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paper, we introduce a variant of constraint automata with discrete probabilities and
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1 Introduction

Coordination models and languages provide a formalization of the glue-code that

binds individual components and organizes the communication and cooperation

between them. In the past 15 years, various types of coordination models have

been developed, including techniques for the design and the analysis of such

models. They all have in common that they yield a clear separation between the

internal structure of the components and their relationship that arises through

the organization of their interactions.

In this paper, we concentrate on the exogenous coordination language Reo

that has been introduced by Arbab [6]. Reo is a channel-based calculus where

complex component connectors are synthesized from channels via certain com-

position operators. Reo component connectors have a graphical representation as

a network of channels, resembling logical circuits used in hardward design, and

thus called Reo circuits. Despite its simplicity, Reo is a powerful glue-language

that has been applied, for instance, in the context of the Cybernetic Incident

Management project [18] for composition of web services [22]; to model business

processes [45] or biological systems [19]. A formal semantics for Reo was pro-

vided in [6] where the possible data flow in the configurations of a Reo circuits

is described by means of so-called accept- and offer-predicates. These predicates

formalize the conditions under which a node in a Reo circuit accepts to read

a certain (input) value from the sink end of a channel and offers to write a

certain (output) value at the source end of a channel. The conditions for the



I/O-operations can be data-dependent (e.g., a node might accept to read data

item d, but not data item d′) and are derived from the semantics of the involved

channels. Compositional semantics have been proposed by Arbab and Rutten

[9] using relations over timed data streams and in [8] by an automata-model,

called constraint automata. Constraint automata describe the configurations of

Reo component connectors, e.g. contents of FIFO channels, and the stepwise be-

havior by means of the possible I/O-operations and their effect on the configura-

tions. Constraint automata thus serve as an operational model for Reo circuits

and yield the basis for verification algorithms, such as equivalence checking [8]

or model checking against temporal logic specifications [7].

Although the Reo coordination model allows for arbitrary channel types, the

semantics presented in [9] or [8] for Reo circuits rely on the assumption that

the semantics of the involved channel types are formally described in a non-

probabilistic way. The goal of this paper is to provide formal models for Reo

circuits built out of channels that might behave non-deterministically and prob-

abilistically. Throughout the paper constraint automata will serve as reference

model. We will propose two variants thereof that yield probabilistic operational

models for Reo circuits built out of faulty or randomized channels. These prob-

abilistic automata-models can serve as the basis for a quantitative analysis of

connector components that are formalized by Reo circuits. We will study Reo

circuits where certain channels are unreliable, e.g. channels that might loose

certain messages from their buffer or corrupt written messages with some small

probability, and randomized channels that may deliver random data values. In

fact, both types of channels appear rather natural in the context of Reo. First,

channel connections in the real world are reliable to some large extent, but

exceptional behaviors occur with small probability. Second, randomized chan-

nels are needed in the Reo framework to model coordination principles relying

on coin-tossing actions. For instance, there is a wide range of coordination al-

gorithms for distributed systems that use randomization to break symmetry,

see e.g. [30]. To model channels with probabilistic output values we introduce

a variant of constraint automata with discrete probabilities for the transitions.

While a rather straightforward extension of constraint automata, called sim-

ple probabilistic constraint automata (SPCA), suffices if only probabilities for

the successor configurations are provided, a more general and difficult model

is needed when for a given configuration the potential next steps are given by

probabilities for the possible I/O-operations. To support compositional reason-

ing, we provide semantic operators corresponding to Reo’s main primitives (join

and hiding) to model complex component connectors, and thus obtain a compo-

sitional framework to generate (S)PCA from a given Reo circuit. Furthermore,

we introduce a notion of bisimulation equivalence for probabilistic constraint au-

tomata that serves to formalize the equivalence of two Reo circuits by means of



the (probabilities for the) observable data flow, but abstracting away from their

configurations.

Organization of the paper. Section 2 is a brief introduction to Reo and

(non-probabilistic) constraint automata. In Sections 3 and 4, we consider com-

ponent connectors that behave probabilistically according to the possible faulty

behaviors of channels, and introduce SPCA and PCA. Section 5 presents a notion

of bisimulation equivalence on (S)PCA. Section 6 concludes the paper.

2 Reo and constraint automata

In this section we provide a brief introduction to Reo which is an exogenous co-

ordination model introduced by Arbab [6] that supports compositional reasoning

about complex coordinators for components, called component connectors. We

present here only a brief summary of Reo’s main features and its constraint au-

tomata semantics [8]. Further details about Reo and its semantics can be found

in [6, 9, 37, 8] or in the extended version of this paper [10]. For larger examples

and applications of Reo we refer to [5, 22, 19].

Reo’s coordination and cooperation principles are purely channel-based. Any

component connector is built by a network of channels (called Reo circuit) that

serve to provide the protocol that controls and organizes the communication, syn-

chronization and cooperation between the concurrent components. The atomic

building blocks in Reo are channels that connect two channel ends. The channel

ends can be seen as ports where data items can enter or leave a channel via the

corresponding write or read operations. The enabledness of such I/O-operations

at the channel ends and their effect depend on the type of the given channel.

2.1 Reo circits

Classical channel types have a source end that provides input values through

write actions and a sink end that takes data items from the channel by perform-

ing reading actions. Reo generalizes this traditional concept of channels and

allows for channel types with two arbitrary channel ends, either a source and a

sink end, or two source ends or two sink ends. Reo places no restriction on the

behavior of a channel and allows an open-ended set of different channel types to

be used simultaneously together. The only requirement for Reo’s channel types

is a specification that declares (i) the type of the two channel ends (sink or source

end) and (ii) the input/output behavior by means of the relation between their

write and read operations at the two channel ends (e.g., by means of a constraint

automaton, see Section 2.1).

Figure 1 shows a few examples of channel types. The simplest form of an

asynchronous channel type is a FIFO channel with one buffer cell, simply called a

FIFO1 channel. It has one source end and one sink end. We graphically represent



a FIFO1 channel by a small box in the middle of an arrow leading from the

source end to the sink end. The buffer is assumed to be initially empty if no

data item is shown in the box. A synchronous channel has a source and a sink

end, but no buffer. It requires that the writing operations at its source end are

synchronized with matching read operations at its sink end. Several variants

P-producer
filter

channel

synchronous

drain

P
P

lossy synchronous

channel

FIFO1

channel

synchronous

channel

Figure 1: Some basic channel types

of such synchronous channels have been used in the Reo framework. A P -filter

channel is a data-dependent variant of a synchronous channel. It uses a pattern

P for specifying the type of data items that can be transmitted through the

channel. For our purposes here, we may assume that P is formalized as a set

of data items. For data items d ∈ P , the filter channels behaves as an ordinary

synchronous channel. For the data items d /∈ P , writing d at the source end

is always enabled, but the written value d is immediately lost. A P -producer

requires synchronous writing and reading at its source and sink end. When an

arbitrary data item is written at the source end of a P -producer, it generates

(nondeterministically) a data item d ∈ P which is then taken at its sink end. A

lossy synchronous channel behaves like a standard synchronous channel except

that it is non-blocking for the write-operations at its source end, i.e., writing at

its source end is always enabled. If a matching read operation is not available

at the sink end then the written data is immediately lost. Reo permits also for

more exotic channels like synchronous drains. Drains have two source ends, but

no sink ends, and hence no data value can ever be obtained from these channels.

For a synchronous drain, the write operations at the two source ends have to be

synchronized. The written values are irrelevant.

Reo offers a compositional framework to built component connectors by glue-

ing together several channels of arbitary types. The result is a visual represen-

tation, a so-called Reo-circuit, which can be formalized as a graph with various

additional information. The nodes of this graph represent non-empty sets of

channel ends that have been combined through a series of join-operations (ex-

plained below). The edges of this graph represent the channels that have been

established between the nodes. Reo does not impose any restrictions on the used

channel types, except that their instances must have two (different) channel

ends and an operational semantics has to be provided by the user (we will use

constraint automata for this purpose, see Section 2.1). For a given node A of



a Reo circuit, Src(A) denotes the set of source ends that are coincident on A,

while Snk(A) denotes the set of sink ends of A. Node A is called a source node

if Src(A) 6= ∅ and Snk(A) = ∅, a sink node if Src(A) = ∅ and Snk(A) 6= ∅, and

mixed node if Src(A) 6= ∅ and Snk(A) 6= ∅.

We now explain the intuitive semantics of the nodes which has been formally

defined in [6]. Source nodes of a circuit are analogous to input ports, and sink

nodes to output ports. Data flow at the source and sink nodes depends on the

pending write and read operations of the environment, i.e., components or other

component connectors that are linked to the source/sink nodes of a Reo circuit

and that might feed a source node of the circuit with a certain input value or take

a data item from one of its sink nodes. In our operational model, the environment

is assumed to be unknown and the possible interactions via I/O-operations at

the sink and source nodes are modelled by nondeterminism.

A component can write data items to a source node A of a Reo circuit that it

is connected to. A write operation on A succeeds only if all (source) channel ends

coincident on A accept the data item, in which case the data item is transparently

written to every source end coincident on the node. A source node, thus, acts as a

replicator: the effect of any write operation on A is that the same value is written

on all channels that have a source end in A. A component can obtain data items

from a sink node of a Reo circuit that it is connected to. A read operation at a

sink node succeeds if and only if at least one of the (sink) channel ends coincident

on the node offers a suitable data item. If more than one coincident channel end

offers suitable data items, one is selected nondeterministically. In other words,

the read operations at the sink ends on A are performed in an interleaved way,

but never occur simultaneously. A sink node, thus, acts as a nondeterministic

merger. The mixed nodes are self-contained entities that combine the behavior of

a sink node (merger) and a source node (replicator) and perform read and write

operations synchronously. A mixed node A takes a suitable data item offered by

one of its coincident sink channel ends and replicates it into all of its coincident

source channel ends. This requires an enabled read action at one of A’s sink ends

and that writing the corresponding data item is enabled for all its source ends.

The idea for the compositional construction of Reo circuits (as formal model

for a component connector) is as follows. We start with several channels, each

of them can be viewed as an atomic Reo circuit consisting of two nodes, one

for each channel end, and the given channel. The main operations to create Reo

circuits for complex component connectors are join and hiding. We first will

explain the join-operation which combines nodes. For the purpose of this paper,

we can think of join as an operator that takes as input two disjoint Reo circuits

R1 and R2 with the same sets of channel types. Then, join creates a new Reo

circuit R = R1 ⊲⊳ R2 that arises from R1 and R2 by creating a new node C and

combines all channel ends that are coincident on A in R1 and on B in R2.



Reo’s hiding operator serves to make (parts of) the internal structure of a

component connector invisible and unaccessible to its environment. Hiding is

depicted by putting a box around certain mixed nodes with certain sink and

source nodes at its border. The (mixed) nodes inside the box are then called

hidden. In the pictures, their names are not shown. The subcircuit consisting of

the hidden nodes and the source and sink nodes at its border can be viewed as a

component where the sink and source nodes play the role of its input and output

ports. Such components can still be used as building blocks of Reo component

connectors, in the same way as channels serve as building blocks.

2.2 Constraint automata

An operational semantics for Reo circuits based on so-called constraint automata

has been presented in [8]. Constraint automata are variants of labeled transition

systems where transitions are augmented with pairs 〈N, g〉 rather than action

labels. The states of a constraint automaton – as an operational model for a Reo

circuit – stand for the configurations, e.g., the contents of the buffers for FIFO

channels or other buffered channels. The transition labels 〈N, g〉 can be viewed

as sets of I/O-operations that will be performed in parallel.

Constraint automata use a finite set N = {A1, . . . , An} where the Ai’s stand

for the nodes of a Reo circuit. They are classified into source nodes, sink nodes

and mixed nodes. We write N src for the set of source nodes, N snk for the set of

sink nodes and Nmix for the set of mixed nodes and require that N = N src ∪

N snk ∪Nmix and that N src , N snk and Nmix are pairwise disjoint. For N ⊆ N ,

let N src = N ∩ N src , N snk = N ∩ N snk , and Nmix = N ∩N src .

Throughout the paper, we assume a fixed, nonempty data domain Data con-

sisting of the data items that can be transmitted through the channels. A data

assignment for N ⊆ N means a function δ : N → Data. We write δ.A for the

data item assigned to node A ∈ N under δ. DA(N) denotes the set of all data

assignments for node-set N . If M ⊆ N ⊆ N and δ ∈ DA(N) then δ|M denotes

the data assignment for M that assigns data item δ.A to any A ∈ M .

Constraint automata will use a symbolic representation of data assignments

by data constraints which mean propositional formulae built from the atoms

dA = dB or dA ∈ P where A B are nodes, dA is a symbol for the observed

data item at node A and d ∈ Data, P ⊆ Data. If P = {d} is a singelton then

we simply write dA = d rather than dA ∈ {d}. If g is a data constraint and

d ∈ Data, then g[dA/d] denotes the data constraint obtained by syntactically

replacing all occurrences of dA in g with d. For ∅ 6= N ⊆ N , DC (N) denotes

the set of data constraints using only the symbols dA for A ∈ N , but not dB

for B ∈ N \N . The symbol |= stands for the obvious satisfaction relation which

results from interpreting data constraints over data assignments.



Constraint automata. A constraint automaton is a tuple A = (Q,N ,−→

, Q0) where Q is a set of states, also called configurations, N a finite set of

nodes, disjointly partitioned into N src , N snk , and Nmix , −→ is a subset of
⋃

N⊆N Q×{N}×DC (N)×Q, and Q0 ⊆ Q the set of initial states. We refer to

−→ as the transition relation of A. We write q
N,g
−→ p instead of (q, N, g, p) ∈−→

and refer to N as the node-set and g the guard of the transition. By an instance

of q
N,g
−→ p we mean a transition of the form q

N,δ
−→ p where δ ∈ DA(N) is a data

assignment for the nodes in N with δ |= g.

The intuitive behavior of a constraint automaton is as follows. The automaton

starts in an initial state. If the current state is q then an instance q
N,δ
−→ p of the

outgoing transitions from q is chosen nondeterministically, the corresponding

I/O-operations are performed and the next state is p. A formalization of the

possible (finite or infinite) observable data flow of a constraint automaton is

obtained by the notion of a run. Given a constraint automaton A = (Q,N ,−→

, Q0), a run for A denotes a (finite or infinite) sequence of consecutive transition

instances q0

N0,δ0

−−−−→ q1

N1,δ1

−−−−→ q2

N2,δ2

−−−−→ . . . where q0 ∈ Q0. For finite runs

we require that the last state q does not have any outgoing transition where the

node-set N is contained in Nmix . The requirement that runs are either infinite or

end in a state that does not have any outgoing transition where the node-set only

consists of mixed nodes can be understood as a maximal progress assumption

for the mixed nodes. Recall that the enabledness of I/O operations through the

mixed nodes is totally defined by the circuit.

P-filter channelsynchronous channel synchronous drain P-producer

{A,B}

dA = dB

{A,B}

dA = dB ∈ P
{A}

dA /∈ P

{A,B} {A,B}

dB ∈ P

The picture above shows the constraint automata for a synchronous channel, a

P -filter and a P -producer with source node A and sink node B and a synchronous

drain. Recall that a single channel can be viewed as a Reo circuit with two nodes

representing its channel ends. Since these channels do not have a buffer or any

other medium for storing messages, there is only one single state (configuration).

Here and in the sequel, we skip the trivial guard true.



p0

p1

empty

{A}

dA = 0

{B}

dB = 1

{B} dB = 0

{A} dA = 1

The picture above shows a constraint automaton for a FIFO1 channel with

source node A and sink node B. We assume here that the data domain consists

of two data items 0 and 1. The initial state (empty) stands for the configuration

where the buffer is empty, while the states p0 and p1 represent the configurations

where the buffer is filled with one of the data items.

We now briefly summarize how Reo’s join operation can be realized on con-

straint automata. The join of a source node with another (sink, source or mixed)

node will be realized by a product construction, while joining sink nodes will be

modelled with the help of a merger. We first consider the join operation for

node-pairs 〈Ai, Bi〉 where in each pair at most one of the nodes is a sink or

mixed node, that is, Ai or Bi is a source node. In this case, the effect of join is

that all data flow at the nodes Ai and Bi agree. Thus, we may simply rename

Ai into Bi and then apply a product construction for the corresponding con-

straint automata which synchronizes all I/O-operations for the common nodes.

The product of A1 = (Q1,N1, −→1, Q0,1) and A2 = (Q2,N2,−→2, Q0,2) is

A1 ⊲⊳ A2 = (Q1 × Q2,N −→, Q0,1 × Q0,2) where N = N1 ∪ N2 and −→ is

defined by the rules:

q1

N1,g1

−→ 1 p1, q2

N2,g2

−→ 2 p2, N1 ∩ N2 = N2 ∩ N1

〈q1, q2〉
N1∪N2,g1∧g2

−−−−−−−−−−−→ 〈p1, p2〉

q1

N,g
−→1 p1, N ∩ N2 = ∅

〈q1, q2〉
N,g
−→ 〈p1, q2〉

q2

N,g
−→2 p2, N ∩ N1 = ∅

〈q1, q2〉
N,g
−→ 〈q1, p2〉

The source nodes in the product are the nodes in N src = N src
1

\ (Nmix
2

∪

N snk
2

) ∪ N src
2

\ (Nmix
1

∪ N snk
1

) where N src

i denotes the set of source nodes in

Ai, N snk

i the set of sink nodes in Ai and Nmix

i the set of mixed nodes in Ai.

Similarly, the sink nodes in A1 ⊲⊳ A2 are the nodes that are sinks in one of the

automata, but not mixed or source nodes of the other automaton. All remaining

nodes are mixed in A1 ⊲⊳ A2. The sets of sink and mixed nodes in A1 ⊲⊳ A2

will be denoted by N snk and Nmix , respectively. Note that ⊲⊳ is associative and

commutative up to isomorphism.

Let us now consider the case of a join operation that combines two nodes,

say A and B, where none of them is a source node. Then, we have to take care



about the merge semantics of the resulting new sink or mixed node C, which

essentially means that the read operations at A and B have to be interleaved,

but they cannot occur at the same moment. For this, we use a merger which

we join with the constraint automata that contain A and B, respectively. The

merger can be viewed as a component connector with two input ports (source

nodes) A and B and one output port (sink node) C. Formally, it is modelled by

a single-state constraint automaton as illustrated in the picture below.

merger {A,C}

dA = dC

A

B

C {B,C}

dB = dC

Note that this merger is inherent in the semantics of sink and mixed nodes and

need not be used explicitely when generating component connectors in Reo.

The effect of hiding a mixed node in a Reo circuit is that data flow at that

node is no longer observable from outside. We depart here from the approach of

[8] and simply remove the hidden nodes from the node-sets of all transitions. Let

A = (Q,N ,−→, Q0) be a constraint automaton and M ⊆ Nmix . The constraint

automaton hide(A, M) is the tuple
(

Q,N \ M,−→M , Q0,M

)

where q
N̄,ḡ
−→M p iff

there exists q
N,g
−→ p where N̄ = N \M and ḡ = ∃M [g]. Here, ∃{A1, . . . , An}[g] =

∨

d1,...,dn∈Data
g[dAi

/di]. The classification of the nodes in N\M into sink, source

and mixed nodes remains unchanged.

Clearly, ∃M [P ] = P if none of the nodes A ∈ M appears in the labels of

P ’s transitions. There is no general distributive law for the hiding and product

operator. If, however, A is in P1’s node-set, but not in the node-set of P2 then

∃{A}[P1 ⊲⊳ P2] = ∃{A}[P1] ⊲⊳ P2.

3 Simple probabilistic constraint automata

The basic channel types explained above assume a perfect, totally reliable be-

havior of the channels. However, certain channels might behave unreliably, e.g.

they may loose or corrupt messages in an uncontrolled way. In fact, such lossy

channels play a crucial role in the context of so-called lossy channel systems

[24, 17, 4, 3, 38] and probabilistic variants thereof [33, 13, 38, 14, 35, 15, 1, 2].

The behavior of unreliable channels is no longer deterministic. For instance, a

FIFO channel might either fail or succeed to store a certain data item d in its

buffer when its source end performs the operation write(d). We assume here that

the degree of reliability of the used channel types has been studied through sta-

tistical experiments to obtain (approximations of) the probabilities for the faulty

behaviors. Our goal is now to provide operational models for Reo circuits built

out of perfect and unreliable channels with known failure probabilities, such as:



– a faulty FIFO channel with source node A and sink node B which behaves

as a perfect FIFO channel, except that the write operations performed by A

fail with probability τ . Thus, the written element will be stored correctly in

the buffer with probability 1 − τ . Such unreliable FIFO channels have been

considered in the context of probabilistic lossy channel systems, e.g. in [1]

with unbounded capacity or in the modeling language ProbMela [11].

– a lossy FIFO channel that might loose each stored data item with some fixed

probability τ in any step. Such channels have been studied in the context of

probabilistic lossy channel systems [14, 35, 15, 2].

– an unreliable synchronous channel which – as in the case of a perfect syn-

chronous channel – requires that writing and reading at its channel ends are

performed synchronously at the same moment, but the message might be

corrupted. More precisely, if A is the source node and B the sink node then

A and B are forced to synchronize their write and read operations, but the

written data item by A differs from the obtained data item at B with some

probability τ . A non-probabilistic variant of such unreliable synchronous

channel are used in [25] for modelling the Alternating Bit Protocol.

In the former two examples (the two variants of a faulty FIFO channels) the

question for an operational model is simpler since here the possible failures only

affect the configurations reached after an I/O-operation, but not the observ-

able data flow at the nodes performing the I/O-operations. The third example,

the unreliable synchronous channel, is more difficult to model since its faulty

behaviors have to be formalized in a data-dependent way, to reason about the

probabilities for observing certain data items. We first consider the case of con-

figuration failures which we model by so-called simple probabilistic constraint

automata. These are close to simple probabilistic automata [39], which can be

viewed as generalizations of reactive probabilistic systems [28, 42].

If Q is a countable set then a distribution for Q denotes a function π : Q →

[0, 1] such that
∑

q∈Q π(q) = 1. Distr(Q) denotes the set of distributions for Q.

Definition 1 Simple probabilistic constraint automata (SPCA).

A SPCA is a tuple P = (Q,N ,−→, Q0) where Q is a countable set of states,

Q0 ⊆ Q the set of initial states, N a finite set of nodes (partitioned into N snk ,

N src and Nmix ) and −→ ⊆
⋃

N⊆N Q × {N} × DC (N) × Distr(Q),. △

We write q
N,g
−→ π instead of (q, N, g, π) ∈−→. Note that ordinary constraint

automata can be regarded as special instances of simple probabilistic constraint

automata where the distributions π in all transitions assign probability 1 to one

successor state. The intuitive behavior of P in state q is similar as in ordinary

constraint automata, the only difference being that the transitions can have a



probabilistic effect. If q
N,δ
−−−→ π is the taken transition instance then the I/O-

operations described by 〈N, δ〉 are performed and the next configuration is p

with probability π(p).

Remark 1. The formalization of the possible infinite behaviors by means of runs

is as for ordinary constraint automata. Thus, runs are maximal, consecutive

transition instances, starting in an initial state. In the probabilistic setting, runs

resolve both nondeterministic choices (which transition instance is selected in

the current state) and probabilistic choices (which of the probabilistic alterna-

tives of the selected transition instance is chosen). To reason about probabilities

for certain runs, we have to resolve the concept of nondeterminism, but not

the probabilistic choices. As it is standard in the theory of Markov decision

processes, this is done by means of so-called schedulers, also often called poli-

cies, adversaries or strategies. We skip the details here which are irrelevant for

the purpose of this paper and can be found e.g. in [34, 39]. A scheduler sim-

ply means an instance that resolves the nondeterminism, and thus, describes a

possible behavior of a SPCA as a discrete-time stochastic process. (The notion

discrete-time means stepwise behavior, but still in a time-abstract setting.) Any

scheduler for an SPCA induces an infinite-state Markov chain where the states

are finite prefixes of runs. The maximal paths in this Markov chain are the runs

that can be generated by the scheduler. Using the standard probability measure

of the paths in Markov chains, any scheduler induces a probabilitity measure

on its runs and allows to speak about the probabilities for conditions on the

runs, e.g., to reach eventually a certain configuration, or that infinitely often

nodes A and B will synchronize. For verifying quantitative properties, such as

the probability to reach configuration q is at least 0.95, one typically quantifies

over all schedulers. This corresponds to a worst-case analysis where a certain

condition is required to hold even under the worst scheduler. As for the analysis

of non-probabilistic distributed systems, the verification of liveness properties

often requires appropriate fairness conditions. In the probabilistic setting, these

can be formalized by means of certain fair schedulers that, e.g., only generate

runs where no continuously enabled transition is ignored forever. △

Example 1 SPCA for faulty FIFO1 channel. A faulty FIFO1 channel that might

loose messages while inserting them into the buffer can be modelled by a simple

probabilistic constraint automaton as illustrated in the following picture.

pdempty

{B} dB = d

[1− τ]

{A} dA = d

[τ]

A B

τ



For simplicity, the picture only shows the case where Data = {d}. For larger

data domains, there is a state pd for any data item d. Here and in the sequel,

we write the probabilities in brackets [. . .] and skip the probabilities from deter-

ministic transitions, i.e., transitions where the corresponding distribution assigns

probability 1 for one successor state. (This is the case for the transition from pd

to state empty.) Since all probabilistic branches of a SPCA-transition have the

same label (node-set and data-assignment) only one of the probabilistic branches

is labeled in the pictures of SPCA. The idea is that in the initial state empty

any write-operation on A might fail with probability τ in which case the buffer

remains empty or might be successful with probability 1 − τ .

pdempty

{A} dA = d

{B} dB = d

[1− τ]

A B

τ

[τ]

The above picture shows a faulty FIFO1 channel that might loose messages from

its buffer, but works perfectly for the write operation. In state pd we have two

transitions: one with the node-set {B} and guard dB = d representing the case

where B takes the element d from the buffer and one transition labelled with

the empty node-set representing the case where the message in the buffer will

be lost with probability τ and stays unchanged in the buffer with probability

1 − τ . The SPCA-semantics assumes a discrete-time domain where the loss of

a stored message occurs with probability τ in each step (unless B takes the

message). Thus, if A writes and B waits very long to take the message (i.e.,

we consider a scheduler that schedules the {A}-transition in state empty and

then several times the transition labelled with the empty set in state pd) then

it is very likely that the message will be lost. For the extreme case where B

never performs the take-operation the message will be lost with probability τ +

(1 − τ)τ + (1 − τ)2τ + (1 − τ)3τ + . . . = 1. Assuming the {B}-transition is

scheduled latest for the fourth step after state pd has been entered, then the

probability that a stored message will be eventually consumed by B is bounded

by 1− (τ + (1− τ)τ + (1− τ2)τ)) = (1− τ)3. The value τ + (1− τ)τ + (1− τ2)τ

stands for the probability to loose the message in the first three steps where the

transition with the empty node-set has been scheduled in state pd. △

We now address the question of how to construct the automaton (SPCA)

for a given Reo circuit where the meaning of the channel types is provided

by SPCA. Since ordinary constraint automata are special instances of SPCA,



the (nonprobabilistic) perfect channel types discussed in Section 2 can be used

in addition to unreliable channel types with a SPCA-semantics as in Example

1. To capture the meaning of Reo’s join operator we need a product operator

for SPCA which we then may use in combination with an appropriate node-

renaming and mergers as explained in Section 2.1. Thus, we may assume that

the common nodes are the nodes where data flow has to be synchronized and

that each common node is a sink or mixed node in at most one of the given

SPCA.

Definition 2 Product of SPCA. The product-automaton of the two SPCA

P1 = (Q1,N1, −→1, Q0,1) and P2 = (Q2,N2, −→2, Q0,2) where N1 ∩ N2 ⊆

N src
1

∪N src
2

is given by: P1 ⊲⊳ P2 = (Q1 ×Q2,N1 ∪N2,−→, Q0,1×Q0,2) where

−→ is defined by the following rules:

q1

N1,g1

−→ 1 π1, q2

N2,g2

−→ 2 π2, N1 ∩ N2 = N2 ∩ N1

〈q1, q2〉
N1∪N2,g1∧g2

−−−−−−−−−−−→ π1 ∗ π2

where (π1 ∗ π2)(〈p1, p2〉) = π1(p1) · π2(p2) and

q1

N,g
−→1 π1, N ∩ N2 = ∅

〈q1, q2〉
N,g
−→ π′

1

where π′
1
(〈p1, p2〉) =

{

π1(p1) : if q2 = p2

0 : if q2 6= p2

and latter’s symmetric rule. The classification of the nodes into sink, source and

mixed nodes in P1 ⊲⊳ P2 is as in the non-probabilistic case (see Section 2.1). △

The product ⊲⊳ for SPCA is a conservative extension of the product for or-

dinary (non-probabilistic) constraint automata. Hence, for Reo circuits that are

built from perfect and probabilistic channels, the automaton for the subcircuits

consisting of perfect channels can be created by the join operator for ordinary

constraint automata. Moreover, ⊲⊳ on SPCA is associative.

The hiding operator for SPCA can be defined as in ordinary constraint au-

tomata by just skipping the hidden nodes in the node-sets of the transitions and

adapting the guards.

Definition 3 Hiding for SPCA. Let P = (Q,N ,−→, Q0) be a SPCA and

M ⊆ Nmix . The constraint automaton hide(A, M) is the tuple
(

Q,N \M,−→M

, Q0,M

)

where the transition relation −→M is given by:

q
N,g
−→ π, N̄ = N \ M, ḡ = ∃M [g]

q
N̄,ḡ
−→M p

Example 2 Distributed components that communicate via faulty channels.

Let us assume that we are given components Comp
1

and Comp
2

in a distributed

system where messages from component Comp
1

to Comp
2

have to be transmitted

along a FIFO1 channel with faulty write operation.



A
B

C

τ

EF

in

out

G

HI

The picture shows a Reo circuit that organizes several further channels to obtain

a component connector which repeats Comp
1
’s message as often as necessary, to

ensure that almost surely Comp
2

will obtain the message. Comp
1

can deliver its

messages to the circuit via connecting to node in, while Comp
2

might connect to

node out to obtain the message from the circuit. To keep the example small, we

assume here for simplicity that the receipt of the message can be acknowledged

by sending a signal along the reliable synchronous drain BG. FIFO1 channels

CE and EF in the middle and lossy synchronous channel FC serve to resend the

message obtained via in along faulty FIFO channel AB, until the message has

been stored in which case A is no longer enabled to take a message from channel

CA. The lossy synchronous channel FC serves to empty the buffer between E

and F if both buffers in the middle are filled. The lossy synchronous channel CI

is needed to refill the lower buffer. Channels BG, GE and HG are used to stop

data flow through the two buffers in the middle if the message has been taken

at node out .

The SPCA for the above circuit is obtained by joining the automata for all

involved channels and mergers to model the semantics of nodes E and I:



full

empty

[1− τ][τ]

– – –

x – x

{in, I,C,A}

empty
x – x

full
– x x

{E}

full
– – x

{F}

empty

{out,B,G,H,E}

– x –

[1− τ][τ]

{in, I,C,A}

empty full
x x xx x x{F} {F}

empty
x x –
empty

{out,B,G,H,E}

empty
x – –

{F}

{E}

[1− τ][τ]

{F,C,A}

– x x

{E}

[1− τ]

[τ]

{F,C, I,A}

Data constraints have been skipped to simplify the picture. We used triples

uvw ∈ {–,x}3 for the names of states. E.g., state x – – means the configuration

where the buffer between C and E is filled (the symbol x), while the two lower

buffers are empty (symbol –).

Let us assume that Comp
2

is continuously willing to take a message from

out . The quantitative property stating that any message from Comp
1

(that has

been submitted to the circuit via port in) will be delivered with probability

at least 1 − τn after n repetitions of the message along channel AB holds for

all schedulers. We now look for the property stating that any message sent

by Comp
1

via port in will eventually be consumed by Comp
2
. This does not

hold for any run, since channel AB might always fail to write the message in

the buffer. However, almost surely the writing operation at A will be successful

after sufficiently many repetitions. Assuming a fair scheduler which rules out the

possibility that B and out are waiting forever to take the message stored in the

upper buffer by ignoring the corresponding transitions (in which case the data

element runs continuously through the two buffers in the middle), the property

stating that Comp
2

will obtain any message from Comp
1

with probability 1 can



be established. △

4 Probabilistic constraint automata

The definition of simple probabilistic constraint automata only treats probabilis-

tic choices over configurations. SPCA are mostly appropriate to model various

kinds of unreliable FIFO channels and connectors that are built from them and

perfect channels. On the other hand, SPCA fail to model two other important as-

pects. First, SPCA cannot describe channels where synchronous I/O-operations

might fail with some probability. For instance, a synchronous channel might fail

to deliver the message written at the source end, instead a corrupted messages

will be received at its sink end, although the channel still guarantees that any

write operation at its source end is synchronized with a read operation at its sink

end. In this case, failure of an I/O-operation does not mean that an unexpected

configuration is reached, instead it affects the observable data flow at the sink

end. Second, SPCA cannot model coin tossing actions which are required for a

wide range of algorithms for resolving concurrency problems in distributed sys-

tems [29, 30], algorithms used in robotics [41] or in security protocols [36, 43]. To

model such randomized coordination principles in the Reo framework, we need

channels that provide random output values.

In this section, we provide the formal definition of a more general notion of a

probabilistic constraint automaton that captures the meaning of channels where

the observable I/O-operations occur with certain probabilities. This model is

close to Segala’s general probabilistic automata [39]. Transitions of probabilis-

tic constraint automata have the form q −→ Π where Π ∈ Distr
(
⋃

N⊆N {N} ×

DA(N)×Q
)

. That is, the effect of any step from q is formalized by a distribution

that specifies probabilities for the I/O-operations and the successor configura-

tions. The intuitive meaning of a transition q −→ Π is that there is an agreement

of all nodes A in N such that Π(N, δ, p) > 0 for some triple (N, δ, p) with A ∈ N ,

to synchronize via the I/O-operations that occur under Π with positive proba-

bility and that involve A. An additional requirement is that for any transition

q −→ Π the source nodes and the data items to be written at them are fixed.

This assumption is needed for technical reasons. The intuition is that the write

operations determine the probabilistic effect of the transitions.

Definition 4 Probabilistic constraint automata (PCA). A PCA is a tu-

ple P = (Q,N ,−→, Q0) where Q is a countable set of states, Q0 ⊆ Q the set of

initial states, N is a finite set of nodes disjointly partitioned into N src , N snk ,

and Nmix , and −→ ⊆ Q × Distr
(
⋃

N⊆N {N} × DA(N) × Q
)

. We require that

for any transition q −→ Π we have: If Π(N, δ, p) > 0 and Π(M, σ, r) > 0 then

N ∩ N src = M ∩N src and δ.A = σ.A for all source nodes A ∈ N ∩ N src. △



Any simple PCA can be regarded as a PCA. For this, each SPCA-transition

q
N,g
−−−→ π has to be split into the PCA-transitions q −→ Π〈N,δ,π〉 for any δ ∈

DA(N) with δ |= g. The distribution Π〈N,δ,π〉 is given by Π〈N,δ,π〉(N, δ, p) =

π(p) and Π〈N,δ,π〉(·) = 0 in all other cases. Since ordinary constraint automata

are special instances of SPCA, the general model of PCA also covers ordinary

constraint automata. In particular, when modeling Reo circuits by probabilistic

constraint automata all channel types that can be formalized with ordinary

constraint automata or simple PCA can be used in conjunction with the channel

types that have a (non-simple) PCA-semantics.

Example 3 A message-corrupting synchronous channel.

The picture below shows the probabilistic constraint automaton for a synchronous

channel with source node A and sink node B where the delivered message is cor-

rupted with probability τ . (As before on the left we suggest a Reo notation for

this channel. The value τ serves as parameter for this channel type.) That is, if

A writes data item d then with probability 1− τ the correct value d is obtained

at B, but with probability τ , B reads the symbol * that we use to denote a

corrupted message.

{A,B}

[1− τ], dA = dB = d

[τ], dA = d ∧dB = ∗

A B
q

τ

In the picture, d ranges over all data items. Formally, the PCA has for each

d ∈ Data a transition q −→ Πd where Πd({A, B}, [dA = d, dB = d], q) = 1 − τ

and Πd({A, B}, [dA = d, dB = ∗], q) = τ . For all other pairs (N, δ) the probability

for (N, δ, q) under Πd is 0. △

Example 4 Randomized synchronous channel. The Reo notation for a random-

ized synchronous channel and and its PCA-semantics is shown in the following

picture.

{A,B}, dA = d

[1
2
], dB = 0

[1
2
], dB = 1

random(0,1)

A B
q

When activated through an arbitrary writing action at its source A, the ran-

domized synchronous channel generates a random number b ∈ {0, 1} which is

synchronously taken by the sink B. In the picture, d ranges over all data items.

That is, the sketched automaton has for each d ∈ Data a transition q −→ Πd

where Πd({A, B}, [dA = d, dB = 0], q) = Πd({A, B}, [dA = d, dB = 1], q) = 1

2
. △



Example 5 Probabilistic lossy synchronous channel. In the previous two exam-

ples, the PCA-semantics only has transitions q −→ Π where Π selects a unique

node-set. An example for a channel with a PCA where different node-sets are

selected with non-zero probabilities is a probabilistic lossy synchronous channel.

[1− τ], {A,B}, dA = dB = d

prob-lossy [τ]

A B
q

[τ], {A}, dA = d

As an ordinary synchronous channels it has a sink end and a source end and

requires both channel ends to be available to synchronize. However, the transmis-

sion of the message fails with a certain probability τ , while the correct message

passing occurs with probability 1 − τ . This channel type has not to be con-

fused with a non-probabilistic lossy synchronous channel (depicted by a dashed

line without any subscript). The source end A of a non-probabilistic lossy syn-

chronous channel can always write, while the probabilistic lossy synchronous

channel requires A and B to agree on the potential handshaking. △

We now turn to the definition of the composition operators for PCA that

capture the meaning of Reo’s join and hiding operator. Let us start with the

hiding operator. The following definition of the hiding operator on PCA is the

obvious extension of the corresponding definition for ordinary or SPCA:

Definition 5 Hiding for PCA. Let P = (Q,N ,−→, Q0) be a PCA and M ⊆

Nmix . Then, hide(P , M) =
(

Q,N \ M,−→M , Q0,M

)

where −→M is given by:

q−→MΠ ′ iff q −→ Π where Π ′(N ′, δ′, p) =
∑

N,δ Π(N, δ, p) with (N, δ) ranging

over pairs where N \ M = N ′ and δ|N ′ = δ′. △

The remainder of this section addresses the problem of defining an appro-

priate notion of the product of two PCA that covers the semantics Reo’s join

operator. Again, we retain the preprocessing by doing some renaming and the

use of mergers for joining two mixed or sink nodes. Thus, we can concentrate

on the case where we are given two PCA P1 = (Q1,N1, −→1, Q0,1) and

P2 = (Q2,N2,−→2, Q0,2) that have to synchronize the I/O-operations for all

common nodes A ∈ N1 ∩ N2 and where each common node A ∈ N1 ∩ N2 is a

source node in P1 or P2. Unfortunately, the product for PCA is more compli-

cated than for SPCA. The difficulty is that P1 and P2 might have to combine

several transitions to complement each others transitions with common nodes

(not just two as it is the case for SPCA). Look at the PCA-fragments shown in

the picture below, where A is a sink or mixed node in the automaton P1 on the

left and a source node in the automaton P2 on the right. Transition 1 −→1 Π1

of P1 cannot be matched with a single transition of P2.



{A}

[1
3
], dA = 0

[2
3
], dA = 1. . .

. . .

. . .

. . .

. . . ⊲⊳

{A}, dA = 1

. . .

. . .

. . .

. . .

. . .

. . .
. . .

. . .

. . .{A}, dA = 0

4

321

5

However, P1 and P2 can agree to have data flow at A: P1 provides the proba-

bilities for the concrete data item, while P2 reacts on this choice made by P1

and chooses the lower or upper transition depending on the outcome of P1’s

probabilistic choice. This is consistent with the meaning of joining sink/mixed

node A of P1 with source node A in P2: the data items obtained from a channel

with sink end on A are transmitted via all channels with a source end on A.

[2
3
], {A}, dA = 1

. . .

. . .

. . .

. . .

. . .

. . .
. . .

. . .

. . .[1
3
], {A}, dA = 0
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In fact, this product-PCA arises by the concatenation operator of Def. 6 which

relies on the assumption that the common nodes are exactly the source nodes in

P2. Under these assumptions, joining P1 and P2 can be viewed as a concatenation

operation since P1 provides the inputs for P2.

Definition 6 Concatenation of PCA (special case of PCA-product).

Let Pi = (Qi,Ni,−→i, Q0,i), i = 1, 2, be two PCA such that N1 ∩ N2 agrees

with the set of source nodes in P2. Let q1 ∈ Q1 and q2 ∈ Q2. Then, a combined

distribution of 〈q1, q2〉 is a function Π which is obtained as follows. For N ⊆

N1 ∪ N2, δ ∈ DA(N) and p1 ∈ Q1, p2 ∈ Q2, Π(N, δ, 〈p1, p2〉) is given by

Π
N1∩N src

2
,δ|N1∩N src

2

2
(N ∩N2, δ|N∩N2

, p2)

where q1 −→ Π1 is a transition on P1 and, for each pair (M, σ) = (N1 ∩

N2, δ|N1∩N2
) where Π1(N1, δ1, p1) > 0 for some p1 ∈ Q1, ΠM,σ

2
is a distribution

on
⋃

N2⊆N2
{N2} × DA(N2) × Q2 such that one of the following two conditions

holds:

(i) q2 −→2 ΠM,σ
2

is a transition in P2 such that ΠM,σ
2

(N2, δ2, p2) > 0 implies

M = N2 ∩ N1 and σ.A = δ2.A for all A ∈ M .

(ii) M = ∅ and ΠM,σ
2

= Idleq2
where Idleq2

denotes the distribution that assigns

probability 1 to the triple (∅, ∅, q2) and probability 0 to all remaining triples.

(Idleq2
is called the idling distribution for q2.)



The concatenation of P1 and P2 is the PCA P1;P2 = (Q1 × Q2,N1 ∪ N2,−→

, Q0,1 ×Q0,2) where the transition relation is defined by the following two rules:

Π is a combined distribution of 〈q1, q2〉 ∈ Q1 × Q2

〈q1, q2〉 −→ Π

and
q2 −→2 Π2 ∧ (Π2(N2, δ2, p2) > 0 ⇒ N2 ∩N1 = ∅)

〈q1, q2〉 −→ Π ′
2

In the latter rule Π ′
2

means the composition of the idling distribution for q1 and

distribution Π2, that is, Π ′
2
(N, δ, 〈p1, p2〉) = Π2(N, δ, p2) if N ⊆ N2 \ N1 and

p1 = q1, and Π ′
2
(N, δ, 〈p1, p2〉) = 0 in all other cases. △

In Def. 6 the combined transitions arise by combining a transition q1 −→1 Π1

in P1 with several proper transitions in P2 (case (i) in Def. 6) or idling step in

P2 (case (ii) in Def. 6), depending on the input values for the source nodes

in P2 provided by P1 in the corresponding probabilistic branch of Π1. The

source nodes in P2 that are sink or mixed nodes in P1 are mixed in P1 ⊲⊳ P2.

The written values at the source ends of such a node A (modelled by transi-

tions in P2) are obtained from the sink ends on A (modelled by a transition in

P1). This explains the definition of combined distributions where the node-set

N1 = N ∩ N1 and data assignment δ|N1
determines the read-operations of P1’s

sink or mixed nodes A ∈ N1 ∩ N src
2

⊆ N snk
1

∪ Nmix
1

, while P2 has to provide

matching write-operations at its source nodes A ∈ N1 ∩ N src
2

by means of a

transition q2 −→2 Π
N1∩N2,δ|N1∩N2

2
. In particular, if q1 −→1 Π1 is a transition in

P1 such that for some triple (N1, δ1, p1) we have Π1(N1, δ1, p1) > 0 but there is

no matching transition in P2 according to condition (2), then there is no com-

bined transition that relies on the combination of q1 −→1 Π1 with transitions in

P2. This, however, corresponds to the join-operator for SPCA (or ordinary con-

straint automata) which also discards transitions of one automaton that involves

common nodes and cannot be matched with a transition of the other automaton.

The second transition type 〈q1, q2〉 −→ Π ′
2

in Def. 6 covers the case where P2

performs transitions where none of the common nodes A ∈ N1 ∩N2 is involved.

In this case, P2 performs its transition q2 −→2 Π without synchronizing with

P1. The symmetric case where P1 performs a transition without interacting with

P2 is covered by the combined transitions. It can be shown that any combined

distribution Π is in fact a distribution (i.e., its values sum up to 1) and that the

concatenation operator is associative Moreover, the concatenation operator of

Def. 6 applied to SPCA (viewed as PCA) yields the product operator for SPCA

(Def. 2). (See [10] for the proofs.)

Example 6. To illustrate how the concatenation-operator can serve to model

Reo’s join operator, we consider a simple Reo circuit that arises by joining the



sink node of a probabilistic lossy synchronous channel (cf. Example 5) with the

source node of an ordinary synchronous channel.

prob-lossy [τ]

A B C

The PCA that results from joining the PCA for the probabilistic lossy syn-

chronous channel AB and the synchronous channel BC via the concatenation-

operator is shown in the picture below.

[1− τ], {A,B}

dA = dB = d

q1

[τ], {A}

dA = d

q2

{B,C}, dB = dC

⊲⊳ =

[1− τ], {A,B,C}

dA = dB = dC = d

q1,q2

[τ], {A}, dA = d

Example 7 Constructing a randomized router. We use the Reo framework with

random synchronous channels to model a randomized router. This means a com-

ponent with one source node A and two sinks B and C which randomly choses

B or C (both with probability 1

2
) to obtain a data item written at A.

random(0,1)

0

1

B

C

A

Beside two filter channels, two synchronous drains and the randomized syn-

chronous channel, we use two lossy synchronous channels (depicted by dashed

lines). As mentioned before, a lossy synchronous channel behaves as an ordinary

synchronous channel but writing at its source end is always enabled. If the sink

end is not available to take the written data item then the data item is lost.

If A actives the randomized synchronous channel then, with equal probability,

data items 0 or 1 serve as input for the two filter channels. Exactly one of the

two filter channels delivers the randomly generated bit, while the other loses the

written bit. On the other hand, the read operation at B has to be synchronized

with data flow at the upper synchronous drain and the upper lossy synchronous



channel. Moreover, data flow at the upper synchronous drain is possible only

if the upper filter channel delivers 0. The same holds for C and the lower syn-

chronous drain, lossy synchronous channel and data item 1. Hence, with equal

probability A delivers its message to either B or C, provided that B and C are

enabled to obtain a data item.

0

1

B

C

A
random(0,1)

0

1

B

C

A

G

F

E

H

I

F

E

H

I

join

random(0,1)

The above picture illustrates the construction that preceeds the hiding operator

on the circuit-level. We then mimick these steps on the automata-level by first

applying the join operator (product) to the involved non-probabilistic channels.

The resulting automaton is then joined with the PCA for the randomized chan-

nel. Finally, we hide all mixed nodes which yields a formalization of the behavior

described above. These steps are shown at the end of the paper (Fig. 2). △

In the sequel, we discuss the general case where two PCA P1, P2 (where

all common nodes are source nodes in P1 or P2) have to be combined via a

product-construction that is consistent with Reo’s join operator. To obtain a

perfect match of the I/O-operations at the common nodes, the need to combine

one transition in one automaton with several transitions in the other automaton

can become cyclic when transitions are considered that involve common nodes

A ∈ N snk
1

∩ N src
2

and B ∈ N src
1

∩ N src
2

. In fact, we do not see any appropriate

way to assign probabilities for the values obtained and written at nodes A and B.

In our opinion, the most reasonable semantics for the composite circuit does not

allow for any data flow since there is no possibility for the underlying subcircuits

to agree on I/O-operations at their common nodes A and B and resolving the

probabilistic choices in randomized channels independently.

In the sequel, we introduce a product-construction for PCA which relies

on a combination of the concepts of the SPCA-product and the concatenation

operator for PCA. The idea is that any step in the composite circuit (product-

PCA on the semantic level) arises either by combining simple transitions where

both circuits agree on the joint I/O-operations in a deterministic way or by

combining a single transition of one circuit Ri where none of the sink or mixed

nodes of the other circuit Rj is involved with several matching transitions of

the other circuit Rj . Both types of transitions in the product can be interpreted



as transitions that are initialized by one automaton, say P1, which offers to

synchronize on certain common nodes by fixing I/O-operations for them. The

other automaton P2 can react on the suggested synchronization by providing

matching I/O-operations for the common nodes. If P1 offers I/O-operations with

a probabilistic effect for some sink or moxed node in P1 that is a source node

in P2 then P2’s can react on the outcome of P1’s probabilistic choice. Since

PCA-transitions require unique write-operations for the source nodes, the only

possibility for P2’s reaction on a transition offered by P1 where nodes in N src
1

∩

(N snk
2

∪ Nmix
2

) are involved is to provide a transition in P2 where the written

values for the involved nodes A ∈ N src
1

∩ (N snk
2

∪Nmix
2

) are deterministic.

Notation 7 I/O-determinism, simple combined transitions. Let P1 and

P2 be two PCA as before where any common node A ∈ N1∩N2 is a source node

in P1 or P2 (or both). Let q1 −→1 Π1 be a transition in P1. Then, q1 −→1 Π1

is called I/O-deterministic for P2 if Π1(N1, δ1, p1) > 0 and Π1(N
′
1
, δ′

1
, p′

1
) > 0

implies N1 ∩ N2 = N ′
1
∩ N2 and δ1.A = δ′

1
.A for all A ∈ N1 ∩ N2. If q1 −→1 Π1

is I/O-deterministic for P2 then a matching transition for q1 −→1 Π1 in Π2 is a

transition q2 −→2 Π2 in P2 such that Π1(N1, δ1, p1) > 0 and Π2(N2, δ2, p2) > 0

implies N1 ∩ N2 = N2 ∩ N1 and δ1.A = δ2.A for all A ∈ N1 ∩ N2. If q1 −→1 Π1

is I/O-deterministic for P2 and q2 −→2 Π2 a matching transition then the

transition 〈q1, q2〉 −→ Π where

Π(N, δ, 〈p1, p2〉) = Π1(N ∩N1, δ|N∩N1
, p1) · Π2(N ∩ N2, δ|N∩N2

, p2)

is called a simple combined transition of 〈q1, q2〉. △

Note that if q1 −→1 Π1 is I/O-deterministic for P2 and Π2 is as in in Notation

7 then q2 −→2 Π2 is I/O-deterministic for P1. From this, we can derive that Π in

Notation 7 is in fact a distribution. Moreover, any source node A ∈ N src either

has a fixed value to be written at A in Π ’s probabilistic branches or A does not

occur in any probabilistic branch of Π . Thus, simple combined transitions fulfill

the requirements of PCA-transitions.

Notation 8 Input-independence, non-simple combined transitions. Let

P1, P2 be two PCA as before where any common node A ∈ N1 ∩ N2 is a

source node in P1 or P2 (or both). Let q1 −→1 Π1 be a transition in P1. Then,

q1 −→1 Π1 is called input-independent on P2 if Π1(N1, δ1, p1) > 0 implies

N1 ∩ N src
1

∩ (N snk
2

∪ Nmix
2

) = ∅. Let q1 −→1 Π1 is input-independent on P2

and q2 ∈ Q2. Furthermore, let L ⊆ N src
2

\ N1 and η ∈ DA(L). For any pair

(M, σ) = (N1 ∩N2, δ1|N1∩N2
) for some triple (N1, δ1, p1) where Π1(N1, δ1, p1) >

0, let ΠM,σ
2

be a distribution such that one of the conditions (i) or (ii) holds:

(i) q2 −→2 ΠM,σ
2

is a transition in P2 such that ΠM,σ
2

(N2, δ2, p2) > 0 implies

N2 ∩ N src
2

= (N1 ∩ N src
2

) ∪ L, δ2.A = η.A for all A ∈ L, N2 ∩ N1 = M and

δ2.A = σ.A for all A ∈ M .



(ii) M = L = ∅ and ΠM,σ
2

= Idleq2

Then, 〈q1, q2〉 −→ Π is called a combined transition of 〈q1, q2〉 initialized by

q1 where Π is defined as follows. For N ⊆ N1 ∪ N2, δ ∈ DA(N), p1 ∈ Q1,

p2 ∈ Q2, Π(N, δ, 〈p1, p2〉) is Π1(N1, δ1, p1) · Π
N1∩N2,δ1|N1∩N2

2
(N2, δ2, p2) where

Ni = N∩Ni, δi = δ|Ni
, i = 1, 2. The combined transition 〈q1, q2〉 −→ Π is called

non-simple if L 6= ∅ or q1 −→1 Π1 is not I/O-deterministic for P2. (Non-simple)

combined transitions of 〈q1, q2〉 initialized by q2 are defined in the symmetric

way. A combined transition of 〈q1, q2〉 means a non-simple combined transition

of 〈q1, q2〉 initialized by q1 or q2 or a simple combined transition of 〈q1, q2〉. △

Since non-simple combined transitions rely on a fixed transition in P1 and a

pair (L, η) that determines the source nodes in N src
2

\N1 at which values have to

be written the write-operations at the source nodes in N src = (N src
1

\ (N snk
2

∪

Nmix
2

)) ∪ (N src
2

\ (N snk
1

∪ Nmix
1

)) are deterministic in Π , i.e., do not depend

on the probabilistic branches of Π . Hence, combined transitions can serve as

transitions in the product.

Definition 9 Product of PCA. Let P1, P2 be two PCA as before. The prod-

uct of P1 and P2 is the PCA P1 ⊲⊳ P2 = (Q1 × Q2,N1 ∪ N2,−→, Q0,1 × Q0,2)

where the outgoing transitions from state 〈q1, q2〉 in P1 ⊲⊳ P2 are the combined

transitions 〈q1, q2〉 −→ Π (defined in Notation 7 and 8). △

The product on PCA is a conservative extension of the product on simple

PCA and the concatenation operator on PCA.

Since the products treats P1 and P2 in a symmetric way, the product op-

erator ⊲⊳ on PCA is commutative up to isomorphism. Unfortunately, ⊲⊳ is not

associative. The reason is that if we are given three PCA P1,P2,P3 then P1 ⊲⊳

(P2 ⊲⊳ P3) might contain a non-simple combined transition 〈q1, q2, q3〉 −→ Π

initialized by q1 which relies on the combination of a transition in P1 that is

input-independent on P2 with one or more non-simple combined transitions in

P2 ⊲⊳ P3 initialized by q3. It might be the case that 〈q1, q2, q3〉 −→ Π is not a

transition in (P1 ⊲⊳ P2) ⊲⊳ P3. However, all other transitions in P1 ⊲⊳ (P2 ⊲⊳ P3)

are also transitions in (P1 ⊲⊳ P2) ⊲⊳ P3. Thus, the PCA-semantics of a Reo-

circuit depends on the order in which the PCA for its subcircuits are generated.

To provide a sensible PCA-semantics for arbitrary Reo circuits with perfect and

probabilistic channels we suggest an extension of the binary product-operator ⊲⊳

for three or more PCA P1, . . . ,Pn. The idea is that in ⊲⊳1≤i≤n Pi the outgoing

combined transitions from state 〈q1, . . . , qn〉 are obtained by fixing a permutation

i1, . . . , in of 1, . . . , n and combining

– a single transition qi1 −→i1 Πi1 in Pi1 which is input-independent on or

I/O-deterministic for Pi2 , . . . ,Pin
,



– several transitions qi2 =⇒i2 ΠM1,σ1

i2
in Pi2 that are input-independent on

or I/O-deterministic for Pi3 , . . . ,Pin
and that yield a perfect match for the

I/O-operations provided by Πi1 ’s probabilistic choices,

– several transitions qi3 =⇒i3 ΠM1,σ1,M2,σ2

i3
in Pi3 that are input-independent

on or I/O-deterministic for Pi4 , . . . ,Pin
and that yield a perfect match for

the I/O-operations provided by the Πi1 ’s and Πi2 ’s probabilistic choices,

and so on. Here, =⇒i extends −→i by the idling steps q =⇒i Idleq. The precise

definition of combined transitions follows the same pattern as in the binary

case and is omitted here. This operator extends the binary operator ⊲⊳ defined

in Def. 9 in the sense that ⊲⊳i=1,2 Pi = P1 ⊲⊳ P2, and hence, it fails to be

associative. However, if a Reo circuit with n channels c1, . . . , cn is given then

the PCA obtained by the product for the PCA for c1, . . . , cn and the required

mergers yields a reasonable operational semantics for the circuit.

Similar difficulties for the definition of products of other probabilistic models

are known in the context of parallel composition for Segala’s general probabilis-

tistic automata [39]. One solution in this setting is to require simple transitions

for all input actions as in I/O-automata [31, 44]. In Segala’s approach, a simple

transitions means a transition with a unique action label for all probabilistic

branches. This is not an appropriate solution in the context of Reo, since we

do not simply have one action label per transition, but node-sets that stand for

several input/output actions.

5 Bisimulation on PCA

Formal notions of equivalence, such as bisimulation equivalence, provide a precise

definition of what is meant that two probabilistic constraint automata, and thus

two Reo circuits with perfect and probabilistic channels, have the same behavior.

They play a crucial role for design purposes; for instance, when replacing a large

(expensive) Reo circuit with a simpler (cheaper) one, the equivalence of the

two circuits has to be ensured. Another example is the situation where the

desired behavior of a component connector to be constructed is specified by

a probabilistic constraint automata. We then may show the correctness of an

implementation, given by a Reo circuit with probabilistic channels, by proving

that the specification-PCA and the probabilistic constraint automaton for the

constructed Reo circuit are bisimulation equivalent. The following definition of

bisimulation equivalence for PCA is a slight variant of probabilistic bisimulation

à la Larsen and Skou [28] and Segala and Lynch [40].

Definition 10 Bisimulation for PCA. Let P be a probabilistic constraint

automaton as in Def. 4. A bisimulation on P is an equivalence relation R on

the state space Q such that for all (q1, q2) ∈ R we have: For any transition



q1 −→ Π1 there is a transition q2 −→ Π2 such that Π1(N, δ, P ) = Π2(N, δ, P )

for all N ⊆ N , δ ∈ DA(N) and all equivalence classes P ∈ Q/R. Here, we write

Πi(N, δ, P ) for the sum
∑

p∈P Πi(N, δ, p). Two states q1, q2 are called bisimilar,

denoted q1 ∼ q2, if (q1, q2) is contained in some bisimulation. △

As usual for bisimulation-like relations, this notion of bisimulation equiva-

lence for the states of one automaton can be adapted to a relation that compares

two automata. If we are given two probabilistic constraint automata P1 and P2

with the same node-set then we consider the probabilistic constraint automaton

P that arises through the disjoint union of P1 and P2. Then, P1 and P2 are

called bisimulation equivalent if any bisimulation equivalence class of P either

contains initial states of both automata or no initial states. We write P1 ∼ P2

if P1 and P2 are bisimulation equivalent. As shown for bisimulation relation

for other types of probabilistic automata (see e.g. [39]), it can be shown that if

(Ri)i∈I is a family of bisimulation relations on a PCA P then the (
⋃

i Ri)
∗ is

again a bisimulation on P . This yields that ∼ as an relation on the state-space

of P is the coarsest bisimulation on P .

Example 8. We consider the two Reo circuits R1 (left) and R2 (right) shown in

the picture below. For both, source node A is connected with sink node B via

a randomized channel and a perfect FIFO1 channel. One might expect that R1

and R2 have the same meaning, since in either case the written data item at A

is irrelevant for the obtained value at B which is 0 or 1 with equal probability.

A B
random(0,1)

A B
random(0,1)

However, the PCA for R1 and R2 are not bisimulation equivalent, since in R1

the {A}-transition is deterministic, while the {B}-transition is randomized, but

the converse holds for R2. The picture below shows the PCA P1 and P2 for R1

and R2, respectively. In the picture for P1, there is one state pd and one outgoing

transition from the initial state for any d ∈ Data.

p0

empty

p1

{A} dA = d {A} dA = d

[1
2
][1

2
]

{B} dB = 0 {B} dB = 1
pd

empty {A} dA = d

[1
2
][1

2
]

{B} dB = 0 {B} dB = 1



Although all states pd in P1 are bisimulation equivalent, they are not bisimula-

tion equivalent to state p0 or p1 in P2 because of the data assignments for B in

their outgoing transitions. Thus, P1 6∼ P2.

A

1
2

B

1

0

Let us now regard the Reo circuit R3 shown above. Any written value by A is

simultaneously delivered to the (upper) perfect FIFO1 channel and the (lower)

FIFO1 channel that loses the written value with probability 1

2
. In the configu-

ration where both buffers are filled (which is reached with probability 1

2
), the

element in the lower buffer enters the lower 1-producer channels and delivers

data item 1 at node B, while the data element from the upper buffer enters the

two lossy synchronous channels and will be lost in the upper one. In the config-

uration where only the upper buffer is filled (which is reached with probability
1

2
when A provides its input), the data item enters both lossy channels, will be

lost in the lower one, but will be delivered in the upper one and enters from

there the 0-producer channel. Thus, B obtains the value 0.

{B} dB = 1

empty, empty

d, empty d, d

{A} dA = d {A} dA = d

[1
2
][1

2
]

{B} dB = 0

The sketched behavior is formalized by the PCA for R3, which can be obtained

by applying the concatenation and hiding operator for PCA. The picture for

P3 is parametric in d, that is, for all data items d ∈ Data, there are two states

〈d, empty〉 and 〈d, d〉 and there is one outgoing transition from the initial state

with the label {A}, dA = d. However, the states 〈d, empty〉, d ∈ Data, fall into

the same bisimulation equivalence class. The same holds for the states 〈d, d〉,

d ∈ Data. Hence, P3 and P2 are bisimulation equivalent. △

Lemma11 Compositionality of join and hiding for PCA. If P, P ′, P1,

P ′
1
, P2, P ′

2
are probabilistic constraint automata with the same node-set then:

(a) P1 ∼ P ′
1

and P2 ∼ P ′
2

implies P1 ⊲⊳ P2 ∼ P ′
1

⊲⊳ P ′
2
.



(b) P ∼ P ′ implies hide(P , M) ∼ hide(P ′, M).

The proof for Lemma 11 can be provided using similar arguments as in the

non-probabilistic setting [8] (see the extended version of this paper [10]).

6 Conclusion

The goal of the paper was to provide an operational semantics for probabilistic

component connectors modelled by a Reo circuits. For this purpose, we intro-

duced simple and general probabilistic constraint automata, presented opera-

tors for modelling Reo’s join and hiding operations and provided a notion of

bisimulation equivalence. While the join-operator for simple general probabilis-

tic constraint automata is a natural extension of the join for non-probabilistic

constraint automata, it causes difficulties for the general case. We introduced a

product-construction that is appropriate for modeling join in non-cyclic proba-

bilistic Reo circuits and thus can be viewed as a concatenation operator. While

these operators are associative, and thus appropriate for compositional reason-

ing, their generalization for PCA fails to be associative. The problem with the

join operator for PCA are cyclic input-dependencies via channels with a non-

simple PCA-semantics. However, we suggested a product operator for two or

more PCA that generalizes the SPCA-product and concatenation operator and

can serve to provide a reasonable meaning for arbitrary Reo circuits with perfect

and probabilistic channels.

Probabilistic constraint automata are slight variants of Markov decision pro-

cesses, a well-known mathematical model for probabilistic systems. The tech-

niques suggested in this paper provide the basis for applying known methods

for a quantitative analysis of component connectors with unreliable or random-

ized channels. Model checking for temporal logic specifications and simulation

techniques for probabilistic systems which are supported by various tools, e.g.

PRISM [26], Möbius [20], Modest [16] or LiQuor [12], serve as examples.

Several extensions and variants of the presented concepts will have to be stud-

ied in future work. This includes the discussion of reward models to reason about

costs, the combination of the probabilistic models discussed here with hard real-

time constraints as in timed automata (e.g., in the style of probabilistic timed

automata of [27]), an investigation of the relations of timed data streams (as it

has been done in [9] for non-probabilistic Reo) in the probabilistic case and the

connection to stochastic relations as discussed e.g. in [23] and the development

of special models and logics to reason about Reo’s dynamic features.



{G,F} {G,B}

dG = dB

{A,G}

dA = dG

{A}

⊲⊳ ⊲⊳⊲⊳
{E,F}

dE = dF = 0

{E}

dE = 1

{A,E}

[1
2
], dE = 0

[1
2
], dE = 1

{I,H} {I,C}

dI = dC

{A, I}

dA = dI
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dE = dH = 1
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2
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2
], {A,C} dA = dC

Figure 2: Compositional construction of the PCA for the randomized router
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