nd
workshop on Quantitative Aspects of Programming Languages (QAPL ’04),
volume 112 of Electronic Notes in Theoretical Computer Science, pages
61–76. Elsevier, 2005.

[JDL02] B. Jeannet, P.R. D’Argenio, and K.G. Larsen. RAPTURE: A tool for ver-
ifying Markov decision processes. In Tools Day ’02, Technical Report.
Masaryk University Brno, 2002.

[JL91] B. Jonsson and K. Larsen. Specification and refinement of probabilistic pro-
cesses. In Proc. of the 6th IEEE Symposium on Logic in Computer Science
(LICS ’91), pages 266–277. IEEE Computer Society Press, 1991.

118

BIBLIOGRAPHY BIBLIOGRAPHY

[KB05] J. Klein and C. Baier. Experiments with deterministic ω-automata for for-
mulas of linear temporal logic. In Proc. of the 10th International Conference
on Implementation and Application of Automata (CIAA ’05), volume 3845
of Lecture Notes in Computer Science, pages 199–212. Springer, 2005.

[KB07] J. Klein and C. Baier. On-the-fly stuttering in the construction of determin-
istic ω-automata. In Proc. of the 12th International Conference on Imple-
mentation and Application of Automata (CIAA ’07), volume 4783 of Lecture
Notes in Computer Science, pages 51–61. Springer, 2007.

[KKLW07] Joost-Pieter Katoen, Daniel Klink, Martin Leucker, and Verena Wolf.
Three-valued abstraction for continuous-time Markov chains. In Proc. of
the 19th International Conference on Computer Aided Verification (CAV
’07), volume 4590 of Lecture Notes in Computer Science, pages 316–329.
Springer, 2007.

[KNP02] M. Kwiatkowska, G. Norman, and D. Parker. PRISM: Probabilistic Sym-
bolic Model Checker. In Proc. of the 12th International Conference on
Modelling Tools and Techniques for Computer and Communication System
Performance Evaluation (TOOLS ’02), volume 2324 of Lecture Notes in
Computer Science, pages 113–140. Springer, 2002.

[KNP04] M. Kwiatkowska, G. Norman, and D. Parker. Probabilistic symbolic model
checking with PRISM: A hybrid approach. International Journal on Soft-
ware Tools for Technology Transfer (STTT), 6(2):128–142, 2004.

[KNP06a] M. Kwiatkowska, G. Norman, and D. Parker. Game-based abstraction for
Markov decision processes. In QEST 2006 [QES06], pages 157–166.

[KNP06b] M. Kwiatkowska, G. Norman, and D. Parker. Symmetry reduction for prob-
abilistic model checking. In Proc. of the 18th International Conference on
Computer Aided Verification (CAV ’06), volume 4114 of Lecture Notes in
Computer Science, pages 234–248. Springer, 2006.

[KSK66] J. G. Kemeny, J. L. Snell, and A. W. Knapp. Denumerable Markov chains.
D. Van Nostrand Co., 1966.

[KV98] O. Kupferman and M. Y. Vardi. Freedom, weakness, and determinism:
From linear-time to branching-time. In Proc. of the 13th IEEE Symposium
on Logic in Computer Science (LICS ’98), pages 81–92. IEEE Computer
Society Press, 1998.

[KW97] A. Kondacs and J. Watrous. On the power of quantum finite state automata.
In Proc. of the 38th Symposium on Foundations of Computer Science (FOCS
’97), pages 66–75. IEEE Computer Society Press, 1997.

[Lam83] L. Lamport. Specifying concurrent program modules. ACM TOPLAS,
5(2):190–222, 1983.

119

BIBLIOGRAPHY BIBLIOGRAPHY

[Lit96] M. Littman. Algorithms for Sequential Decision Making. PhD thesis,
Brown University, Department of Computer Science, 1996.

[Lov91] W. Lovejoy. A survey of algorithmic methods for partially observable
Markov decision processes. Annals of Operations Research, 28(1):47–65,
1991.

[LS91] K. Larsen and A. Skou. Bisimulation through probabilistic testing. Infor-
mation and Computation, 94(1):1–28, 1991.

[MHC99] O. Madani, S. Hanks, and A. Condon. On the undecidability of probabilistic
planning and infinite-horizon partially observable Markov chains. In Proc.
of the 16th National Conference on Artificial Intelligence (AAAI ’99), pages
541–548, 1999.

[MHC03] O. Madani, S. Hanks, and A. Condon. On the undecidability of proba-
bilistic planning and related stochastic optimization problems. Artificial
Intelligence, 147(1-2):5–34, 2003.

[Mic88] M. Michel. Complementation is more difficult with automata on infinite
words. CNET, Paris, 1988.

[MLMdCT02] L. Mora-Lopez, R. Morales, M. Sidrach de Cardona, and F. Triguero. Prob-
abilistic finite automata and randomness in nature: a new approach in the
modelling and prediction of climatic parameters. In Proc. of the Interna-
tional Environmental Modelling and Software Congress (iEMSs ’02), pages
78–83, 2002.

[Mon82] G. Monahan. A survey of partially observable Markov decision processes:
Theory, models, and algorithms. Management Science, 28(1):1–16, 1982.

[MP03] A. Miner and D. Parker. Symbolic representations and analysis of large
probabilistic systems. In [BHH+03], 2003.

[MS08] A. Morgenstern and K. Schneider. From LTL to symbolically represented
deterministic automata. In Proc. of the 9th International Conference on Ver-
ification, Model Checking, and Abstract Interpretation (VMCAI ’08), vol-
ume 4905 of Lecture Notes in Computer Science, pages 279–293. Springer,
2008.

[Par02] D. Parker. Implementation of Symbolic Model Checking for Probabilistic
Systems. PhD thesis, University of Birmingham, 2002.

[Paz66] A. Paz. Some aspects of probabilistic automata. Information and Control,
9, 1966.

[Paz71] A. Paz. Introduction to probabilistic automata. Academic Press Inc., 1971.

[Pel93] D. Peled. All from one, one for all: On model checking using represen-
tatives. In Proc. of the 5th International Conference on Computer Aided
Verification (CAV ’93), volume 697 of Lecture Notes in Computer Science,
pages 409–423. Springer, 1993.

120

BIBLIOGRAPHY BIBLIOGRAPHY

[Pel97] D. Peled. Partial order reduction: Linear and branching time logics and
process algebras. In [PPH97], pages 233–257, 1997.

[Pit06] N. Piterman. From nondeterministic Büchi and Streett automata to deter-
ministic parity automata. In Proc. of the 21st IEEE Symposium on Logic
in Computer Science (LICS ’06), pages 255–264. IEEE Computer Society
Press, 2006.

[PLS00] A. Philippou, I. Lee, and O. Sokolsky. Weak bisimulation for probabilistic
systems. In Proc. of the 11th International Conference on Concurrency The-
ory (CONCUR ’00), volume 1877 of Lecture Notes in Computer Science,
pages 334–349. Springer, 2000.

[Pnu77] A. Pnueli. The temporal logic of programs. In Proc. of the 18th Symposium
on the Foundations of Computer Science (FOCS ’77), pages 46–57. IEEE
Computer Society Press, 1977.

[PPH97] D. Peled, V. Pratt, and G. Holzmann, editors. Partial Order Methods in
Verification, volume 29(10) of DIMACS Series in Discrete Mathematics and
Theoretical Computer Science. American Mathematical Society, 1997.

[PT87] C. Papadimitriou and J. Tsitsiklis. The comlexity of Markov decision pro-
cesses. Mathematics of Operations Research, 12(3), 1987.

[Put94] M. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic
Programming. John Wiley and Sons, 1994.

[PZ93] A. Pnueli and L. D. Zuck. Probabilistic verification. Information and Com-
putation, 103(1):1–29, 1993.

[QES04] Proceedings of the 1st International Conference on Quantitative Evaluation
of SysTems (QEST ’04). IEEE Computer Society Press, 2004.

[QES06] Proceedings of the 3rd International Conference on Quantitative Evalua-
tion of SysTems (QEST ’06). IEEE Computer Society Press, 2006.

[Rab63] M. O. Rabin. Probabilistic automata. Information and Control, 6(3):230–
245, 1963.

[Rei84] J. H. Reif. The complexity of two-player games of incomplete information.
Journal of Computer System Sciences, 29(2):274–301, 1984.

[Rei98] R. D. Reisz. A characterization theorem for probabilistic automata over
infinite words. In 50 de ani de la Infiintarea Faculatatii de Matematica,
Conference Timisoara, 1998.

[Rei99] R. D. Reisz. Decomposition theorems for probabilistic automata over infi-
nite objects. Informatica, Lithuanian Academy of Science, 10(4):427–440,
1999.

121

BIBLIOGRAPHY BIBLIOGRAPHY

[RST96] D. Ron, Y. Singer, and N. Tishby. The power of amnesia: Learning prob-
abilistic automata with variable memory length. Machine Learning, 25(2–
3):117–149, 1996.

[Saf88] S. Safra. On the complexity of ω-automata. In Proc. of the 29th Symposium
on Foundations of Computer Science (FOCS ’88), pages 319–327. IEEE
Computer Society Press, 1988.

[Sch97] K. Schneider. Translating linear temporal logic to deterministic ω-automata.
In R. Hagelauer and M. Pfaff, editors, Methoden des Entwurfs und der Ver-
ifikation digitaler Systeme, pages 149–158, Linz, Österreich, 1997. Univer-
sitätsverlag Rudolf Trauner.

[Seg95] R. Segala. Modeling and Verification of Randomized Distributed Real-Time
Systems. PhD thesis, Massachusetts Institute of Technology, 1995.

[SL95] R. Segala and N. Lynch. Probabilistic simulations for probabilistic pro-
cesses. Nordic Journal of Computing, 2(2):250–273, 1995.

[Son71] E. J. Sondik. The Optimal Control of Partially Observable Markov Pro-
cesses. PhD thesis, Stanford University, 1971.

[SV89] S. Safra and M. Y. Vardi. On ω-automata and temporal logic. In Proc.
of the 21st ACM Symposium on Theory of Computing (STOC ’89), pages
127–137. ACM, 1989.

[Tho90] W. Thomas. Automata on infinite objects. In Handbook of Theoretical
Computer Science, volume B, chapter 4, pages 133–191. Elsevier Science,
1990.

[Val90] A. Valmari. A stubborn attack on state explosion. In Proc. of the 2nd In-
ternational Conference on Computer Aided Verification (CAV ’90), volume
531 of Lecture Notes in Computer Science. Springer, 1990.

[Val92] A. Valmari. A stubborn attack on state explosion. Formal Methods in System
Design, 1:297–322, 1992.

[Val94] A. Valmari. State of the art report: Stubborn sets. Petri-Net Newsletters,
46:6–14, 1994.

[Val97] A. Valmari. Stubborn set methods for process algebras. In [PPH97], pages
213–231, 1997.

[Var85] M. Y. Vardi. Automatic verification of probabilistic concurrent finite-state
programs. In Proc. of the 26th Symposium on Foundations of Computer
Science (FOCS ’85), pages 327–338. IEEE Computer Society Press, 1985.

[Var96] M. Y. Vardi. An automata-theoretic approach to linear temporal logic. In
Proc. of the Banff Higher Order Workshop on Logics for Concurrency:
Structure versus Automata, pages 238–266. Springer-Verlag, 1996.

122

BIBLIOGRAPHY BIBLIOGRAPHY

[vGSST90] R. van Glabbeek, S. Smolka, B. Steffen, and C. Tofts. Reactive, genera-
tive, and stratified models of probabilistic processes. In Proc. of the 5th
IEEE Symposium on Logic in Computer Science (LICS ’90), pages 130–
141. IEEE Computer Society Press, 1990.

[VW86] M. Y. Vardi and P. Wolper. An automata-theoretic approach to automatic
program verification. In Proc. of the 1st IEEE Symposium on Logic in Com-
puter Science (LICS ’86), pages 332–345. IEEE Computer Society Press,
1986.

123

